
Snakes in Paradise?: Insecure Python-related
Coding Practices in Stack Overflow

Akond Rahman, Effat Farhana, and Nasif Imtiaz
North Carolina State University, Raleigh, North Carolina

Email: aarahman@ncsu.edu, efarhan@ncsu.edu, simtiaz@ncsu.edu

Abstract—Despite being the most popular question and an-
swer website for software developers, answers posted on Stack
Overflow (SO) are susceptible to contain Python-related insecure
coding practices. A systematic analysis on how frequently inse-
cure coding practices appear in SO answers can help the SO
community assess the prevalence of insecure Python code blocks
in SO. An insecure coding practice is recurrent use of insecure
coding patterns in Python. We conduct an empirical study using
529,054 code blocks collected from Python-related 44,966 answers
posted on SO. We observe 7.1% of the 44,966 Python-related
answers to include at least one insecure coding practice. The most
frequently occurring insecure coding practice is code injection.
We observe 9.8% of the 7,444 accepted answers to include at
least one insecure code block. We also find user reputation not
to relate with the presence of insecure code blocks, suggesting
that both high and low-reputed users are likely to introduce
insecure code blocks.

Index Terms—python, reputation, security, stack overflow

I. INTRODUCTION

Stack Overflow (SO) is regarded as the most popular
question and answer website for software developers [1].
How software developers use and contribute to SO posts
for software projects [2] [3] [4], and the technologies and
tools [5] [6] they refer to, has drawn interest of researchers.

Despite SO’s popularity, answers posted on SO are suscepti-
ble to contain code blocks which include insecure coding prac-
tices. Let us consider Figure 1 as an example in this regard.
In Figure 1 we present an accepted answer posted on SO [7]
related to hash calculation in Python. The answer proposes
the use of MD5 to compute hash using the ‘hashlib.md5()’
method. Use of MD5 is insecure, as MD5 is susceptible
to collision attacks. The National Institute of Standard and
Technologies (NIST) recommends against the use of MD5 [8].
A software developer who wants to implement hash in Python
and comes across this answer may use the provided code
block, unintentionally leaving a security weakness in the
software code. We take motivation from the provided code
block in Figure 1, and investigate the prevalence of insecure
coding practices in SO answers related to Python, which IEEE
Spectrum ranked as the top-most programming language for
the year 2018 [9].

We conduct our empirical study to systematically quantify
the prevalence of insecure coding practices i.e. recurrent use of
insecure coding patterns in Python. We answer the following
research questions:
• RQ1: How frequently do insecure coding practices appear

in Python-related Stack Overflow answers?

Fig. 1: An accepted answer posted on SO, which uses MD5
to implement hashing in Python.

• RQ2: How does user reputation relate with the frequency
of insecure Python-related coding practices?

• RQ3: What are the characteristics of Python-related ques-
tions that include answers with insecure code practices?

We conduct an empirical study by using the MSR2019
Mining Challenge dataset [1]. By systematically applying
a set of filtering criteria we identify 44,966 SO answers
related to Python, which include 529,054 code blocks in total.
Next, we identify the frequency of insecure coding practices.
We also quantify the relationship between the presence of
insecure coding practices and user reputation by applying
statistical analysis. Finally, we apply topic modeling [10] to
characterize Python-related SO questions that include answers
with insecure coding practices.

Our contribution is an empirical study that characterizes
the prevalence of insecure coding practices in Python-related
SO answers.

II. EMPIRICAL STUDY

We use the MSR2019 Mining Challenge Dataset provided
by Baltes et al. [1]. We summarize the steps to conduct our
empirical analysis in Figure 2. Before describing the details of
our empirical study we present necessary definitions below:

Insecure coding practice: Recurrent use of any insecure
coding patterns listed in Table II.

Insecure code block: A code block in an SO answer that
includes any of the insecure coding patterns described in
Table II.

Insecure answer: An answer which includes one or multi-
ple insecure code blocks.

Insecure accepted answer: An accepted answer which
includes one or multiple insecure code blocks.

Prep
rin

t



TABLE I: Selection of Stack Overflow Posts for Analysis
Initial post count 41,782,536

Criteria-1 (Ques. with at least one answer ) 14,207,037
Criteria-2 (Ques. with score > 0) 6,902,332
Criteria-3 (Ques. with > 0 views ) 6,902,332
Criteria-4 (Ques. linked to > 0 ‘.py’ files in GitHub) 10,861

Final question count 10,861

Neutral answer: An answer which includes no insecure
code blocks.

Scanning 
Insecure 
Coding 
Practices 

RQ1: Frequency 

RQ2: User Repu. 

RQ3: Ques. Categ. 

Filtering 

Dataset 

Fig. 2: Methodology to conduct our empirical study.

A. Filtering

Before applying our analysis we filter the provided dataset
based on a set of criteria summarized in Table I. We obtain
10,861 questions, which included 44,966 answers. The 44,966
answers included 529,054 Python code blocks. Of the 44,966
answers, 7,444 are accepted answers i.e. answers that are
accepted by the question providers. Our selection criteria is
inspired by Meng et al. [11]. We use answer count, views,
and scores to filter out irrelevant SO questions for analysis.
We added Criteria-5, to identify questions that may actually
be in use, as evident from GitHub history. Constructed datasets
and analysis scripts are available online [12].

B. Scanning Code

To identify insecure coding practices in these code blocks,
we use a catalog of insecure coding practices reported by
Openstack [13]. The list reported by Openstack included
77 coding patterns of Python that have security weakness.
These 77 coding patterns have commonalities with respect to
security weakness. For example, both ‘Crypto.Hash.MD2.new’
and ‘Crypto.Hash.MD4.new’ both refer to the same insecure
coding practice: relying on two Python functions that use weak
cryptography algorithms. We apply a categorization scheme so
that the common security weaknesses can be grouped together
by using two raters who are PhD students, with an average
experience of three years in software security. The two raters
independently categorized the 77 insecure coding patterns.
The first and second rater respectively identified seven and
five categories of insecure coding practices, of which five
were common. We record a Cohen’s Kappa [14] of 0.5. The
disagreements are resolved by the first author. Upon resolving
disagreements we finally identify a set of six insecure coding
practices:

Code injection is the practice of using coding patterns that
are susceptible to arbitrary code or command injection. For
example, Python’s ‘eval’ function is susceptible to executing
harmful commands without validation [15].

Cross-site scripting (XSS) is the practice of using coding
patterns such as the ‘django.utils.safestring.mark safe’ func-
tion [16] that enables injection of client-side scripts into web
pages.

Insecure cipher is the practice of using weak cryptography
algorithms such as MD2 and MD5 [8] or predictable random
number generators such as Python’s random.random() func-
tion.

Insecure connection is the practice of using coding patterns
such as ‘httplib.HTTPSConnection’ that uses the hypertext
transfer protocol (HTTP) and the file transfer protocol (FTP)
to create and open connections [17].

Race condition is the practice of using coding patterns such
as ‘mktemp’ that enables creation of temporary files with
predictable paths, increasing the possibility of time of check,
time of use attacks [18].

Untrusted data serialization is the practice of using data
serialization-related coding patterns such as pickle.loads()
without validating the authentication of the source [19].

A complete mapping of each insecure coding practice
with the corresponding Python coding pattern is available in
Table II. We detect the presence of an insecure coding practice
if any of the coding patterns listed in column ‘Coding Pattern’
is present. We detect the presence using string matching.

Sanity checking: Use of string matching can yield false
positives and false negatives. We mitigate this limitation by
randomly selecting 100 SO answers with code blocks that
have been identified to contain insecure code blocks. From
our manual inspection we observe no false positives and false
negatives.

C. Answer to RQ1: How frequently do insecure coding prac-
tices appear in Python-related Stack Overflow answers?

Approach: For each category of insecure coding practice,
we answer RQ1 by reporting count of insecure code blocks,
count of insecure answers, count of insecure accepted answers
and count of insecure questions.

Findings: We report our detailed findings in Table III, where
each insecure coding practice is reported as columns, and
each frequency measure is reported as rows. For example, we
identify 2,319 code blocks for which code injection-related
coding patterns appeared. The ‘Combined’ column presents
the frequency when all insecure practices are considered. We
observe 0.69% of the 529,054 code blocks to include at least
one of the six insecure coding practices, as shown in the
‘Combined’ column. We observe 18.1% of the 10,861 SO
questions to contain at least one insecure answer. We observe
9.8% of the 7,444 accepted answers to include at least one
insecure code blocks.

D. Answer to RQ2: How does user reputation relate with the
frequency of insecure Python-related coding practices?

We hypothesize that SO users who have less reputation are
more likely to introduce insecure answers for SO questions.

Approach: We evaluate our hypothesis by calculating rep-
utation of users who provide answers that include at least

Prep
rin

t



TABLE II: Insecure Coding Practice and Corresponding Coding Pattern

Insecure Practice Corresponding Coding Pattern
Code injection input,eval

Cross-site scripting (XSS) django.utils.safestring.mark safe

Insecure Cipher hashlib.md5,cryptography.hazmat.primitives.hashes.MD5,Crypto.Hash.MD2.new, Crypto.Hash.MD4.new,Crypto.Hash.MD5.new,Crypto.Cipher.ARC2.new,Crypto.Cipher.ARC4.new,
Crypto.Cipher.Blowfish.new,Crypto.Cipher.DES.new,Crypto.Cipher.XOR.new,cryptography.hazmat.primitives.ciphers.algorithms.ARC4’, cryptography.hazmat.primitives.ciphers.algorithms.Blowfish,
cryptography.hazmat.primitives.ciphers.algorithms.IDEA’, cryptography.hazmat.primitives.ciphers.modes.ECB,random.random,random.randrange,random.randint,random.choice’, ran-
dom.uniform,random.triangular

Insecure connection httplib.HTTPSConnection,http.client.HTTPSConnection, six.moves.http client.HTTPSConnection,telnetlib.*,urllib.urlopen,urllib.request.urlopen,urllib.urlretrieve, url-
lib.request.urlretrieve,urllib.URLopener,urllib.request.URLopener,urllib.FancyURLopener, urllib.request.FancyURLopener,urllib2.urlopen,urllib2.Request,six.moves.urllib.request.urlopen,
six.moves.urllib.request.urlretrieve,six.moves.urllib.request.URLopener, six.moves.urllib.request.FancyURLopener,urlopen,urlretrieve,ftplib.*

Race condition mktemp,tempfile.mktemp

Un-trusted data serializa-
tion

pickle.loads, pickle.load, pickle.Unpickler, cPickle.loads, cPickle.load, cPickle.Unpickler, marshal.loads, marshal.load, xml.etree.cElementTree.parse, xml.etree.cElementTree.iterparse,
xml.etree.cElementTree.fromstring, xml.etree.cElementTree.XMLParser, xml.etree.ElementTree.parse, xml.etree.ElementTree.iterparse, xml.etree.ElementTree.fromstring,
xml.etree.ElementTree.XMLParser, xml.sax.expatreader.create parser, xml.dom.expatbuilder.parse, xml.dom.expatbuilder.parseString, xml.sax.parse, xml.sax.parseString, xml.sax.make parser,
xml.dom.minidom.parse, xml.dom.minidom.parseString, xml.dom.pulldom.parse, xml.dom.pulldom.parseString, lxml.etree.parse, lxml.etree.fromstring, lxml.etree.RestrictedElement,
xml.etree.GlobalParserTLS, lxml.etree.getDefaultParser, lxml.etree.check docinfo

TABLE III: Answer to RQ1: Frequency of Insecure Python Code Blocks in Stack Overflow Answers
Code Inj. XSS Ins. Cip. Ins. Conn. Race. Cond. Data Serial. Combined

Code block 2,319 0 564 624 25 153 3,685
Answers 2,263 0 529 311 19 101 3,223
Accepted answers 481 0 130 85 2 33 731
Questions 1,415 0 317 155 14 73 1,974

one insecure coding practice, and reputation of SO users who
provide answers that do not include any insecure code block.
To account the fact the a SO user who has been a long-time
member may have high reputation, we normalize the a user’s
reputation by the membership period measured in months. We
calculate user reputation (NORM USER REPU ) using
Equation 1:

We use the Mann-Whitney U test [20] to compare two
distributions: NORM USER REPU for answers with at
least one insecure coding practice and for answers with no
appearance of insecure coding practice. Along with Mann-
Whitney U test, we also apply Cliff’s Delta [21] to compare
the distribution of each metric between insecure and neutral
answers. Both Mann-Whitney U test and Cliff’s Delta are non-
parametric. The Mann-Whitney U test states if one distribution
is larger/smaller than the other, whereas effect size using
Cliff’s Delta measures how large the difference is.

NORM USER REPU =
user reputation score

membership period (months)
(1)

Findings: We do not observe any significant difference for
user reputation between insecure and neutral answers. The
mean NORM USER REPU scores for insecure answers
and neutral answers is respectively 11.0 and 12.1, but the
difference is not significant (p − value = 0.9, Cliff’s Delta
= 0.01). The distributions of NORM USER REPU scores
for insecure answers and neutral answers in Figure 3.

We conclude that contrast to our hypothesis we observe user
reputation to have no significant relationship with presence
of insecure coding practices. Our findings indicate that both
answer providers with high and low reputation are susceptible
of introducing insecure code blocks in SO answers.

●
●●
●

●

●
●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●
●
●
●●●●
●
●●●
●
●●●●●●●
●●●●●
●
●●●
●
●●

●
●

●●●●
●
●●●●●●●●●

●
●●●●●●●

●

●●●●●●●
●
●●●●●●●
●
●●
●
●●●●●●●●●●●
●
●●
●
●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●
●
●
●●
●

●
●
●●●●●●

●

●

●

●●●
●
●●●●●●
●
●
●
●●●●●●●●●●
●
●●●●●●●●●●
●

●●●●
●●
●●●●

●

●●●●●●●
●
●●●●

●

●●●●●●●●●
●
●

●

●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●
●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●●●●●●● ●●

●
●
●

●

●

●

●
●
●●
●●●●●
●
●
●●

●

●●●

●

●
●●●●●●
●
●●●
●
●

●

●
●

●

●●●●●

●
●
●
●

●

●●

●

●

●

●

●●●●●●●●●●

●

●
●
●●
●
●●●

●
●

●

●●●●
●
●●

●
●

●●
●●

●

●●

●

●

●

●●●●

●

●
●●●
●
●
●
●●●●●
●
●●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●●●●●

●

●

●

●

●●
●●
●

●●●●●●

●

●

●

●●●●●●●

●
●
●
●
●

●

●●

●

●

●●

●

●●●●●
●
●

●

●

●●●●●●●●●

●

●●
●
●
●
●

●

●●●●

●

●●
●
●●●●●●●●●
●
●●●
●
●●●

●
●

●●●●●

●

●●●●●●●●
●●
●
●●●
●
●●●
●●●●●●

●

●●
●
●●●●●●
●
●

●

●●
●
●●●●
●
●●●●●●●
●
●

●●
●●

●

●

●

●●●

●

●●
●●●●●●●

●

●
●

●●●●●●
●
●●●●●●●

●

●●●●●●●●
●
●●●●

●

●●●

●

●●●
●

●

●●●●●●●●
●
●●
●
●
●

●
●
●●●●

●

●●

●

●●●●●●●●●●●●
●
●
●●
●
●●
●
●●

●

●

●

●

●

●●

●

●
●●●
●
●

●

●

●

●

●●●●
●
●●●●●
●
●

●

●

●

●●

●

●

●●●●
●●

●

●
●
●●●●●
●
●●●
●
●

●

●●●●
●●●●●●●●
●
●●●●●●●●●●●●
●●●●

●

●●●●

●

●●●●

●
●●●●

●

●
●●
●
●

●

●
●●●●●●●●●●
●
●
●
●●
●●●

●

●●

●

●
●●●
●
●●●●●

●●
●
●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●
●●
●
●●●
●
●●●●●●●●
●●●●●●●
●
●●●●●
●
●●●●
●●●
●
●●
●

●

●

●

●●●

●

●
●●●●
●

●

●●●
●
●●●●●●●●

●

●●●●●●
●●●●●●●●

●

●●●●●
●
●●●●
●

●

●●●●●●●
●●●
●
●●●
●
●

●●●●●
●
●●●

●

●●●●
●●●●●●●
●
●
●●●●●●●●●
●
●

●

●

●

●●●

●

●●●●●●

●

●
●●●
●●
●●●●●●●
●

●

●●●
●
●●●●●

●

●
●
●●●●
●●
●●●●●●●

●

●●●●●●●●

●

●

●●
●

●

●●
●

●

●●●●●●
●
●
●
●

●

●

●●●●●●

●

●●●●

●

●●●●●●●
●●●●●●●

●●
●●
●
●
●●●●●

●

●●

●

●
●●●●●●●●●
●●●●●●●

●

●

●

●

●

●●●●
●
●

●

●●●●●●●●●

●
●

●●

●

●●

●

●●
●
●●●

●

●●●●●●●●●

●

●

●●

●

●●●●●●●●
●●●●●●●

●

●●
●●●●●●●●●

●

●●●●●●●●●●

●

●
●
●●●●●●●●●●
●
●

●

●
●
●●
●●
●●●●●
●

●●●
●
●

●●●●●

●

●●

●

●
●
●●●●●●
●
●●●●●●●●
●
●●●
●●●●●●●

●

●
●

●

●
●

●

●

●●●●●
●

●●●●●●●●●●●

●

●●

●

●●

●

●●
●
●●●●
●●●●●●●●●
●
●●●
●

●

●●
●
●●●●●●●
●

●●●
●
●
●
●

●

●

●

●●●●
●
●
●
●●

●

●

●
●
●●●●●●●●

●
●

●

●

●●●●●●●●
●●
●●●●●●●●●●●●●●
●
●●●
●
●●
●
●●●●
●

●

●

●

●
●
●

●

●●●
●
●●●●●●●●●●●●●●●
●
●●●●●●

●

●
●●●●●●●●●●
●
●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●

●●●●

●

●●●
●●●●●●
●
●●●●●

●
●●●●●●●●●●
●
●●●
●
●●●

●

●●●●●

●

●●●●●●●●●●●●●●

●

●
●
●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●

●

●●●●●
●●
●

●●●●
●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●
●●
●●●●●●●●
●
●●●●●
●
●
●
●●●●
●●
●
●
●●●●●●●●●●●●
●
●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●
●●●

●

●●●●●●●●●●●
●
●●●●●●●
●
●●

●

●

●●●●●●
●●●●●●
●
●
●●●●●
●
●●
●
●●●●●●●●●●●●
●
●
●
●
●
●●●●●●●●
●
●●

●

●●●

●

●●
●
●
●●●●

●

●●

●

●
●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●
●
●
●
●

●●●●●●●
●
●●●●

●

●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●

●

●●

●

●●●●
●
●

●

●
●
●●●●●●●
●
●●●●●●●
●
●●●
●●●●●
●
●●

●

●●
●
●●●
●
●●
●
●●●●●
●
●●●

●

●●●●●
●

●●●
●
●●●●●
●
●●●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●●
●●

●

●●●●●●●●●●●
●

●●●●●●●●

●

●●●●
●
●●●●●●●●

●

●●
●●●●●●
●
●●●●●●

●

●●
●●●●●

●

●
●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●
●●

●

●●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●
●
●●●●●●●●●●●

●
●●●●
●
●●
●
●●●●●●●
●
●●●
●
●●●

●

●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●●●●

●

●●●●●●

●

●●●●
●
●

●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●
●●●
●
●●●●●●●●●●
●
●●
●
●●●●●●●●●●
●
●
●
●

●●●
●
●●●●●

●

●●●●●
●
●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●
●●

●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●●
●
●●●●●●●●

●

●●
●
●
●

●●
●●

●

●
●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●

●●●

●

●●●●●●
●●●●●●●●●●
●
●

●

●●●●●●
●●●●●●●●●●●
●●●●●●●

●

●●

●
●●●●●●●

●

●

●

●●●●
●
●●●
●
●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●
●●●●●●●

●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●

●

●●●
●
●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●

●

●

●●●●●●

●

●●●●
●
●●●●
●
●●●●●●●●

●

●
●

●●

●
●
●

●
●
●●
●
●●●●
●
●

●

●●●

●

●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●

●●●●●●●●●
●
●●●●●●
●●
●●●●●●●●●●

●

●●●●●●●●●

●

●●
●
●●●
●
●●

●

●●●●●●●●
●
●●●●●●●●●●●

●

●●

●

●●●●●●●
●●●●

●

●●

●

●●●●●●●●●●●
●●●●●●●●●

●

●●●●●
●
●●●●●
●●●●●●●
●
●●●●

●

●●●
●
●
●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●

●

●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●

●

●●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●
●
●●

●

●●●●●
●
●●●
●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●
●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●

●

●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●
●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●
●●●
●●
●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●●●●
●
●
●●●●●●●●●●●●●●●
●●●●
●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●
●
●●

●

●●●●●
●
●●●
●
●●●●●

●

●●●●●●●●●●●●●●●
●
●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●●●

●

●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●
●●●●●●●●●

●

●●●

●
●

●●●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●
●
●
●●
●●●●
●
●
●

●●
●
●●●●●●●●●
●●●●●●
●
●●●●
●●
●
●
●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●
●●●●●●
●
●

●●●

●

●●●
●
●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●●●
●
●●
●
●●●●●●●●●●●●●●●

●

●●●●●●●
●
●●●●●●
●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●

●

●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●

●

●●●●●●●●●●●
●●●●
●
●
●
●●●●●●●●●●●●
●
●●●●
●
●

●

●●●●
●●●
●
●●●

●

●●●●●●
●
●●●

●

●●●●

●

●●●●●●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●
●
●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●
●
●●●●●●●●
●
●
●
●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●
●
●●●●●0

500

1000

1500

2000

2500

Insecure Ans. Neutral Ans.
UserReputation

N
O

R
M

_U
S

E
R

_R
E

P
U

Fig. 3: Distribution of NORM USER REPU scores for
insecure and neutral answers. The difference between the two
distributions is insignificant (p− value = 0.9)

E. Answer to RQ3: What are the characteristics of Python-
related questions that include answers with insecure code
practices?

Prior research [5] [22] reported that summarization of SO
question titles yield insights on the use and challenges when
working with a certain technology. Summarization of ques-
tions that include insecure code blocks can provide us clues
on what categories of operations or problems are associated
with insecure coding practices.

Approach: Similar to prior research [6] [22], we use La-
tent Dirichlet Allocation (LDA)-based topic modeling [10] to
categorize questions associated with an insecure answer. We
apply LDA-based topic modeling on the questions title for two
categories of questions: questions with at least one insecure
answer, and questions with no insecure answer. We apply topic
modeling by executing the following steps:

Step-1: Pre-processing: We pre-process the question titles
by removing stop words and punctuation symbols, and apply-
ing Porter stemming [23].

Step-2: Determining topic count: We determine the re-
quired topic count by calculating the perplexity metric. In
the case of topic modeling, perplexity is the measurement of
how a probability-based topic model predicts a certain corpora

Prep
rin

t



TABLE IV: Answer to RQ3: Characteristics that are exhibited in questions that include insecure answers
Questions with at least one insecure ans. Questions with no insecure ans.

Index Label Words Label Words
1 String string,list,convert,check,python,way,character Module module,import,error,using,argument,logging,data
2 Data processing array,numpy,value,panda,column,using,list Filesystem file,python,using,line,directory,text,get
3 Filesystem file,python,using,get,way,text,download Data type list,python,string,way,class,value,function
4 Web django,object,using,form,field,matplotlib,dictionary Plotting numpy,array,matplotlib,image,using,point,plot
5 Random number list,python,numpy,random,array,file,generate Data processing django,using,panda,column,string,file,field

of text. A low perplexity score indicates the topic model
being good at predicting the text corpora of interest [10]. We
construct topic models using the pre-processed question title
with i topics, where i is [5, 10, 15, ... , 100]. The topic count
for which we observe the lowest perplexity score is determined
as topic count needed for Step-3.

Step-3: Applying LDA : Using the determined topic count
we apply LDA on the pre-processed question title corpus. We
use the Genesim library [24] to implement LDA.

Step-4: Assigning Labels: Our analysis from Step-3 will
yield a set of words that include in each topic. To make the
topic models interpretable, we perform qualitative analysis
to assign a label for each topic. Two raters who are PhD
students independently perform this labeling by inspecting
the words that belong to each topic. Upon completion, the
disagreements are discussed, and resolved. We also report the
Cohen’s Kappa [14].

Findings: The topic labels that are unique to questions that
include insecure answers are ‘String’, ‘Web’ and ‘Random
number’. Our findings suggest when SO users ask about
string, web and random number generation related questions in
Python, the provided answers to these questions may include
insecure coding practices. We report the labels of each topic
along with the top 10 words that include in each topic in
Table IV. The ‘Label’ column presents the assigned label
for each topic. The first and the second author individually
assigned labels. They agreed on nine labels (Cohen’s Kappa
= 0.9), the single label that they disagreed upon is resolved
upon discussion.

The topic count needed for both text corpuses: questions
with at least one insecure answer and questions with no
insecure answers in Figure 4. In Figure 4 the x and y-axis
respectively presents the count of topics and the perplexity
score. For both questions with insecure answers and questions
with no accepted answers, the topic count for which perplexity
is the lowest five.

●

●

●
●

●
● ●

● ● ● ●
● ● ●

● ●
● ● ● ●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

8.0

8.4

8.8

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1005 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

TopicCount

P
er

pl
ex

ity

Type ● ●Q_INSECURE_ANS Q_NEUTRAL_ANS

Fig. 4: Perplexity score to determine topic count. The perplex-
ity score is the smallest when topic count is five.

F. Related Work

Our paper is closely related to prior research that have
studied the interplay between software security and SO posts.
Yang et al. [25] applied LDA on SO post to categorize
what security-related questions developers ask about. Meng
et al. [11] studied bad coding practices related to the security
of Java Spring Framework in Stack Overflow, and reported 9
out of 10 SSL/TLS-related posts to discuss insecure coding
practices. Nadi et al. [3] studied 100 SO posts to show that
developers find cryptography algorithms to use securely, even
though they are confident in choosing the correct cryptography
libraries. We take inspiration from these research studies and
investigate how frequently insecure Python code blocks appear
in SO answers.

G. Threats to Validity

We consider the insecure coding practices provided by
practitioners from Openstack, which is not comprehensive.
We use string matching to detect the presence of insecure
coding practices in SO answers, which is susceptible to false
positives. We mitigate this threat by manually inspecting 100
SO answers for which at least one category of insecure coding
practice appeared. Also, our categorization process which
yielded the six insecure coding practices is subject to rater
bias, which we mitigate using multiple raters. The assigned
labels in RQ3, is also subject to rater bias. We mitigate this
threat by applying two raters.

III. CONCLUSION

Insecure code blocks posted on SO can help in propagating
Python-related insecure coding practices. In our empirical
study we use 529,054 code blocks collected from 44,966
answers posted on SO to investigate the prevalence of insecure
coding practices. We observe 3,685 code blocks to contain at
least of one of the six insecure coding practices: code injection,
cross site scripting, insecure cipher, insecure communications,
race conditions, and insecure data serialization. The dominant
insecure coding practice is code injection. We observe 7.1%
of the 44,966 SO answers to contain at least of one insecure
coding practice. We observe users’ reputation to not relate with
frequency of insecure answers. We identify three topics that
are unique to questions which include at least one insecure
answer. These topics are: string, web, and random number
generation. Based on our findings we recommend the SO
community to be aware of possible security weaknesses in
Python-related answers that are posted in SO, and carefully
use them for software development.

Prep
rin

t



REFERENCES

[1] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Studying the origin,
evolution, and usage of stack overflow code snippets,” in Proceedings
of the 16th International Conference on Mining Software Repositories
(MSR 2019), 2019.

[2] F. Fischer, K. Bttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack overflow considered harmful? the impact of copy
amp;paste on android application security,” in 2017 IEEE Symposium
on Security and Privacy (SP), May 2017, pp. 121–136.

[3] S. Nadi, S. Kruger, M. Mezini, and E. Bodden, “”jumping through
hoops”: Why do java developers struggle with cryptography APIs?” in
Proceedings of the 38th International Conference on Software Engineer-
ing (ICSE ’16), 2016.

[4] S. Wang, T.-H. Chen, and A. E. Hassan, “Understanding the
factors for fast answers in technical q&a websites: An empirical
study of four stack exchange websites,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 884–884. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3182521

[5] A. Rahman, A. Partho, P. Morrison, and L. Williams, “What questions
do programmers ask about configuration as code?” in Proceedings of the
4th International Workshop on Rapid Continuous Software Engineering,
ser. RCoSE ’18. New York, NY, USA: ACM, 2018, pp. 16–22.
[Online]. Available: http://doi.acm.org/10.1145/3194760.3194769

[6] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, Jun 2014.
[Online]. Available: https://doi.org/10.1007/s10664-012-9231-y

[7] “How can i calculate a hash for a filesystem-directory using
python?” (Date last accessed 29-Jan-2019). [Online]. Available:
https://stackoverflow.com/questions/24937495/

[8] “NIST policy on hash functions,” (Date last accessed 15-Jan-2019).
[Online]. Available: https://csrc.nist.gov/projects/hash-functions/nist-
policy-on-hash-functions

[9] “The 2018 top programming languages,” (Date last ac-
cessed 30-Jan-2019). [Online]. Available: https://spectrum.ieee.org/at-
work/innovation/the-2018-top-programming-languages

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=944919.944937

[11] N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in java: Challenges and vulnerabilities,” in Proceedings
of the 40th International Conference on Software Engineering, ser.
ICSE ’18. New York, NY, USA: ACM, 2018, pp. 372–383. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180201

[12] “Paper dataset,” (Date last accessed 05-Jan-2019). [Online]. Available:
https://figshare.com/s/588b0d450310c05d25ab

[13] “blacklist calls,” (Date last accessed 15-Jan-2019). [Online]. Available:
https://docs.openstack.org/bandit/1.4.0/blacklists/blacklist calls.html

[14] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.
[Online]. Available: http://dx.doi.org/10.1177/001316446002000104

[15] “Exploiting python code injection in web appli-
cations,” (Date last accessed 28-Jan-2019). [Online].
Available: https://sethsec.blogspot.com/2016/11/exploiting-python-code-
injection-in-web.html

[16] “Security in django,” (Date last accessed 18-Jan-2019). [Online].
Available: https://docs.djangoproject.com/en/2.1/topics/security/

[17] “Java and python contain security flaws that allow attackers
to bypass firewalls,” (Date last accessed 28-Jan-2019). [Online].
Available: https://www.bleepingcomputer.com/news/security/java-and-
python-contain-security-flaws-that-allow-attackers-to-bypass-firewalls/

[18] “Create, use, and remove temporary files securely,”
(Date last accessed 28-Jan-2019). [Online]. Avail-
able: https://security.openstack.org/guidelines/dg using-temporary-files-
securely.html

[19] “Dangerous pickles malicious python serialization,” (Date last accessed
15-Jan-2019). [Online]. Available: https://intoli.com/blog/dangerous-
pickles/

[20] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947. [Online].
Available: http://www.jstor.org/stable/2236101

[21] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, pp. 494–509, Nov.
1993.

[22] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing stack
overflow questions by topic, type, and code,” in 2013 10th Working
Conference on Mining Software Repositories (MSR), May 2013, pp. 53–
56.

[23] M. F. Porter, “Readings in information retrieval,” K. Sparck Jones and
P. Willett, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997, ch. An Algorithm for Suffix Stripping, pp. 313–316. [Online].
Available: http://dl.acm.org/citation.cfm?id=275537.275705

[24] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[25] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow
posts,” Journal of Computer Science and Technology, vol. 31, no. 5, pp.
910–924, Sep 2016. [Online]. Available: https://doi.org/10.1007/s11390-
016-1672-0

Prep
rin

t




