
1

Detecting and Characterizing Propagation of
Security Weaknesses in Puppet-based

Infrastructure Management
Akond Rahman, Member, IEEE and Chris Parnin Member, IEEE

Abstract—Despite being beneficial for managing computing infrastructure automatically, Puppet manifests are susceptible to security
weaknesses, e.g., hard-coded secrets and use of weak cryptography algorithms. Adequate mitigation of security weaknesses in
Puppet manifests is thus necessary to secure computing infrastructure that are managed with Puppet manifests. A characterization of
how security weaknesses propagate and affect Puppet-based infrastructure management, can inform practitioners on the relevance of
the detected security weaknesses, as well as help them take necessary actions for mitigation. We conduct an empirical study with
17,629 Puppet manifests with Taint Tracker for Puppet Manifests (TaintPup). We observe 2.4 times more precision, and 1.8 times
more F-measure for TaintPup, compared to that of a state-of-the-art security static analysis tool. From our empirical study, we observe
security weaknesses to propagate into 4,457 resources, i.e, Puppet-specific code elements used to manage infrastructure. A single
instance of a security weakness can propagate into as many as 35 distinct resources. We observe security weaknesses to propagate
into 7 categories of resources, which include resources used to manage continuous integration servers and network controllers.
According to our survey with 24 practitioners, propagation of security weaknesses into data storage-related resources is rated to have
the most severe impact for Puppet-based infrastructure management.

Index Terms—configuration as code, devops, devsecops, empirical study, infrastructure as code, puppet, static analysis.

F

1 INTRODUCTION

INFRASTRCTURE as code (IaC) is the practice of automat-
ically managing computing infrastructure, such as con-

tinuous integration servers, production web servers, load
balancers, or data storage, typically provisioned on public
cloud services [34]. Use of IaC languages, such as Puppet
has yielded benefits for information technology (IT) orga-
nizations. For example, Ambit Energy, an energy distribu-
tion company, increased their deployment frequency by a
factor of 1,200 using Puppet [58]. KPN, a Dutch telecom-
munications company, uses Puppet manifests to manage its
10,000 servers [59]. Use of Puppet helped KPN in regula-
tory compliance and faster resolution of customer service
requests [59].

Despite reported benefits, Puppet manifests can contain
security weaknesses [64], [67], which can leave comput-
ing infrastructure susceptible to large-scale security attacks.
In recent years, security weaknesses, such as hard-coded
passwords and use of weak cryptography algorithms, have
been a contributing factor in multiple high-profile security
incidents. For example, hard-coded passwords were lever-
aged to gain unauthorized access to Uber’s servers, which
resulted in data exposure for 57 million customers and
600,000 Uber drivers [48], [71]. In another incident, use of
weak encryption algorithms for Amazon S3 data storage
allowed malicious attacks to access over a billion health
records [22], [23].

The above-mentioned examples showcase the need for
proactively detecting security weaknesses in software arti-
facts used to provision and manage computing infrastruc-
ture. Puppet manifests are no exception. SLIC, a state-of-

Manuscript received 2022.

the-art security static analysis tool for Puppet, based on
pattern matching [16], [64], [67] can be used to detect se-
curity weaknesses in Puppet manifests. Unfortunately, SLIC
can be prone to reporting false positives [12], which deter
practitioners from adopting or taking actions [20], [37], [68].
For example, Bhuiyan and Rahman [12] found that SLIC to
generate 1,560 false positives for 2,764 Puppet manifests.
Generation of such false positives would render security
weakness detection impractical for practitioners, leaving
security weaknesses unmitigated in Puppet manifests. Thus,
enhanced static analysis tools are required for detecting
security weaknesses in Puppet manifests.

Examples from the open source software (OSS) domain
provide clues on how Puppet-related security static analysis
can be enhanced. Let us consider two Puppet manifests
from an OSS repository [43] that use SHA1, a weak en-
cryption algorithm. According to the Common Weakness
Enumeration (CWE), use of weak encryption algorithms,
such as SHA1 is “dangerous because a determined attacker may
be able to break the algorithm and compromise whatever data
has been protected” [50]. In one manifest (Figure 1a), the
weakly encrypted password propagates into a Puppet re-
source [41] used for storing user authentication, potentially
allowing malicious users to access the server. In the second
manifest (Figure 1b), although a SHA1 hash is created, it
never propagates into a resource to manage any relevant
computing infrastructure. From these examples, we can
see that a security static analysis tool for Puppet must
first detect potential security weaknesses, and then second,
determine propagation into the underlying resources used
to manage relevant computing infrastructure. This second
step is crucial, as, not only does it help eliminate false

Pr
e-p
rin
t

2

1define apache::htpasswd_user({
2 ...
3 $real_password = htpasswd_sha1($password)
4 ...
5 file_line{"htpasswd_for_${real_site}":
6 ensure => $ensure,
7 path => $real_path,
8 line => "${username}:${real_password}",
9 }

10}

Use of SHA1 to encrypt a
password used in line # 8 for
resource file_line

1

a

1class couchdb::base {
2 ...
3 $pw = [$::couchdb::admin_pw]
4 $sha1 = str_sha1($pw)
5 ...
6 exec { 'couchdb_restart':
7 command => $restart_command,
8 path => ['/bin', '/usr/bin',],
9 subscribe => File['/etc/couchdb/local.d/admin.ini',

10 '/etc/couchdb/local.ini'],
11 refreshonly => true
12 }
13}

Use of SHA1 to encrypt a
password that is never used

1

b

Fig. 1: OSS Puppet manifests that use SHA1, a weak encryption algorithm. In one manifest (Figure 1a), the hash propagates
into a resource to setup a password file. In the second manifest (Figure 1b), although a SHA1 hash is created, it never
propagates into any resources used to manage computing infrastructure.

positives (e.g., the weakness in Figure 1b), but information
about propagation and associated resources can also help in
determining relevance of detected weaknesses [75].

Puppet uses a state-based approach for infrastructure
management [41], which necessitates development of novel
static analysis tools for detection of security weakness
propagation. Puppet infers the desired infrastructure state
from the Puppet manifest with code constructs, such as
resources [41]. Puppet will identify the differences between
the existing and desired infrastructure states, and only ap-
ply changes if there are differences between desired and
infrastructure states. Along with applying a state-based
infrastructure management, Puppet allows multiple cate-
gories of information flows with code constructs, such as
nodes, modules, and resources [41]. Not all of these code
constructs are used to manage infrastructure. Tracking all
information flows will not only be computation intensive,
but also lead to generating false positives. Therefore, for
detecting security weakness propagation a static analysis
tool must separate and track information flows that are only
used for managing infrastructure.

In this paper, we construct Taint Tracker for Puppet
Manifests (TaintPup), which applies Puppet-specific infor-
mation flow analysis that helps us to detect and understand
how security weaknesses propagate into infrastructure man-
aged with Puppet resources. TaintPup leverages resources,
i.e., code elements that are pivotal to account for state-based
infrastructure management, along with the corresponding
information flows. With TaintPup, we conduct an empir-
ical study with 17,629 Puppet manifests mined from 336
OSS repositories. We quantify how propagation detection
improves identification of security weaknesses. Next, we
investigate the categories of resources into which security
weaknesses propagate. Finally, we survey 24 practitioners,
and observe their perceptions for the identified resource
categories. Dataset and source code used in our paper is
available online [60].

We are the first to perform an investigation of how
infrastructure is impacted by security weaknesses. We ob-
serve by accounting for Puppet’s state-based approach we
can improve detection accuracy of security weaknesses and
identify the impacted infrastructure. The state-based infras-
tructure approach has not been accounted in prior work to
perform security static analysis of Puppet manifests.

Specifically, we answer the following research questions:
• RQ1: How does propagation detection improve security weak-

ness identification in Puppet manifests?
• RQ2: How frequently do security weaknesses propagate into

resources?
• RQ3: What are the resource categories into which security

weaknesses propagate?
• RQ4: What are the practitioner perceptions of the identified

resources into which security weaknesses propagate?
Contributions: We list our contributions as follows:

• A static analysis tool called TAINTPUP that identifies the
resources into which security weaknesses propagate; and

• An empirical evaluation of the resources into which secu-
rity weaknesses propagate.

2 TAINT TRACKER FOR PUPPET: TAINTPUP

In this section, first, we provide background information of
Puppet manifests. Next, describe the construction of Taint-
Pup. Third, we provide the methodology and the answer to
RQ1.

2.1 Background

In the case of Puppet, configuration for the infrastruc-
ture of interest is specified using configuration files called
‘manifests’. Puppet manifests have a ‘.pp’ extension. Each
manifest can include a class, which acts as a placeholder for
code constructs, such as resources and variables. Classes in
Puppet manifests are different from classes used in object-
oriented programming languages. One manifest can include
multiple classes, and multiple other code elements, such
as multiple variables and multiple resources. A resource is
a code element that is used make changes to the desired
infrastructure. A resource includes multiple attributes.

We use Figure 2 to further illustrate an example Puppet
manifest. This is an example of a Puppet manifest that
includes a class called ‘example’. The manifest includes
two resources used to create two files namely ‘a.txt’ and
‘b.txt’. Both files are located in the ‘/tmp/’ directory. Both
resources are of type ‘file’, and include four attributes
namely, ‘ensure’, ‘owner’, ‘group’, ‘mode’, and ‘content’.
The manifest also includes a variable called ‘strData’, which
is used by the attribute ‘content’ in both resources.

Pr
e-p
rin
t

3

1class example{
2
3$strData = "This is an example text file."
4
5file { '/tmp/a.txt':
6 ensure => present,
7 owner => 'root',
8 group => 'root',
9 mode => '0755',

10 content => $strData,
11 }
12
13file { '/tmp/b.txt':
14 ensure => present,
15 owner => 'root',
16 group => 'root',
17 mode => '0755',
18 content => $strData,
19 }
20}

1

Fig. 2: An example Puppet manifest.

Puppet uses a state reconciliation approach to manage
computing infrastructure. State reconciliation is defined as
the approach of managing computing infrastructure by
comparing the inferred state and the desired state with
inventory discovery, inventory communication, state com-
parison, and provisioning. Upon execution of this manifest,
Puppet will first query the infrastructure to check for avail-
ability of the infrastructure, and then the availability of the
files ‘a.txt’ and ‘b.txt’. Puppet will only make the changes
specified using the two resources if the two files with
specified configurations are not present in the infrastructure.
Such process of Puppet is referred to as the ‘state-based
approach for infrastructure management’, as Puppet first
will check if the desired state of infrastructure is already
in place. If not, Puppet will make necessary changes as
specified by resources.

2.2 Construction of TaintPup
We use this section to describe TaintPup’s construction. We
construct TaintPup by accounting the following properties
unique to Puppet:
• State-based Infrastructure Management: Puppet uses a

state-based approach where manifests are developed in
a manner so that it reaches a desired state [41]. During
execution first Puppet will infer what is the desired infras-
tructure state from the Puppet manifest. Second, Puppet
will identify the differences between the existing and de-
sired infrastructure states, and only apply changes if there
are differences between desired and infrastructure states.
Puppet uses resources and attributes to query the desired
infrastructure state so that it can determine what changes
need to be made to reach the desired infrastructure state.
Puppet is a rich language with a variety of code elements.
It is pivotal to gain an understanding of which code ele-
ments actually are used to manage computing infrastruc-
ture. If we do not account for the code elements that are

used for Puppet-based infrastructure management, then
an automated technique may have explored all possible
options on how a security weakness can be used amongst
code elements. This approach is not only computationally
expensive, but also is susceptible to generate false posi-
tives.
A tool that aims to detect security weakness propaga-
tion must account for Puppet’s state-based approach for
infrastructure management. To address this issue, we
construct data dependence graphs, where we track if a
security weakness propagates, and affects infrastructure
management as described in Section 2.2.3.

• Infrastructure-oriented Information Flow: Puppet allows
for multiple categories of information flows with code
constructs, such as nodes, classes, modules, and re-
sources [41]. However, not all of these code constructs are
used to manage infrastructure. Tracking all information
flows will not only be resource intensive, but also lead to
generating false positives. To address this challenge we
perform three activities:
– Syntax Analysis: As described in Section 2.2.1, TaintPup

performs syntax analysis by applying code element
extraction, expression classification, and membership
preservation of attributes.

– Security Weakness Identification: As described in Sec-
tion 2.2.2, TaintPup applies rule matching to limit the
scope of the information flows that need to tracked.

– Taint Tracking via Data Dependence Graph: As de-
scribed in Section 2.2.3, TaintPup track the informa-
tion flows for code elements that constitute a security
weakness with data dependence graphs. In this man-
ner, TaintPup only reports a security weakness if that
security weakness is being used by a resource.

2.2.1 Syntax Analysis
As of June 2022, SLIC [64] is the state-of-art security
static analysis tool for Puppet [16]. While Rahman et
al. [64] reported SLIC to have an average precision of
0.99, Bhuiyan and Rahman [12] reported SLIC to generate
1,560 false positives for 2,764 Puppet manifests. Reasons
for false positives generated by SLIC can be attributed
to two types of parsing-related limitations [64]: (i) code
element parsing: while parsing code elements, SLIC gener-
ates false positives by identifying functions as hard-coded
secrets. For example, SLIC identifies $admin_password
= pick($access_hash[‘password’]) as a hard-coded
secret, even though (pick()) is a function, and not a hard-
coded secret; and (ii) value parsing: SLIC has limitations in
parsing values assigned to Puppet variables. For example,
SLIC fails to identify db_admin_password=undef as a
false positive because it parses undef as a string. undef
in Puppet is not a string, and is actually equivalent to that
of NIL in Ruby [41]. TaintPup applies the following syntax
analysis to account for the above-mentioned limitations of
SLIC.
Code Element Extraction: First, TaintPup uses ‘puppet
parser dump (PPD)’ [41] to identify non-comment code
elements in a Puppet manifest. The benefit of using PPD
is that with PPD output, TaintPup does not have to apply
heuristics for code element extraction, contrary to SLIC [64].
PPD does not provide any API methods, which necessitates

Pr
e-p
rin
t

4

additional pre-processing. PPD converts a Puppet manifest
to a single string of tokens where the types of each token is
identified. Using stack-based parsing [7] TaintPup extracts
tokens and their types from the PPD output. For example,
PPD will parse $db_user=‘dbadmin’ as (=($db_user
‘dbadmin’)), which in turn will be used by TaintPup
to determine that $db_user is a variable, and the value
‘dbadmin’ is assigned to the variable. Using this step,
TaintPup extracts attributes, resources, and variables. Each
identified attribute is provided an unique identifier based
on the resource and the manifest it appears in.
Expression Classification: In Puppet, an expression is
an attribute or a variable to which a value is assigned
directly, or indirectly, e.g., via a variable or a function [41].
TaintPup identifies three types of expressions: string,
function, and parameter. An attribute or a variable that
is directly assigned a string value is called a string
expression. An attribute or a variable that is assigned
a value using a function call is a function expression.
A variable that is used as a class parameter, and is
directly assigned a string value is called a parameter
expression. For example, $db_user=‘dbadmin’
is a string expression, $admin_password =
pick($access_hash[‘password’])) is a
function expression, and $workers=‘1’ in
class($workers=‘1’){...} is a parameter expression.
By identifying these expressions TaintPup mitigates SLIC’s
limitations related to code element and value parsing.
Membership Preservation of Attributes: A single Puppet
manifest can contain resources, where each resource can
have >= 1 attributes [41]. Furthermore, an attribute with
the same name can appear for multiple resources [41]. Taint-
Pup uses hash maps to map an attribute to its corresponding
resource and manifest. These hash maps are later used to
construct data dependence graphs (DDGs) that is discussed
in Section 2.2.3. Figure 3 shows how the three attributes
presented in Figure 1a (‘ensure’, ‘path’, ‘line’) are mapped
to their resource file_line.

2.2.2 Security Weakness Identification
A security weakness is an insecure coding pattern, which (i)
has a mapping with the Common Weakness Enumeration
(CWE) database entry [49], and (ii) is actually being used by
a code element. In the context of Puppet manifests security
weaknesses are recurring coding patterns, which have a
mapping with a CWE entry, and is actually being used by a
Puppet-specific code element. According to this definition,
the insecure coding pattern in Figure 1a is a true positive,
and the insecure coding pattern in Figure 1b is a false
positive.

We use the following steps. First, TaintPup applies rule
matching on extracted function expressions, parameter ex-
pressions, string expressions, and resources from Sec-
tion 2.2.1 to identify six security weakness categories. The
rules used by TaintPup are listed in Table 1, where we

S1 sample.pp R1 file line htpasswd for $real site A1:ensure A2:path A3:line

Fig. 3: An example of how TaintPup maps attributes listed
in Figure 1 to their resource (file_line).

provide the names, definitions, and rules for each security
weakness category. Patterns used by the rules are listed in
Table 2. All rules and patterns are provided by Rahman
et al. [64]. Second, TaintPup identifies variables, which are
used in any security weakness that belongs to any of the
following categories: admin by default, empty password,
hard-coded secret, invalid IP address binding, use of HTTP
without TLS, and use of weak cryptography algorithms.
TaintPup also keeps track of attributes for which a security
weakness appears. The security weaknesses categories are
identified from prior work conducted by Rahman et al. [64].
They [64] used a qualitative analysis technique called open
coding [69], where they manually inspected 1,726 Puppet
manifests, and derived a category of security weaknesses
that can be mapped to CWE entries. Rahman et al. [64]
also developed a tool that can identify security weaknesses.
However, their tool SLIC [64], does not perform adequate
syntax analysis and state-based information flow analysis,
which in turn generates false positives. We address this
limitation by constructing and evaluating TaintPup.

2.2.3 Taint Tracking via Data Dependence Graph
TaintPup applies information flow analysis by constructing
DDGs similar to prior research [45]. A DDG is a directed
graph, which consists of a set of nodes and a set of edges.
DDGs used by TaintPup applies information flow analysis
by identifying def-use relationships [7].

Def-use relationships leverage the definition of reach-
ability [7]. A weakness x reaches another attribute or
variable y, if y uses x and there are no other code ele-
ments between x and y that changes the value of x. We
use Table 3 to demonstrate reachability. In the first row,
$magnum_proto =“http:” is a string expression with the
variable $magnum_proto. This string expression is an in-
stance of HTTP without TLS. As shown in the ‘Reacha-
bility’ column, $magnum_proto reaches the url attribute,
because between $magnum_proto and url there exists no
code element that changes the value of $magnum_proto.
On the other hand, as shown in line#1,#2 of the second
row, $magnum_proto does not reach url as the value of
$magnum_proto is changed from ‘http’ to ‘ftp:’.

Each DDG has three types of nodes: taint, intermediate,
and sink. Taint nodes correspond to variables with security
weaknesses that are identified in Section 2.2.2. Sink nodes
correspond to attributes used within a resource. Intermedi-
ate nodes are non-taint and non-sink nodes that are reach-
able from one or multiple taint nodes. By construction a
DDG will include at least one taint node and at least one
sink node. A DDG includes >= 0 intermediate nodes.

2.3 Methodology for RQ1

We answer RQ1 by computing the detection accuracy of
TaintPup with metrics, such as precision [77]. An increase in
precision for TaintPup compared to that of SLIC will provide
evidence on how detection propagation aids in security
weakness identification. We use the following steps in this
regard:

2.3.1 Dataset Construction
We use OSS repositories mined from GitHub, GitLab, and
three IT organizations who use Puppet manifests to man-

Pr
e-p
rin
t

5

TABLE 1: Rules to Detect Security Weaknesses

Category Definition Rule
Admin by default Administrative privileges for users by de-

fault [64]
(isParameter(x)) ∧ (isAdmin(x.name) ∧ isUser(x.name))

Empty password Using a string of length zero for a pass-
word [64]

(isAttribute(x) ∨ isV ariable(x)) ∧
((length(x.value) == 0 ∧ isPassword(x.name))

Hard-coded secret Revealing sensitive information (user
names, passwords, private keys) [64]

(isAttribute(x) ∨ isV ariable(x))
∧ (isUser(x.name) ∨ isPassword(x.name) ∨ isPvtKey(x.name))
∧ (length(x.value)>0)

Invalid IP address
binding

Assigning ‘0.0.0.0’ as an IP address [64] ((isV ariable(x) ∨ isAttribute(x)) ∧ (isInvalidBind(x.value))

Use of HTTP without
TLS

Using HTTP without TLS [64] (isAttribute(x) ∨ isV ariable(x)) ∧ (isHTTP (x.value))

Use of weak crypto.
algo.

Using MD5 and SHA1 [64] (isFunction(x) ∧ usesWeakAlgo(x.name))

TABLE 2: Patterns Used by Rules in Table 1

Function String Pattern
isAdmin() [64] ‘admin’
isHTTP () [64] ‘http:’
isInvalidBind() [64] ‘0.0.0.0’
isPassword() [64] ‘pwd’, ‘pass’, ‘password’
isPvtKey() [64] ‘[pvt|priv]+*[cert|key|rsa|secret|ssl]+’
isUser() [64] ‘user’
usesWeakAlgo() [64] ‘md5’, ‘sha1’

TABLE 3: An Example to Demonstrate Reachability

Coding Pattern Reachability
1. $magnum_proto = ‘‘http:’’
2. package{‘sample’

ensure => ’4.2.1-5.fc25’,
url =>

$magnum_proto//‘‘localhost:8888’’
}

$magnum_proto
= ‘‘http:’’
reaches url

1. $magnum_proto = ‘‘http:’’
2. $magnum_proto = ‘‘ftp:’’
3. package{‘sample’

ensure => ’4.2.1-5.fc25’,
url =>

$magnum_proto//localhost:8888
}

$magnum_proto
= ‘‘http:’’
does not reach url

age their computing infrastructure: Mozilla, Openstack, and
Wikimedia Commons. The purpose of using datasets from
five sources is to showcase the generalizability of our em-
pirical study. Relying only one dataset could have made
our empirical study susceptible to external validity, which
we mitigate using five datasets. Of these five datasets,
repositories mined from GitHub and GitLab are reflective
of Puppet manifest development across a wide range of
organizations. The datasets related to Mozilla, Openstack,
and Wikimedia are repositories respectively, mined from
the repository archives hosted by Mozilla, Openstack, and
Wikimedia Commons. As these organizations are involved
in creating different software services we assume to observe
differences in the constructed datasets. We do observe in
Table 6 that the frequency of security weaknesses is different
across the datasets. Furthermore, the frequency of impacted
resources and resource category is different across datasets
as described in Sections 4.1 and 4.2.

The software engineering research community has heav-
ily relied on open-source software repositories to conduct

empirical analysis. However, while conducting these re-
search studies, researchers have realized that open-source
repositories are not always reflective of real-world software
development [13], [38], [52]. Researchers [13], [38], [52] have
advocated for application of heuristics to filter out reposito-
ries prior to using them for research. Researchers [6], [40],
[52] have leveraged a set of attributes to filter OSS GitHub
repositories reflective of professional software development.
These attributes include count of Puppet manifests [62],
count of commits per month [52], and count of contribu-
tors [6], [40]. Taking motivation from prior work [52], we
apply the following filtering criteria:
• Criterion-1: The proportion of Puppet manifests is >=
10%. A repository can include multiple types of files
including Puppet manifests. In prior work Jiang and
Adams [36] reported that within repositories Puppet
manifests co-locate with source code files and test code
files. Keeping this observation into account, similar to
prior work [62], [63], [64], [65], we use the heuristic of
a repository to include at least 10% Puppet manifests to
determine a repository to include sufficient amount of
Puppet manifests for analysis.

• Criterion-2: The repository is not a copy of another to
avoid duplicates.

• Criterion-3: Count of contributors is >= 10. Similar to
prior work [64], [65], we use this criterion to filter reposi-
tories used for personal purposes, such as coursework.

• Criterion-4: Lifetime of the repository is >= 1 month.
Using this criterion, we filter repositories with short life-
time. We measure lifetime by calculating the difference
between the last commit date and the creation date for
the repository.

• Criterion-5: The repository has >= 25 commits to filter
repositories with limited activity.

• Criterion-6: The repository has >= 2 commits per month.
Munaiah et al. [52] used this threshold to identify mature
OSS GitHub repositories.

We collect the Mozilla, Openstack, and Wikimedia repos-
itories from their corresponding public repository databases
(Mozilla [51], Openstack [54], Wikimedia [79]). We use
Google BigQuery [32] to download OSS repositories hosted
on GitHub that use Puppet. We use the GitLab API [25]
to mine OSS repositories hosted on GitLab. Table 4 sum-
marizes how many repositories are filtered using our cri-

Pr
e-p
rin
t

6

teria. We download 336 repositories by cloning the master
branches on October 2021. Attributes of collected reposito-
ries is available in Table 5. We collect 17,629 Puppet man-
ifests from these 336 OSS repositories. We do not remove
any manifests as we wanted to run our empirical analysis
on unaltered data obtained from OSS repositories. In that
manner, we assume to obtain a “close to reality” view of the
state of security weakness propagation in Puppet manifests.

TABLE 4: Repository Filtering
GitHub GitLab Mozilla Openstack Wiki.
3,405,303 1,659 1,594 2,262 2,509

Criterion-1 18,187 38 2 96 13
Criterion-2 17,872 38 2 96 13
Criterion-3 856 30 2 94 13
Criterion-4 770 30 2 90 11
Criterion-5 675 30 2 90 11
Criterion-6 241 25 2 61 7
Final 241 25 2 61 7

2.3.2 Dataset Labeling
We use three steps to perform labeling:
Step#1-Rater Training: A first year PhD student, who is not
an author of the paper, volunteered to participate in labeling
all 17,629 Puppet manifests. The rater has an experience of
one year in software engineering and cybersecurity. Before
applying labeling, we conduct a training session where the
rater is mentored by the first author. The training session
was conducted in two phases: first in phase-1.1, both the
first author and the rater independently inspect a randomly-
selected set of 500 Puppet manifests. The first author and
the rater use a (i) guidebook [60] with names, definitions,
and examples of security weakness categories, and (ii) the
online documentation of Puppet [41] that describes syntax
and information flow in Puppet manifests.

We derive the set of 500 manifests using the concept
of purposeful sampling by taking motivation from prior
research in software engineering [11]. Purposeful sampling
is a popular sampling technique to identify a sample from
the population based on one or multiple selection crite-
ria [46], [55]. Upon derivation of the sample the researcher
or research team need to manually examine the sample to
determine if the criteria are satisfied [46], [55]. In our case,
for the set of 500 manifests our criterion is to inspect if all
six categories of security weaknesses are represented in the
set of manifests. We observe that the selected 500 manifests
include multiple instances of the six security weakness
categories, which gives us the confidence of that the selected
set of 500 manifests is sufficient. With a margin of error of
5%, the confidence level for the sample size of 500 was 98%.

We apply a multi-phase open coding process with two
phases following prior work on fault categorization [15]. Ac-
cording to researchers, multi-phase coding is pivotal to gain
multiple perspectives, ensure rater reliability, and achieve
rater consensus for qualitative analysis [31], [76]. As part
of the first phase, we conduct synchronized closed coding
where we use the set of 500 randomly selected manifests.
Using these manifests, the first author ensured that the rater
has the necessary background to conduct full-scale closed
coding on the entire set of 17,629 Puppet manifests. As
the initial set of 500 manifests included instances of all
the six categories of security weaknesses, the rater obtained

sufficient background on the six categories of security weak-
nesses.

The rater and the first author individually determines if a
security weakness is in fact true positive by first inspecting
if a security weakness exists, and then if the weakness is
used by >= 1 resources. Upon completion of the inspection
process the rater discuss their agreements and disagree-
ments. At this stage the Cohen’s Kappa is 0.47, indicating
‘moderate’ agreement according to Landis and Koch [42].
The misunderstanding occurred due to not comprehending
what actually a true positive security weakness is. The rater
was further briefed on the fact that to determine a security
weakness the rater also needs to find out if the security
weakness is actually being used by a resource. Second in
phase-1.2, upon discussion of their disagreements, the rater
and the first author conducted another round of inspection.
The process and used materials are similar to that of phase-
1.1. At this stage, Cohen’s Kappa is 1.0 between the rater and
the first author, which gives us the confidence that the rater
is equipped with necessary background to label all 17,629
manifests.
Step#2-Labeling: Similar to the training session, the rater uses
the guidebook and the Puppet online documentation [41] to
identify security weaknesses in 17,629 Puppet manifests. As
part of the dataset labeling activity, the rater first inspected
if in the manifest there exists one or multiple security weak-
nesses. Next, the rater inspected if each of the identified
security weakness propagates into at least one resource. A
security weakness is listed as a true positive if it is used
by a resource. One manifest can include multiple categories
of security weaknesses, and thus the rater can map one
Puppet manifest to one or multiple of the six categories. The
rater takes 745 hours to complete labeling. Altogether, the
rater identifies 4,906 security weaknesses. Count of security
weaknesses for the five datasets is presented in Table 6.
Step#3-Rater Verification: We use a PhD student in the depart-
ment, who is not an author of the paper, to verify the rater’s
labeling. We use a randomly-selected set 500 manifests from
our set of 17,629 manifests that is not used in Step#1. Similar
to Step#1, the PhD student is provided the guidebook and
Puppet’s online documentation [41]. Upon completion, we
record a Cohen’s Kappa of 0.91 between the PhD student
and the rater.

2.3.3 Evaluate TaintPup’s Detection Performance

We evaluate TaintPup’s detection performance by applying
the following steps: first, we run TaintPup and SLIC on the
collected 17,629 manifests. The total execution time for run-
ning 17,629 Puppet manifests is 48.9 hours, 10 seconds on
average for each manifest. The tool is executed on an Apple
M2, 16 GB memory. Second, we use three metrics: precision,
recall, and F-measure, similar to prior work [56]. Precision
refers to the fraction of correctly identified instances among
the total identified security weaknesses, as determined by a
static analysis tool. Recall refers to the fraction of correctly
identified instances retrieved by a static analysis tool over
the total amount instances. F-measure is the harmonic mean
of precision and recall [77].

Pr
e-p
rin
t

7

TABLE 5: Dataset Attributes
Attribute GitHub GitLab Mozilla Openstack Wiki. Combined
Total Repos. 241 25 2 61 7 336
Total Commits 599,900 1,943 14,449 42,446 16,231 674,969
Average Duration (Month) 241 34.2 90 38.5 60.0 92.7
Total Puppet Manifests 11,477 883 1,613 2,952 704 17,629
Total Puppet LOC 498,241 49,430 66,367 234,640 27,889 876,567
Total Distinct Resources 65,599 5,055 10,583 23,754 3,561 108,552

TABLE 6: Count of Security Weaknesses in Our Datasets
Category GitHub GitLab Mozilla OpenstackWiki.
Admin by default 5 0 0 12 0
Empty password 40 0 2 3 21
Hard-coded secret 2,604 105 145 751 63
Invalid IP address
binding

31 1 12 62 0

Use of HTTP without
TLS

543 7 5 465 22

Use of weak crypto.
algo.

3 2 0 2 0

Total 3,226 115 164 1,295 106

2.4 Answer to RQ1: TaintPup’s Detection Accuracy

We answer RQ1: How does propagation detection improve
security weakness identification in Puppet manifests? in
this section. We report the precision and F-measure for SLIC
and TaintPup with Tables 7 and 8. With respect to precision,
TaintPup outperforms SLIC for all categories across all
datasets. According to Table 7, TaintPup’s average precision
is 3.3, 2.5, 2.4, 3.4, and 1.5 times higher than that of SLIC
respectively, for GitHub, GitLab, Mozilla, Openstack, and
Wikimedia. Considering 4,906 security weaknesses across
all five datasets, the average precision is 2.4 times higher
than that of SLIC. Furthermore, across all five datasets the
average F-measure is 1.8 times higher than that of SLIC.
We observe a recall of 1.0 for both SLIC and TaintPup for
all six categories. This shows TaintPup’s ability to detect all
identified security weaknesses with higher precision than
that of SLIC, without reducing recall.
Evaluation of SLIC and TaintPup on Bhuiyan et al.’s
Dataset: We also compare TaintPup and SLIC’s detection
accuracy using the dataset labeled by Bhuiyan et al. [12].
The results are provided in Table 9. We observe SLIC and
TaintPup to have the same recall. The average precision
and F-measure is respectively, 2.2 and 1.6 times higher for
TaintPup compared to that of SLIC.
Evaluation of SLIC and TaintPup on SLIC Dataset: We
also compare TaintPup and SLIC’s detection accuracy us-
ing the dataset provided by Rahman et al. [64]. In the
replication package provided by provided by Rahman et
al. [64] we do not find any labeling. As a result, we recruit a
rater to perform labeling on randomly-selected set of 100
Puppet manifests used by Rahman et al. [64]. The rater
who participated in the dataset labeling process described
in Section 2.3.2, performed labeling for the oracle dataset
provided by Rahman et al. [64]. The results are provided in
Table 10. We observe SLIC and TaintPup to have the same
recall. The average precision and F-measure is respectively,
2.7 and 1.9 times higher for TaintPup than that of SLIC.
Practitioner Feedback on TaintPup: We also submit pull
requests to collect feedback from practitioners in order to
get further validation. In total, we submit pull requests
for 100 security weaknesses across 19 OSS repositories. A

breakdown of the security weakness categories and corre-
sponding count is presented in Table 11. Of the submitted
pull requests we obtain feedback for 1 security weaknesses
(response rate=1%).

Our response rate is low, which can be attributed to a
lack of monetary incentives [62], [74], practitioners’ negative
biases for static analysis alerts [37], [64], [65], [66] as well
as for submitted bug reports related to security alerts [65].
Survey response rate in cybersecurity and software engi-
neering research can respectively, be as low as 4.1% [66] and
6% [74]. We mitigate the limitation of low response rate for
bug reports by conducting semi-structured interviews. We
describe the methodology and results of conducted semi-
structured interviews as follows:

Methodology for Conducting Semi-structured Inter-
views: We use randomly-selected 100 email addresses and
sent emails to all 100 email addresses. For our semi-
structured interview we used emails from the repositories
that we mined and described in Section 2.3.1. The first
author of the paper sent the emails. Upon response and
approval, we invited the participants over Zoom. In all, we
found 5 interviewees who agree to participate. All intervie-
wees participated via Zoom.

As part of this semi-structured review, we first state the
purpose of the interview, demonstrate TaintPup, and then
we ask questions. We describe each of these steps below:

Purpose: The purpose of the interview is to understand
if TaintPup is useful for practitioners to detect security
weaknesses.

Demonstration of TaintPup: We perform the following
activities for demonstration following He et al. [28]’s rec-
ommendations:

• Proposition: Proposition corresponds to describing the
goal of the semi-structured interview. The goal of the
interview is to obtain feedback from practitioners about
the usefulness of TaintPup.

• Evidence: Evidence corresponds to the artifacts that are
used for the interview. As part of this activity we describe
the construction and usage of TaintPup. We also describe
verbally the security weakness categories with examples.

• Method of demonstration: As part of this activity we
showcase how TaintPup can be executed from the com-
mand line. We ran TaintPup on a repository, showed the
output it generates, described the execution flow, and
walked through the generated comma-separated value
(CSV) file by discussing the meaning of each column.

Upon demonstration of TaintPup we ask: “Do you think
TaintPup is useful to detect security weaknesses in Puppet
manifests?”. We impose no limit on time to answer these
questions. We also allowed the participants to talk about
any topics that they think is relevant to the answers of the
above-mentioned question.

Pr
e-p
rin
t

8

TABLE 7: Answer to RQ1: Precision of SLIC and TaintPup for Six Security Weakness Categories

GitHub GitLab Mozilla Openstack Wikimedia
Category SLIC TaintPup SLIC TaintPup SLIC TaintPup SLIC TaintPup SLIC TaintPup
Admin by default 0.15 0.83 NA NA NA NA 0.10 0.86 NA NA
Empty password 0.06 0.93 NA NA 0.30 1.00 0.08 0.75 0.75 0.84
Hard-coded secret 0.63 0.95 0.55 0.92 0.50 0.96 0.49 0.94 0.44 0.83
Invalid IP address bind-
ing

0.20 0.89 0.25 1.00 0.62 0.86 0.26 0.93 NA NA

Use of HTTP without
TLS

0.53 0.97 0.47 0.88 0.11 0.83 0.59 0.96 0.52 0.88

Use of weak crypto.
algo.

0.03 0.60 0.27 1.00 NA NA 0.07 1.00 NA NA

Average 0.26 0.86 0.38 0.95 0.38 0.91 0.26 0.90 0.57 0.85

TABLE 8: Answer to RQ1: F-measure of SLIC and TaintPup for Six Security Weakness Categories

GitHub GitLab Mozilla Openstack Wikimedia
Category SLIC TaintPup SLIC TaintPup SLIC TaintPup SLIC TaintPup SLIC TaintPup
Admin by default 0.27 0.91 NA NA NA NA 0.18 0.92 NA NA
Empty password 0.12 0.93 NA NA 0.46 1.00 0.15 0.86 0.86 0.91
Hard-coded secret 0.77 0.97 0.81 0.96 0.67 0.98 0.66 0.97 0.69 0.79
Invalid IP address bind-
ing

0.33 0.94 0.40 1.00 0.76 0.92 0.42 0.96 NA NA

Use of HTTP without
TLS

0.69 0.98 0.62 0.93 0.21 0.91 0.75 0.98 0.68 0.94

Use of weak crypto.
algo.

0.05 0.75 0.54 1.00 NA NA 0.07 1.00 NA NA

Average 0.37 0.91 0.59 0.97 0.52 0.95 0.37 0.95 0.74 0.88

TABLE 9: Precision, Recall, and F-measure of SLIC and TaintPup for the Dataset Provided by Bhuiyan et al. [12]

Precision Recall F-Measure
Category SLIC TaintPup SLIC TaintPup SLIC TaintPup
Admin by default 0.25 0.87 1.0 1.0 0.40 0.93
Empty password 0.66 0.98 1.0 1.0 0.80 0.99
Hard-coded secret 0.53 0.94 1.0 1.0 0.69 0.97
Invalid IP address binding 0.29 0.94 1.0 1.0 0.45 0.97
Use of HTTP without TLS 0.73 0.91 1.0 1.0 0.84 0.95
Use of weak crypto. algo. 0.01 0.72 1.0 1.0 0.02 0.84
Average 0.41 0.89 1.0 1.0 0.58 0.94

TABLE 10: Precision, Recall, and F-measure of SLIC and TaintPup for the Dataset Provided by Rahman et al. [64]

Precision Recall F-Measure
Category SLIC TaintPup SLIC TaintPup SLIC TaintPup
Admin by default 0.11 0.81 1.0 1.0 0.20 0.90
Empty password 0.36 0.91 1.0 1.0 0.53 0.95
Hard-coded secret 0.65 0.88 1.0 1.0 0.79 0.94
Invalid IP address binding 0.19 0.84 1.0 1.0 0.32 0.91
Use of HTTP without TLS 0.53 0.89 1.0 1.0 0.69 0.94
Use of weak crypto. algo. 0.11 0.87 1.0 1.0 0.20 0.93
Average 0.32 0.86 1.0 1.0 0.48 0.93

TABLE 11: Categories of Security Weaknesses for Submitted
Pull Requests

Category Count
Admin by default 2
Empty password 10
Hard-coded secret 71
Invalid IP address binding 1
Use of HTTP without TLS 12
Use of weak crypto. algo. 4
Total 100

Results from Semi-structured Interviews: All five par-
ticipants agreed that TaintPup is useful to detect security
weaknesses. Their experience in Puppet manifest develop-
ment is listed in Table 12 with the ‘Experience’ column. The
‘Usefulness’ column corresponds to practitioners’ perceived
usefulness of TaintPup. In the interviews, the participants

also provided additional feedback. For example, P1 stated
“Security is something I have meetings on everyday and I would
say that in general it [TaintPup] would be very valuable. Tying
this to an external standard [CWE] makes it very valuable. Very
cool!” P2 added “Yes, it is useful for developers. Let me know
by email if I can further connect to you to more people inside [the
organization] so that we can get it integrated in our pipeline”. P4
stated “I would use it in my pipeline. I liked the tool honestly. It
helps, it helps!”.

3 METHODOLOGY FOR EMPIRICAL STUDY

Methodology to answer RQ2, RQ3, and RQ4 is described
below.

Pr
e-p
rin
t

9

TABLE 12: Results from Semi-structured Interviews

ID Experience
(Years)

Job Title Usefulness

P1 6 Senior Developer YES
P2 7 Consultant YES
P3 7 SRE YES
P4 5 DevOps Engineer YES
P5 1 Developer YES

3.1 Methodology to Answer RQ2

We use RQ2 to characterize how frequently security weak-
nesses propagate into resources. Such characterization can
help us understand how many resources are being impacted
by one or multiple security weaknesses. We answer RQ2 by
first reporting the total count of resources in each dataset
into which security weaknesses propagate. Second, with
Equation 1 we compute ‘Impacted Resource (%)’, i.e., the
proportion of resources in each dataset for which >= 1
security weakness propagates. We use ‘Impacted Resource’,
as resource is the fundamental unit to specify configura-
tions in order to manage a computing infrastructure [41]. If
we can demonstrate empirical evidence that the identified
security weaknesses are actually used by resources, then
practitioners will understand how security weaknesses are
used, and the resources they are used in. Third, we report
the minimum, median, and maximum number of resources
in a manifest into which a security weakness propagate. To
answer RQ2, we use TaintPup as it allows us to identify
security weaknesses used by attributes within resources
with the help of DDGs.

Impacted Resource(%) =
of resources in which >= 1 security weakness propagates

total # of unique resources in the dataset
∗ 100%

(1)

3.2 Methodology to Answer RQ3

We conduct a categorization of affected resources to gain
further understanding of the resources affected by secu-
rity weaknesses. We apply the following steps: first, we
identify affected attributes and resources from the output
of TaintPup. Second, we identify the titles and types from
the affected resources. Third, we apply open coding [69]
with titles and types of affected resources. Open coding
is a qualitative analysis technique that is used to identify
categories from structured or unstructured text [69]. Fourth,
we compute the proportion of resources that belong to a
certain category.

Our open coding process can be described as follows:
first we derive initial codes by inspecting the names and
types of each resource into which at least one security
weakness propagates. From those initial codes we derive
initial categories based on similarities between the initial
codes. Finally, we merge initial categories into one category
if there are similarities between initial categories.

We use Figure 4 to demonstrate our open coding pro-
cess even further. First, we extract initial codes from code
snippets. Then from these initial codes we obtain initial cat-
egories, which are later merged into a category. For example,
from the initial categories MySQL database management

with Puppet resources and PostgreSQL database
management with Puppet resources, we derive a
category called Database management with Puppet
resources.
Rater Verification: The first author who has 6 years of experi-
ence in Puppet development performs open coding. The de-
rived categories are susceptible to rater bias, which we mit-
igate by using a PhD student in the department, who is not
an author of the paper. The additional rater was assigned
100 randomly-selected resources for mapping them to the
categories identified by the first author. We record a Cohen’s
Kappa [18] of 0.87 between the PhD student and the first
author, indicating ‘perfect’ agreement [42]. We derive the set
of 100 resources using the concept of purposeful sampling,
a popular sampling technique to identify a sample from the
population based on one or multiple selection criteria [46],
[55]. In the case of 100 resources our selection criterion is
the presence of six categories of resources. From our manual
inspection we observe the six resource categories to appear
in the 100 resources. This gives us the confidence that the
selected set of 100 resources is sufficient. With a margin of
error of 5%, the confidence level for the sample size of 100
resources was 95%.

3.3 Methodology to Answer RQ4

We answer RQ4 by conducting an online survey with prac-
titioners who have developed Puppet manifests. We contact
these practitioners via e-mails, which we mine from the 336
OSS repositories reported in Section 2.3.1. We randomly se-
lect 250 e-mail addresses, which we use to send the surveys.
We offer a drawing of two 50 USD Amazon gift cards as
an incentive for participation following Smith et al. [73]’s
recommendations. We conduct the survey from December
2021 to March 2022 following the Internal Review Board
(IRB) protocol #2356.

In the survey, we first ask developers about their expe-
rience in developing Puppet manifests. Next, we describe
each of the identified resource categories with definitions
and examples. We then ask questions related to perceived
frequency and severity: first, we ask “How frequently do you
think the identified resource categories are affected by security
weaknesses?” Survey participants used a five-item Likert
scale to answer this question: ‘Not at all frequent’, ‘Rarely’,
‘Somewhat frequently’, ‘Frequently’, and ‘Highly frequent’.
Second, we ask “What is the severity of the identified resource cat-
egories into which security weaknesses appear?” To answer this
question, survey participants used the following five-item
Likert scale: ‘Not at all severe’, ‘Low severity’, ‘Moderately
severe’, ‘Severe’, and ‘Highly severe’. We use a five-item
Likert scale for both questions following Kitchenham and
Pfleeger’s guidelines [39]. Furthermore, following Kitchen-
ham and Pfleeger [39]’s advice we apply the following
actions before deploying the survey: (i) provide an esti-
mate of completion time, (ii) provide explanations related
to the purpose of the study, (iii) provide survey comple-
tion instructions, and (iv) provide explanations confirming
preservation of confidentiality. The survey questionnaire is
included in our verifiability package [60].

Pr
e-p
rin
t

10

Code Snippet Inital Code Initial Category Category

cdh::oozie::database::mysql

/var/lib/oozie/mysql.jar

oozie mysql create database

postgresql::server::pg hba rule

postgresql::server::db

database::mysql

postgresql::server

MySQL

database man-

agement with

Puppet re-

sources

PostgreSQL

database man-

agement with

Puppet re-

sources

Database man-
agement with

Puppet resources

Fig. 4: An example to demonstrate our open coding process used to answer RQ3.

4 EMPIRICAL FINDINGS

We provide answers to RQ2, RQ3, and RQ4 as follows:

4.1 Answer to RQ2: Propagation Frequency
In this section, we provide answer to RQ2: How frequently
do security weaknesses propagate into resources? Alto-
gether, we identify 4,906 security weaknesses to propagate
into 4,457 distinct resources. The count of resources into
which weaknesses propagate is: 2,945 for GitHub, 104 for
GitLab, 167 for Mozilla, 1,128 for Openstack, and 113 for
Wikimedia. Considering all datasets, security weaknesses
propagate into 4.1% of 108,552 resources. The ‘Impacted
Resource (%)’ column shows the proportion of resources
into which >= 1 security weaknesses propagate. For ex-
ample, for GitHub, we observe 3,872 security weaknesses
to propagate into 4.49% of 65,599 resources. The proportion
of affected resources is highest for Openstack. Details are
available in Table 13.

TABLE 13: Answer to RQ2: Frequency of Resources Into
Which Security Weaknesses Propagate

Impacted Resource (%)
Category GitH. GitL. Mozilla Open. Wiki.
Admin by default 0.01 NA 0.00 0.05 NA
Empty password 0.09 0.02 0.02 0.02 0.05
Hard-coded secret 3.55 1.82 1.30 3.25 2.22
Invalid IP address
binding

0.05 0.02 0.17 0.19 0.00

Use of HTTP with-
out TLS

0.79 0.16 0.09 1.24 0.89

Use of weak crypto.
algo.

0.01 0.02 NA 0.004 NA

Combined 4.49 2.06 1.58 4.75 3.17

In Table 14, we report the minimum, median, and max-
imum number of resources in a manifest into which >= 1
security weakness propagates. We observe a security weak-
ness can propagate into as many as 35 distinct resources.

4.2 Answer to RQ3: Resource Categories
We provide answers to RQ3: What are the resource cate-
gories into which security weaknesses propagate? by first
describing the resource categories in Section 4.2.1. Next, we
report frequency of resource categories in Section 4.2.2.

TABLE 14: Answer to RQ2: Resource Frequency (Minimum,
Median, Maximum)

Category GitHub GitLab Mozilla OpenstackWiki.
Admin by default 1, 1,

2
NA 0, 0, 0 1, 1, 1 NA

Empty password 1, 2,
5

1, 1,
1

1, 1, 1 1, 1, 1 1, 1,
1

Hard-coded secret 1, 1,
35

1, 1,
6

1, 1, 6 1, 1, 12 1, 1,
4

Invalid IP address
binding

1, 1,
2

1, 1,
1

1, 3, 5 1, 1, 3 0, 0,
0

Use of HTTP without
TLS

1, 1,
7

1, 3,
4

1, 2.5,
4

1, 1, 6 1, 1,
6

Use of weak crypto.
algo.

1, 1,
1

1, 1,
1

NA 1, 1, 1 NA

Total 1, 1,
35

1, 1,
6

1, 1, 6 1, 1, 12 1, 1,
6

4.2.1 Description of Resource Categories
We identify 7 categories of resources into which security
weaknesses propagate. We describe each category with ex-
amples as follows.
I-Communication Platforms: Resources used to manage
communication platforms, such as Discourse 1 and Slack 2.

Example: Listing 1 shows how a hard-coded user name is
used to manage Slack contacts in line# 9. The hard-coded
username is $slack_username = ‘Icinga’, which is
later used by the resource icinga::slack_contact.
II-Containerization: Resources used to manage containers.

Example: Listing 2 shows an example of a resource that is
used to perform authentication for the Magnum container
service 3. We observe an instance of insecure HTTP for
$magnum_protocol, which is later used by two attributes
in the magnum resource.

In Listing 2 there is one security weak-
ness, $magnum_protocol=’http’, which
propagates into the resource magnum
’::magnum::keystone::authtoken’:. TaintPup
reports $magnum_protocol=’http’ as a true positive
security weakness. $magnum_url does not propagate into
the resource and therefore is not a true positive security
weakness.

1. https://www.discourse.org/
2. https://slack.com/
3. https://wiki.openstack.org/wiki/Magnum

Pr
e-p
rin
t

11

1 $notify_slack = false,
2 $notify_graphite = true,
3 $slack_channel = undef,
4 $slack_username = 'Icinga',
5 ...
6 icinga::slack_contact { 'slack_search_team':
7 slack_webhook_url =>

$slack_webhook_url,↪→

8 slack_channel =>
'#govuk-searchandnav',↪→

9 slack_username =>
$slack_username,↪→

10 icinga_status_cgi_url =>
$slack_icinga_status_cgi_url,↪→

11 icinga_extinfo_cgi_url =>
$slack_icinga_extinfo_cgi_url,↪→

12 }

Listing 1: A hard-coded secret propagating into a resource
used to manage Slack.

1 $magnum_protocol = 'http'
2 ...
3 $magnum_url = "${magnum_protocol}://${magnum_host}:$magnum_port/v1"
4 magnum { '::magnum::keystone::authtoken':
5 auth_uri => "${magnum_protocol}://${magnum_host}:5000/v3",
6 auth_url => "${magnum_protocol}://${magnum_host}:35357",
7 ...
8 }

Listing 2: An instance of insecure HTTP propagating into a
resource used to manage Magnum-based containers.

III-Continuous Integration: Resources used to manage in-
frastructure needed to implement the practice of continu-
ous integration (CI), with tools, such as Jenkins [35]. CI
tools integrate code changes by automatically compiling,
building, and executing test cases upon submission of code
changes [21].

Example: In Listing 3 an instance of empty password
propagates into a resource to setup configurations for Jenk-
ins. As shown in line #9, the empty password instance
$jenkins_management_password = ‘’ is used to con-
struct $security_opt_params using join, a Puppet
function used to concatenate strings [41]. Later with the
exec resource, $security_opt_params is used to man-
age configurations for a Jenkins-based CI infrastructure.
IV-Data Storage: Resources used to manage data storage
systems, such as MySQL servers, PostgreSQL servers, and
Memcached.

Example: Listing 4 shows an instance of empty pass-
word used by a resource to manage a MySQL database.
The mysql::db resource uses $database_password=‘’
with the password attribute.
V-File: Resources used to manage files by performing file-
related operations, such as reading, writing, or deleting
a file. We observe security weaknesses to propagate in
Puppet-defined resources, such as file, and custom re-
sources.

Example: Listing 5 shows how SHA1 is used to en-
crypt a password with the htpasswd_sha1 function. The
encrypted password is assigned to $nagiosadmin_pw,
which is later used to manage a file with the
File[‘nagios_htpasswd’] resource, as shown in line#5.
VI-Load Balancers: Resources used to manage load bal-
ancers, such as HAPRoxy [27]. Load balancing is used

1 class jenkins::master (
2 ...
3 $jenkins_management_password = '',
4 ...
5 $security_opt_params = join([
6 'set_security_password',
7 "'${jenkins_management_login}'",
8 "'${jenkins_management_email}'",
9 "'${jenkins_management_password}'",

10 "'${jenkins_management_name}'",
11 "'${jenkins_ssh_public_key_contents}'",
12 "'${jenkins_s2m_acl}'",
13], ' ')
14 ...
15 exec { 'jenkins_auth_config':
16 require => [
17 File["${jenkins_libdir}/jenkins_cli.groovy"],
18 Package['groovy'],
19 Service['jenkins'],
20],
21 command => join([
22 '/usr/bin/java',
23 "-jar ${jenkins_cli_file} -s",

"${jenkins_proto}://${jenkins_address}:"↪→

24 "${jenkins_port}",
25 "groovy

${jenkins_libdir}/jenkins_cli.groovy",↪→

26 $security_opt_params,
27], ' '),
28 tries => $jenkins_cli_tries,
29 ...
30 }

Listing 3: An empty password propagating into a resource
used to manage Jenkins.

1 class gerrit::mysql(
2 ...
3 $database_password = '',
4) {
5 mysql::db { $database_name:
6 ...
7 password => $database_password,
8 host => 'localhost',
9 grant => ['all'],

10 ...
11 }
12 ...
13 }

Listing 4: An instance of empty password propagating into
a resource used to manage a MySQL database.

to distribute network or application traffic across multiple
servers [14].

Example: Listing 6 shows an example of a security weak-
ness propagating into a resource used to manage HAProxy.
$vip is an instance of an invalid IP address, which is
used by $api_vip_orig and $discovery_vip_orig
respectively, in lines #8 and 14. Both $api_vip_orig
and $discovery_vip_orig will be assigned ‘0.0.0.0’ with
$vip through the execution of the else block as both
$api_server_vip and $discovery_server_vip is as-
signed undef, which is false when used as Boolean.
$api_vip_orig and $discovery_vip_orig are respec-
tively, used in lines #17 and #21 to manage HAProxy ser-
vices. Listing 6 is an example that illustrates TaintPup’s
ability to detect the propagation of one security weakness
into multiple resources.

Pr
e-p
rin
t

12

1 $nagiosadmin_pw =
htpasswd_sha1($nagios_hiera['nagiosadmin_pw'])↪→

2 $nagios_hosts = $nagios_hiera['hosts']
3 File['nagios_htpasswd'] {
4 source => undef,
5 content => "nagiosadmin:${nagiosadmin_pw}",
6 mode => '0640',
7 }

Listing 5: An instance of SHA1 usage propagating into a
resource used to manage a file.

1 $vip = '0.0.0.0',
2 $api_server_vip = undef,
3 $discovery_server_vip = undef,
4 ...
5 if $api_server_vip {
6 $api_vip_orig = $api_server_vip
7 } else {
8 $api_vip_orig = $vip
9 }

10

11 if $discovery_server_vip {
12 $discovery_vip_orig = $discovery_server_vip
13 } else {
14 $discovery_vip_orig = $vip
15 }
16 rjil::haproxy_service { 'api':
17 vip => $api_vip_orig,
18 ...
19 }
20 rjil::haproxy_service { 'discovery':
21 vip => $discovery_vip_orig,
22 ...
23 }

Listing 6: An instance of invalid IP address propagating into
a resource used to manage HAProxy, a load balancer.

VII-Networking: Resources used to manage network-related
functionalities, such as setting up firewalls and network
controllers, as well as managing virtual local area networks
(VLANs) and virtual private networks (VPNs).

Example: Listing 7 shows an example of a hard-coded
password propagating into a resource used for manage-
ment of network infrastructure. The resource is used to
manage the Open Network Operating System (ONOS)
controller [53]. The hard-coded password $password =
‘karaf’ is used by $dashboard_desc, which is later
used to construct $json_hash. In line #10, $json_hash is
used by $json_messsage. Later, as shown in line#12, the
exec resource uses $json message to execute a command in
line#12 in order to create an ONOS dashboard link.

4.2.2 Frequency of Affected Resource Categories

Findings from Table 15 show that security weaknesses are in
fact used for managing infrastructure, such as CI, container,
and data storage infrastructure. For example, for GitHub
69% of identified hard-coded secrets are used to manage CI-
based infrastructure. A complete breakdown is available in
Table 15, where we provide a mapping between each secu-
rity weakness and resource categories into which security
weaknesses propagate. ‘CI’, ‘Comm’, ‘Container’, ‘Data’,
‘File’, ‘Load’, and ‘Network’ respectively refers to continu-
ous integration, communication platforms, containerization,

1 notice(' ONOS MODULAR: onos-dashboard.pp')
2 ...
3 $password = 'karaf'
4 ...
5 $dashboard_desc = "Onos dashboard interface.

Default credentials are ${user}/${password}"↪→

6

7 $json_hash = { title => $dashboard_name,
8 description => $dashboard_desc,
9 url => $dashboard_link, }

10 $json_message = $json_hash
11 exec { 'create_dashboard_link':
12 command => "/usr/bin/curl -H 'Content-Type:

application/json' -X POST -d
'${json_message}'
https://${master_ip}:8000/api/clusters/..."

↪→

↪→

↪→

13 }

Listing 7: A hard-coded password propagating into a re-
source used to manage ONOS.

data storage, file, load balancer, and network. A resource
category name is followed by the proportion of security
weaknesses that propagate into resources for that category.
‘NA’ indicates a security weakness to not propagate into a
resource for a certain category. The percentage of affected
resource categories is listed in Figure 5. For example, the
total count of affected resources by security weaknesses is
2,945 for the Github dataset, of which 0.1% are used to
manage communication platforms. Our findings provide
a cautionary tale on the state of Puppet manifest security,
as we observe identified security weaknesses to propagate
into resources for infrastructure management, which in turn
leaves computing infrastructure susceptible to security at-
tacks.

One possible explanation of the quantified propagation
is related to how Puppet manifests are used for infras-
tructure provisioning. Puppet is used to implement the
practice of IaC. Accordingly, we observe Puppet manifests
to provision a wide range of computing infrastructure, such
as data storage, network infrastructure, and communication
platforms.

0.1 0.6 0 0.9 0

3.8 0 24.4 17.7 11.3

68.7 11.1 7.3 4.4 13

9.3 35.1 6.6 19.1 19.5

9.1 47.7 61.7 22.6 33.7

0.5 2.4 0 29.3 11.1

8.5 3.1 0 6 11.4

CI

Comm. Platform

Container

Data Storage

File

Load Balance

Network

GitHub GitLab Mozi. Ostk. Wiki.

Dataset

R
es

o.
C

at
eg

.

Fig. 5: Answer to RQ3: Percentage of Affected Resources.

Pr
e-p
rin
t

13

TABLE 15: Answer to RQ3: Mapping of Resource Categories and Security Weaknesses

Category GitHub GitLab Mozilla Openstack Wikimedia
Admin by
default

Data:100% NA NA Container:11.1%,
Data:27.8%, File:5.5%,
Load:27.8%, Net-
work:27.8%

NA

Empty
password

CI:62.0%, Data:32.4%, File:5.6% File:100% File:100% Data:40.0%, Load:60.0% Data:100%

Hard-
coded
secret

CI:69%, Container:3.6%,
Comm:0.1%, Data:8.8%,
File:9.3%, Load:0.3%,
Network:8.9%

File:45%,
Data:55%

CI:10.0%,
Container:21.9%,
Data:0.3%,
File:67.8%

CI:3.5%, Con-
tainer:18.7%,
Comm:1.1%,
Data:38.4%, File:31.6%,
Load:2.6%, Net-
work:4.1%

CI:11.1%, Con-
tainer:1.6%, Data:78.6%,
File:5.5%, Load:0.8%,
Network:2.4%

Invalid IP
address
binding

CI:2.4%, Container:7.3%,
Data:43.9%, File:2.4%,
Load:21.9%, Network:22.1%

Data:100% Network:100% Container:18.6%,
Data:40.6%, File:6.8%,
Load:28.9%, Net-
work:5.1%

NA

Use of
HTTP
without
TLS

CI:49.6%, Container:22.2%,
Data:16.5%, File:3.9%,
Load:5.7%, Network:2.1%

Container:100%Container:100% CI:7.1%, Con-
tainer:15.6%,
Comm:0.7%,
Data:31.1%, File:4.8%,
Load:31.0%, Net-
work:9.7%

CI:2.1%, Data:85.4%,
File:12.5%

Use of
weak
crypto.
algo.

File:50%, Data:50% File:100% NA Data:100% NA

4.3 Answer to RQ4: Practitioner Perception
In this section, we provide answer to RQ4: What are the
practitioner perceptions of the identified resources into
which security weaknesses propagate?. From our survey,
we obtain 24 responses in total. The survey respondents
were distributed across 14 repositories. A complete break-
down of the respondents’ experience in Puppet manifest
development is provided in Table 16.

TABLE 16: Survey Respondents’ Experience in Puppet Man-
ifest Development

Experience Respondent count
< 1 year 11
1− 2 years 1
3− 4 years 3
>= 5 years 9

In Figures 6 and 7 we respectively, report practitioner
perceptions for frequency and severity of the identified
resource categories. The x and y-axis respectively presents
the percentage of survey participants and resource cate-
gories. For example, from Figure 6 we observe 25% of the
total survey respondents to identify containerization as a
resource category for which security weaknesses frequently
or highly frequently propagate.

From Figure 6, we observe survey respondents to per-
ceive CI management to be most frequently affected by
security weaknesses. Such perception is congruent with the
GitHub-related findings presented in Figure 5, where we
observe resources related to CI to be the most frequent
category. Furthermore, based on Figure 5 we observe the
proportion of resources related to management of com-
munication platforms to be < 1.0%. From Figure 7, we
observe propagation of security weaknesses for data storage
management to be perceived as most severe.

Figures 6 and 7 show nuanced perspectives from prac-
titioners. For example, while 88% of respondents perceive

8%

54%

17%

54%

54%

71%

67%

75%

46%

38%

25%

25%

21%

8%

17%

0%

46%

21%

21%

8%

25%

NETWORK

LOAD_BALANCE

FILE

DATA_STORE

CONTAINER

COMM_PLATFORM

CI

0 25 50 75 100
Percentage

Response NOT_AT_ALL RARELY SOMEWHAT FREQUENTLY HI_FREQ

Fig. 6: Answer to RQ4: Practitioner perception of frequency
for identified resource categories.

8%

8%

8%

71%

71%

12%

67%

92%

83%

25%

25%

25%

21%

17%

0%

8%

67%

4%

4%

67%

17%

NETWORK

LOAD_BALANCE

FILE

DATA_STORE

CONTAINER

COMM_PLATFORM

CI

0 25 50 75 100
Percentage

Response NOT_AT_ALL LOW MODERATE SEVERE HI_SEVERE

Fig. 7: Answer to RQ4: Practitioner perception of severity
for identified resource categories.

CI-related resources to be frequently impacted by security
weaknesses, 12% of total respondents find security weak-
nesses in CI-based management to have severe or highly se-
vere impact. Also, 92% of the respondents identify security
weakness propagation for data storage-related resources to
be severe or highly severe, but only 46% of the respondents
perceive such propagation to be frequent.

5 DISCUSSION

We discuss the implications of our paper in this section.

Pr
e-p
rin
t

14

1 $username = 'root'
2
3 $group = $::operatingsystem ? {
4 Darwin => wheel,
5 default => root
6 }
7
8 $home = $::operatingsystem ? {
9 Darwin => '/var/root',

10 # $rlocalpath is set by the winrootlp.rb in the
↪→ shared module

11 Windows => $::rlocalpath,
12 default => '/root'
13 }
14
15 ...
16 'users::root::account':
17 stage => users,
18 username => $username,
19 group => $group,
20 home => $home;
21 }

Use of a hard-coded user name in line # 18 for
resource users::root::account

1

Fig. 8: An example to demonstrate the usability of Taint-
Pup. TaintPup automatically detects that $username =
’root’ is a hard-coded user name, and used by the re-
source called users::root::account.

5.1 Implications Related to Practitioner Actionability

Our results in Table 7 show TaintPup to have higher pre-
cision than that of SLIC, which is a state-of-the-art security
static analysis tool for Puppet. Low precision static analysis
tool contribute to a lack of actionability, which in turn results
in abandonment of static analysis tool usage [10], [30], [37].
Unlike SLIC, TaintPup generates fewer false positives. On
average, TaintPup’s precision is 2.4 times higher than that
of SLIC. We attribute TaintPup’s precision improvement to
the advanced syntax analysis, and application of informa-
tion flow analysis. As better precision is correlated with
increased actionability for static analysis tools [29], [68],
TaintPup’s precision improvement can help practitioners
take actions to mitigate security weaknesses.

Another utility of TaintPup is its capability to report
the flow of a detected security weakness, and whether
or not it is being used by a resource. Figure 8 shows
the utility of TaintPup. TaintPup automatically detects that
$username = ’root’ is a hard-coded user name, and
used by the resource called users::root::account. In
this manner, TaintPup detects a security weakness, which is
a true positive. Unlike SLIC, TaintPup reports the name and
location of a manifest, the resources affected by a security
weakness, and the attribute used by the resource into which
the security weakness propagate. Such capability gives prac-
titioners the ability to assess if a detected security weakness
is relevant or not. We recommend use of information flow
analysis to detect security weaknesses in Puppet manifests
because it (i) identifies resources that are affected by security
weaknesses, and (ii) reduces false positives.

5.2 Survey-related Implications

Implications of RQ4 are:
Severity-related Perceptions: Findings reported in Sec-
tion 4.3 show practitioners to not identify security weakness
propagation for all resource categories to be severe. Accord-

ing to Figure 7, practitioners perceive propagation of secu-
rity weaknesses to be least severe for CI and container in-
frastructure management. However, these perceptions could
leave unmitigated security weaknesses during management
of CI and containers, which in turn could be used by
malicious users to perform cryptomining attacks [44]. Ex-
istence of security weaknesses in CI infrastructure resulted
in the Codecov incident, which impacted 29,000 customers,
and breached hundreds of customer networks [1], [2], [4].
According to Table 15, security weaknesses, such as hard-
coded secrets propagate into container-related resources,
which in turn can cause container escape, where a con-
tainer user is able to nullify container isolation and access
unauthorized resources [47]. Container escapes motivated
malicious users conduct security attacks on container-based
infrastructure, as many as 17,358 attacks in 18 months [3],
[5].
Frequency-related Perceptions: Our frequency-related find-
ings in Section 4.3 show a disconnect between what practi-
tioners perceive, and empirical results. While practitioners
perceive file-related resources to be least frequently affected
by security weaknesses according to Figure 6, these re-
sources are most frequently affected for GitLab, Mozilla, and
Wikimedia as shown in Figure 5. These findings suggest
a lack of practitioner awareness on how frequently secu-
rity weaknesses affect Puppet-based infrastructure manage-
ment, which can be mitigated through the use of TaintPup.
Implications Related to Prioritizing Inspection Efforts: Our
empirical study has implications for prioritizing inspection
efforts as well. While conducting security focused code
reviews, practitioners can focus on the resources for which
TaintPup reports a security weakness. In this manner, in-
stead of inspecting all resources, with the help of TaintPup
practitioners can inspect a smaller set of resources.

5.3 Future Work

We discuss opportunities for future work:

5.3.1 Improvement Opportunities for TaintPup
TaintPup can be extended so that practitioners themselves
can specify the sinks to track security weaknesses in Puppet
manifests. Currently, TaintPup uses attributes in resources
as sinks, which could be limiting because a security weak-
ness can be used by a code snippet deemed important by
practitioners, but is not an attribute.

TaintPup can be extended to detect more categories of
security weaknesses. If a new security weakness category
is derived, then the weakness instances can be abstracted
into rules, and these rules can be integrated with TaintPup.
The DDG construction and querying process will remain
unchanged.

Let us consider the example of default ports in this re-
gard. As a hypothetical example, if default port is identified
as a security weakness category, then the corresponding rule
would be (isAttribute(x) ∨ isV ariable(x)) ∧ isPort(x) ∧
hasDefaultV alue(x.value). This rule can be integrated
into TaintPup by adding one function, which will do pattern
matching to implement hasDefaultV alue(x.value) and
isPort(x). There will be no change in the DDG construction
and querying process.

Pr
e-p
rin
t

15

5.3.2 Security-focused Information Flow Analysis for Other
IaC Languages
Security-focused information flow analysis for other lan-
guages is an opportunity for future work. Such analysis will
require an understanding of what code elements are used
to manage infrastructure in other languages. For example,
with respect to syntax and semantics Puppet is different
from Ansible [65], which requires information flow analysis
tools tailored for Ansible manifests. One approach could be
use of single static assignments (SSAs) [7] for detection of
security weakness propagation. However, deriving SSAs for
IaC languages, such as Ansible and Puppet is challenges as
the underlying compilers do not provide SSAs directly.

5.3.3 Severity of Security Weaknesses
Our results presented in Figure 7 lay the groundwork for
future research related to the severity of security weaknesses
in Puppet manifests. While we acknowledge that practi-
tioners perceptions related to severity is important, trian-
gulation of these perceptions is also required to strengthen
the empirical foundations of secure development of Puppet
manifests. In particular, empirical studies should consider
existing concepts, such as the Common Vulnerability Scor-
ing System (CVSS) [70] to triangulate severity of security
weaknesses and their potential impact for Puppet-managed
computing infrastructure.

5.3.4 Towards Actionable Repair of Detected Security
Weaknesses
Our semi-structured interview provides the groundwork to
conduct further research on how to generate repairs for
security weaknesses so that practitioners are more moti-
vated to take actions on the detected weaknesses. For ex-
ample, researchers through semi-structured interviews can
ask what possible strategies that they would have taken for
the detected weaknesses. The semi-structured interview can
also trigger discussions, such as use of secret management
tools, and empirically validating relevant best practices [61].

6 THREATS TO VALIDITY

Conclusion Validity: TaintPup builds DDGs leveraging
def-use chains [7], which may not capture all types
of information flow. For example, if a hard-coded
password is provided as a command line input or
as a catalog [41], then TaintPup will not report a
security weakness. An example of a command that a
practitioner would write on the terminal to provide
a hard-coded password is “puppet resource user
<USERNAME> ensure=present managehome=true
password=’<PASSOWRD-STRING>’”. The rater who
identified security weaknesses did not find any such
instance where a hard-coded password is provided as input
to a Puppet manifest from the command line. In order
to find such instance, the rater would have to get access
to the commands that are being typed on the command
line or terminal by a practitioner. Unfortunately, these
commands do not appear in a manifest, and therefore the
rater was not able to identify such security weaknesses.
We still acknowledge that the rater’s bias could impact the

dataset derivation process, which we mitigate using rater
verification.

We acknowledge that other code elements exist that is
used to manage computing infrastructure. Our results could
have been further improved by incorporating such code
elements.
Construct Validity: In Section 2.3.2, when determining secu-
rity weaknesses the rater may have implicit biases that could
have affected the labeling for the five datasets. Furthermore,
the rater might be biased by the security weaknesses in-
cluded in the sample of 500 manifests. We mitigate this
limitation by allocating a rater who is not the author of the
paper, and also by performing rater verification. Further-
more, TaintPup leverages PPD to perform parsing, which
can yield false positives and false negatives.
External Validity: Our empirical study is susceptible to ex-
ternal validity as our analysis is limited to datasets collected
from OSS repositories. TaintPup can generate false positives
and false negatives for datasets not used in the paper,
which in turn can influence results presented in Sections 4.1
and 4.2.

7 RELATED WORK

Our paper is related to prior research on Puppet-related
code elements that are indicative of quality concerns.
Sharma et al. [72], Bent et al. [78], and Rahman and
Williams [8] in separate studies identified Puppet-related
code elements that are indicative of defects in Puppet man-
ifest. Analysis of specific defects, such as security defects
has garnered interest amongst researchers too. By mining
OSS repositories Rahman et al. [62] found absence of Puppet
code elements to cause security defects. Existence of security
defects, such as security weaknesses were further confirmed
by Rahman et al. [64], where they identified seven cate-
gories of security weaknesses. They further replicated the
study in another paper [65], where they observed security
weaknesses in Puppet manifests to also appear for Ansible
manifests. Rahman et al. [64]’s paper was also replicated
by Hortlund [33], who reported the security weakness
density to be less than that of reported by Rahman et
al., due to false positives generated by SLIC. Bhuiyan and
Rahman [12] reported similar observations: they manually
inspected 2,764 Puppet manifests, and documented SLIC to
generated 1,560 false positives. The closest work in spirit is
the research conducted by Rahman et al. [64]. They [64] used
a qualitative analysis technique called open coding [69],
where they manually inspected 1,726 Puppet manifests, and
derived a category of security weaknesses that appear in
Puppet manifests. Rahman et al. [64] also developed a tool
that can identify security weaknesses. However, their tool
SLIC [64], does not perform adequate syntax analysis and
track how a security weakness propagates into resources.
We address this limitation by constructing and evaluating
TaintPup.

Our paper is also related to prior research that has
applied taint tracking for quality analysis of Android, Java,
and Python applications. Xia et al. [80] used taint tracking
to build AppAudit. Using AppAudit, they [80] found most
data leaks to be caused by third-party advertising modules.
Gibler et al. [24] performed taint tracking to identify 57,299

Pr
e-p
rin
t

16

privacy leaks in 7,414 Android apps. Arzt et al. [9] applied
alias-based taint tracking to construct FlowDroid so that
leaks are detected in 500 Android apps. Mahmud et al. [45]
used taint tracking to identify Android apps that violate
Payment Card Industry (PCI) compliance standards. Gor-
don et al. [26] applied taint analysis to detect inter compo-
nent communication (ICC) leaks in 24 Android apps. Java-
specific taint tracking tools have also been proposed. Chin
and Wagner [17] conducted character level taint tracking to
detect vulnerabilities in Java web-based applications. Conti
and Russo [19] constructed a Python-based taint tracking
tool to identify vulnerabilities in Python applications. Peng
et al. [57] used taint tracking to verify integrity of Python
applications. However, none of these tools are applicable
for Puppet manifests as they do not account for Puppet’s
state-based infrastructure management approach as well as
code elements unique to Puppet.

From the above-mentioned discussion we observe prop-
agation of security weaknesses in Puppet manifests to be
an under-explored research area, as none of the above-
mentioned papers investigate how security weaknesses im-
pact Puppet-based infrastructure management. We address
this research gap by constructing TaintPup, and then we use
TaintPup to conduct an empirical study.

8 CONCLUSION

While IaC scripts, such as Puppet manifests have yielded
benefits for managing computing infrastructure at scale,
these manifests include security weaknesses, such as hard-
coded passwords and use of weak cryptography algorithms.
To detect and characterize security weaknesses propagation
for Puppet-based infrastructure management, we have con-
structed TaintPup, using which we conduct an empirical
study with 17,629 Puppet manifests. We observe TaintPup
to have 2.4 times more precision compared to that of SLIC, a
state-of-the-art security static analysis tool for Puppet. Our
empirical study shows security weaknesses to propagate
into 4,457 resources, where a single weakness can propagate
into as many as 35 distinct resources. Furthermore, we
observe security weaknesses to propagate into a variety of
resources, e.g., resources used to manage CI and container-
based infrastructure. Our survey-related findings indicate
a disconnect between developer perception and empirical
characterization of security weakness propagation. Such dis-
connect further highlights the importance of using TaintPup
in Puppet manifest development as it can automatically
identify resources that are affected by security weaknesses.

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their
valuable feedback. This research was partially funded by the
U.S. National Science Foundation (NSF) Award # 2247141,
Award # 2310179, and the U.S. National Security Agency
(NSA) Award # H98230-21-1-0175.

REFERENCES

[1] Ax Sharma , “Securing CI/CD pipelines: 6 best practices,”
https://www.csoonline.com/article/3624577/securing-cicd-
pipelines-6-best-practices.html, 2021, [Online; accessed 12-Feb-
2022].

[2] Joseph Menn and Raphael Satter , “Codecov hackers
breached hundreds of restricted customer sites - sources,”
https://www.reuters.com/technology/codecov-hackers-
breached-hundreds-restricted-customer-sites-sources-2021-04-
19/, 2021, [Online; accessed 13-Feb-2022].

[3] Kevin Townsend , “Attacks Against Container Infras-
tructures Increasing, Including Supply Chain Attacks,”
https://www.securityweek.com/attacks-against-container-
infrastructures-increasing-including-supply-chain-attacks, 2021,
[Online; accessed 15-Feb-2022].

[4] Raphael Satter , “US investigators probing breach at code testing
company Codecov,” https://www.reuters.com/technology/us-
investigators-probing-breach-san-francisco-code-testing-
company-firm-2021-04-16/, 2021, [Online; accessed 14-Feb-2022].

[5] Team Nautilus , “Attacks in the Wild on the
Container Supply Chain and Infrastructure,”
https://info.aquasec.com/hubfs/Threat%20reports/, 2021,
[Online; accessed 15-Feb-2022].

[6] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies,
“We don’t need another hero?: The impact of ”heroes” on
software development,” in Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice,
ser. ICSE-SEIP ’18. New York, NY, USA: ACM, 2018, pp. 245–253.
[Online]. Available: http://doi.acm.org/10.1145/3183519.3183549

[7] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles,
techniques,” Addison wesley, vol. 7, no. 8, p. 9, 1986.

[8] R. Akond and W. Laurie, “Source code properties of defective
infrastructure as code scripts,” Information and Software Technology,
2019.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 259–269. [Online]. Available:
https://doi.org/10.1145/2594291.2594299

[10] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou, “Evaluating static analysis defect warnings on
production software,” in Proceedings of the 7th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering, ser. PASTE ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 1–8. [Online]. Available:
https://doi.org/10.1145/1251535.1251536

[11] T. Barik, D. Ford, E. Murphy-Hill, and C. Parnin, “How should
compilers explain problems to developers?” in Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2018, pp. 633–643.

[12] F. A. Bhuiyan and A. Rahman, “Characterizing co-located insecure
coding patterns in infrastructure as code scripts,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 27–32. [Online].
Available: https://doi.org/10.1145/3417113.3422154

[13] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,
and P. Devanbu, “The promises and perils of mining git,” in
2009 6th IEEE International Working Conference on Mining Software
Repositories. IEEE, 2009, pp. 1–10.

[14] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing
on web-server systems,” IEEE Internet computing, vol. 3, no. 3, pp.
28–39, 1999.

[15] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu, “An
empirical study on deployment faults of deep learning based mo-
bile applications,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 2021, pp. 674–685.

[16] M. Chiari, M. De Pascalis, and M. Pradella, “Static analysis of
infrastructure as code: a survey,” in 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C), 2022, to
appear.

[17] E. Chin and D. Wagner, “Efficient character-level taint tracking
for java,” in Proceedings of the 2009 ACM Workshop on Secure
Web Services, ser. SWS ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 3–12. [Online]. Available:
https://doi.org/10.1145/1655121.1655125

[18] J. Cohen, “A coefficient of agreement for nomi-
nal scales,” Educational and Psychological Measurement,

Pr
e-p
rin
t

17

vol. 20, no. 1, pp. 37–46, 1960. [Online]. Available:
http://dx.doi.org/10.1177/001316446002000104

[19] J. J. Conti and A. Russo, “A taint mode for python via a library,” in
Information Security Technology for Applications, T. Aura, K. Järvinen,
and K. Nyberg, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 210–222.

[20] C. Dimastrogiovanni and N. Laranjeiro, “Towards understanding
the value of false positives in static code analysis,” in 2016 Seventh
Latin-American Symposium on Dependable Computing (LADC), 2016,
pp. 119–122.

[21] P. Duvall, S. M. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley
Signature Series). Addison-Wesley Professional, 2007.

[22] C. Fripp, “Data breach alert: Info on millions of seniors leaked
online,” https://www.komando.com/security-privacy/data-
breach-impacts-seniors/803085/, 2021, [Online; accessed 11-Jan-
2022].

[23] ——, “Over a billion pharmacy records exposed – What it
means for your privacy,” https://www.komando.com/security-
privacy/billion-pharmacy-records-exposed/793746, 2021, [On-
line; accessed 11-Jan-2022].

[24] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
automatically detecting potential privacy leaks in android appli-
cations on a large scale,” in International Conference on Trust and
Trustworthy Computing. Springer, 2012, pp. 291–307.

[25] Gitlab, “Gitlab REST API Docs,”
https://docs.gitlab.com/ee/api/README.html#current-status,
2019, [Online; accessed 16-Dec-2020].

[26] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of android applications
in droidsafe.” in NDSS, vol. 15, no. 201, 2015, p. 110.

[27] HAPROXY, “The Reliable, High Performance TCP/HTTP Load
Balancer,” http://www.haproxy.org/, 2022, [Online; accessed 22-
Jan-2022].

[28] W. He, J. Ding, X. Shen, X. Han, and L. Tang, “A survey
on software reliability demonstration,” IOP Conference Series:
Materials Science and Engineering, vol. 1043, no. 3, p. 032008,
jan 2021. [Online]. Available: https://doi.org/10.1088/1757-
899x/1043/3/032008

[29] S. Heckman and L. Williams, “A model building process for
identifying actionable static analysis alerts,” in 2009 International
Conference on Software Testing Verification and Validation. IEEE,
2009, pp. 161–170.

[30] ——, “A comparative evaluation of static analysis actionable
alert identification techniques,” in Proceedings of the 9th
International Conference on Predictive Models in Software
Engineering, ser. PROMISE ’13. New York, NY, USA:
Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2499393.2499399

[31] G. Hickey and C. Kipping, “A multi-stage approach to the coding
of data from open-ended questions.” Nurse researcher, vol. 4, no. 1,
pp. 81–91, 1996.

[32] F. Hoffa, “GitHub on BigQuery: Analyze all the open source
code,” https://cloud.google.com/blog/products/gcp/github-on-
bigquery-analyze-all-the-open-source-code, 2016, [Online; ac-
cessed 16-Dec-2020].

[33] A. Hortlund, “Security smells in open-source infrastructure as
code scripts: A replication study,” 2021.

[34] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[35] Jenkins, “Jenkins,” https://www.jenkins.io/, 2022, [Online; ac-
cessed 23-Jan-2022].

[36] Y. Jiang and B. Adams, “Co-evolution of infrastructure and source
code-an empirical study,” in 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories. IEEE, 2015, pp. 45–55.

[37] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis tools to
find bugs?” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 672–681. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486877

[38] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of
mining github,” Empirical Software Engineering, vol. 21, no. 5, pp.
2035–2071, 2016.

[39] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys.
London: Springer London, 2008, pp. 63–92. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5 3

[40] R. Krishna, A. Agrawal, A. Rahman, A. Sobran, and
T. Menzies, “What is the connection between issues, bugs,
and enhancements?: Lessons learned from 800+ software
projects,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice, ser. ICSE-
SEIP ’18. New York, NY, USA: ACM, 2018, pp. 306–315. [Online].
Available: http://doi.acm.org/10.1145/3183519.3183548

[41] P. Labs, “Puppet Documentation,” https://docs.puppet.com/,
2021, [Online; accessed 01-July-2021].

[42] J. R. Landis and G. G. Koch, “The measurement
of observer agreement for categorical data,” Biometrics,
vol. 33, no. 1, pp. 159–174, 1977. [Online]. Available:
http://www.jstor.org/stable/2529310

[43] leapcode, “leapcode/leap platform,”
https://github.com/leapcode/leap platform, 2018, [Online;
accessed 26-Dec-2021].

[44] Z. Li, W. Liu, H. Chen, X. Wang, X. Liao, L. Xing, M. Zha,
H. Jin, and D. Zou, “Robbery on devops: Understanding
and mitigating illicit cryptomining on continuous integration
service platforms,” in 2022 2022 IEEE Symposium on Security
and Privacy (SP) (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2022, pp. 363–378. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00022

[45] S. Y. Mahmud, A. Acharya, B. Andow, W. Enck, and B. Reaves,
“Cardpliance: PCI DSS compliance of android applications,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1517–1533.

[46] M. N. Marshall, “Sampling for qualitative research,” Family prac-
tice, vol. 13, no. 6, pp. 522–526, 1996.

[47] A. Martin and M. Hausenblas, Hacking Kubernetes: Threat-Driven
Analysis and Defense. O’Reilly Media, 2021.

[48] M. Miller, “Hardcoded and Embedded Credentials are an
IT Security Hazard – Here’s What You Need to Know,”
https://www.beyondtrust.com/blog/entry/hardcoded-and-
embedded-credentials-are-an-it-security-hazard-heres-what-you-
need-to-know, 2019, [Online; accessed 17-Jan-2022].

[49] MITRE, “CWE-Common Weakness Enumeration,”
https://cwe.mitre.org/index.html, 2021, [Online; accessed
01-July-2021].

[50] ——, “CWE-327: Use of a Broken or Risky Cryptographic Algo-
rithm,” https://cwe.mitre.org/data/definitions/327.html, 2022,
[Online; accessed 02-Jan-2022].

[51] Mozilla, “Mozilla Mercurial Repositories Index,”
https://hg.mozilla.org/build, 2021, [Online; accessed 17-Jan-
2021].

[52] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan,
“Curating github for engineered software projects,” Empirical
Software Engineering, pp. 1–35, 2017. [Online]. Available:
http://dx.doi.org/10.1007/s10664-017-9512-6

[53] ONOS, “ONOS,” https://wiki.onosproject.org/display/ONOS/,
2020, [Online; accessed 23-Jan-2022].

[54] Openstack, “OpenStack git repository browser,”
http://git.openstack.org/cgit/, 2020, [Online; accessed 12-
December-2020].

[55] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan,
and K. Hoagwood, “Purposeful sampling for qualitative data col-
lection and analysis in mixed method implementation research,”
Administration and policy in mental health and mental health services
research, vol. 42, no. 5, pp. 533–544, 2015.

[56] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint
analysis tools keep their promises?” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 331–341. [Online]. Available:
https://doi.org/10.1145/3236024.3236029

[57] S. Peng, P. Liu, and J. Han, “A python security analysis frame-
work in integrity verification and vulnerability detection,” Wuhan
University Journal of Natural Sciences, vol. 24, no. 2, pp. 141–148,
2019.

[58] Puppet, “Ambit energy’s competitive advantage? it’s really
a devops software company,” Puppet, Tech. Rep., April
2018. [Online]. Available: https://puppet.com/resources/case-
study/ambit-energy

Pr
e-p
rin
t

18

[59] Puppet, “About KPN,” https://puppet.com/resources/customer-
story/kpn, 2021, [Online; accessed 22-May-2021].

[60] A. Rahman, “Verifiability package for paper,”
https://figshare.com/s/30a15335e471dfbb2075, 2021, [Online;
accessed 20-Feb-2022].

[61] A. Rahman, F. L. Barsha, and P. Morrison, “Shhh!: 12 practices for
secret management in infrastructure as code,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 56–62.

[62] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of
eight: A defect taxonomy for infrastructure as code scripts,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 752–764. [Online].
Available: https://doi.org/10.1145/3377811.3380409

[63] A. Rahman, E. Farhana, and L. Williams, “The ‘as code’activities:
development anti-patterns for infrastructure as code,” Empirical
Software Engineering, vol. 25, no. 5, pp. 3430–3467, 2020.

[64] A. Rahman, C. Parnin, and L. Williams, “The seven sins: security
smells in infrastructure as code scripts,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 164–175.

[65] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security
smells in ansible and chef scripts: A replication study,” ACM
Trans. Softw. Eng. Methodol., vol. 30, no. 1, Jan. 2021. [Online].
Available: https://doi.org/10.1145/3408897

[66] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita,
“Security misconfigurations in open source kubernetes
manifests: An empirical study,” ACM Trans. Softw. Eng.
Methodol., dec 2022, just Accepted. [Online]. Available:
https://akondrahman.github.io/files/papers/tosem-k8s.pdf

[67] A. Rahman and L. Williams, “Different kind of smells: Security
smells in infrastructure as code scripts,” IEEE Security Privacy,
vol. 19, no. 3, pp. 33–41, 2021.

[68] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and
C. Jaspan, “Lessons from building static analysis tools at google,”
Commun. ACM, vol. 61, no. 4, p. 58–66, Mar. 2018. [Online].
Available: https://doi.org/10.1145/3188720

[69] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[70] K. Scarfone and P. Mell, “An analysis of cvss version 2 vulner-

ability scoring,” in 2009 3rd International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2009, pp. 516–525.

[71] J. Schwarz, “Hardcoded and Embedded Credentials are an
IT Security Hazard – Here’s What You Need to Know,”
https://www.beyondtrust.com/blog/entry/hardcoded-and-
embedded-credentials-are-an-it-security-hazard-heres-what-you-
need-to-know, 2019, [Online; accessed 02-July-2021].

[72] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your
configuration code smell?” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: ACM, 2016, pp. 189–200. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2901761

[73] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in 2013 6th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), May 2013, pp. 89–92.

[74] ——, “Improving developer participation rates in surveys,” in
2013 6th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), 2013, pp. 89–92.

[75] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R.
Lipford, “Questions developers ask while diagnosing potential
security vulnerabilities with static analysis,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: Association for
Computing Machinery, 2015, p. 248–259. [Online]. Available:
https://doi.org/10.1145/2786805.2786812

[76] A. Sweeney, K. E. Greenwood, S. Williams, T. Wykes, and D. S.
Rose, “Hearing the voices of service user researchers in collabora-
tive qualitative data analysis: the case for multiple coding,” Health
Expectations, vol. 16, no. 4, pp. e89–e99, 2013.

[77] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
(First Edition). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2005.

[78] E. van der Bent, J. Hage, J. Visser, and G. Gousios, “How good is
your puppet? an empirically defined and validated quality model
for puppet,” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), March 2018, pp.
164–174.

[79] Wikimedia, “Wikimedia Code Review,”
https://gerrit.wikimedia.org/r/admin/repos, 2021, [Online;
accessed 16-Jan-2021].

[80] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “Effective real-time
android application auditing,” in 2015 IEEE Symposium on Security
and Privacy, 2015, pp. 899–914.

Akond Rahman Akond Rahman is an assis-
tant professor at Auburn University. His research
interests include DevOps and Secure Software
Development. He graduated with a PhD from
North Carolina State University, an M.Sc. in
Computer Science and Engineering from Uni-
versity of Connecticut, and a B.Sc. in Computer
Science and Engineering from Bangladesh Uni-
versity of Engineering and Technology. He won
the ACM SIGSOFT Doctoral Symposium Award
at ICSE in 2018, the ACM SIGSOFT Distin-

guished Paper Award at ICSE in 2019, the CSC Distinguished Dis-
sertation Award, and the COE Distinguished Dissertation Award from
NC State in 2020. He actively collaborates with industry practitioners
from GitHub, WindRiver, and others. To know more about his work visit
https://akondrahman.github.io/

Chris Parnin Chris Parnin is a principal re-
searcher at Microsoft. His research spans the
study of software engineering from empirical,
human-computer interaction, and cognitive neu-
roscience perspectives, publishing over 60 pa-
pers. He has worked in Human Interactions
in Programming groups at Microsoft Research,
performed field studies with ABB Research, and
has over a decade of professional programming
experience in the defense industry. His research
has been recognized by the SIGSOFT Distin-

guished Paper Award at ICSE 2009, Best Paper Nominee at CHI 2010,
Best Paper Award at ICPC 2012, IBM HVC Most Influential Paper Award
2013, CRA CCC Blue Sky Idea Award 2016. He research has been
featured in hundreds of international news articles, Game Developer’s
Magazine, Hacker Monthly, and frequently discussed on Hacker News,
Reddit, and Slashdot.

Pr
e-p
rin
t

