
Characterizing Static Analysis Alerts for Terraform
Manifests: An Experience Report

Hanyang Hu∗ Yani Bu† Kristen Wong‡ Gaurav Sood§ Karen Smiley¶ Akond Rahman∥
∗ Company A, CA, USA

∥Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
Email: ∗phenom.hu@gmail.com, †byn52602@gmail.com, ‡kristenwong16@berkeley.edu,

§sgaurav_res@yahoo.com, ¶kjsmiley@ieee.org, ∥akond@auburn.edu

Abstract—While Terraform has gained popularity to implement
the practice of infrastructure as code (IaC), there is a lack of
characterization of static analysis for Terraform manifests. Such
lack of characterization hinders practitioners to assess how to
use static analysis for their Terraform development process, as it
happened for Company A, an organization who uses Terraform
to create automated software deployment pipelines. In this
experience report, we have investigated 491 static analysis alerts
that occur for 10 open source and one proprietary Terraform
repositories. From our analysis we observe: (i) 10 categories
of static analysis alerts to appear for Terraform manifests, of
which five are related to security, (ii) Terraform resources with
dependencies to have more static analysis alerts than that of
resources with no dependencies, and (iii) practitioner perceptions
to vary from one alert category to another while deciding on
taking actions for reported alerts. We conclude our paper by
providing a list of lessons for practitioners and toolsmiths on
how to improve static analysis for Terraform manifests.

Index Terms—configuration as code, empirical study, experience
report, infrastructure as code, static analysis, terraform

I. INTRODUCTION

Infrastructure as code (IaC) is the practice of creating and
managing computing infrastructure at scale [10]. Practitioners
implement IaC with tools, such as Terraform. Use of Terraform
has yielded benefits for organizations. For example, using
Terraform, Asian Development Bank reduced its provisioning
time for virtual machines from 4 days to less than 5 min-
utes [6]. As another example, use of Terraform helped GitHub
to reduce its time to perform load balancing by 96% [5].

The above-mentioned benefits motivated Company A, a multi-
national proprietary organization, to adopt Terraform to auto-
matically manage configurations and computing infrastructure.
Building security activities, such as static analysis, into the
development process of software artifacts is a priority for
Company A. However, even though static analysis is pivotal
for software security [14], prior work reports static analysis
tools to have low actionability [4], [11], [26]. As a result, upon
adoption of Terraform, practitioners at Company A sought ev-
idence on the value of static analysis for Terraform manifests.
As IaC is an emerging area [18], little is known about how
static analysis is used in the context of Terraform manifests.
A systematic characterization of static analysis alerts for Ter-
raform manifests can address this gap by studying practitioner
perceptions of Terraform-related static analysis alerts, studying

the categories of static analysis alerts, and understanding
how properties of entities, e.g., Terraform resources [17],
are correlated with appearance of static analysis alerts. Such
characterization can be helpful for: (i) practitioners, to learn
about peer perspectives of Terraform-related static analysis
alerts, (ii) toolsmiths, to improve static analysis for Terraform,
and (iii) researchers, to identify new research directions in the
domain of IaC.

Accordingly, we answer the following research questions:

• RQ1: How do practitioners within a proprietary orga-
nization perceive the actionability of Terraform-related
static analysis alerts?

• RQ2: What categories of static analysis alerts appear in
open source and proprietary Terraform manifests? How
frequently do alerts appear for each category?

• RQ3: How do static analysis alerts in Terraform mani-
fests correlate with resources that have dependencies?

We conduct an empirical study with 10 open source software
(OSS) Terraform repositories and one proprietary repository
maintained by Company A, to answer our research questions.
First, we survey practitioners from Company A to quantify
the actionability for Terraform-related alerts obtained for
Company A’s repository. Next, we mine the 11 repositories
to quantify the frequency of Terraform-related alerts across
multiple categories. Finally, we construct a Terraform entity
dependency graph for each repository to quantify the relation-
ship between resources with dependencies and appearance of
static analysis alerts.

Contributions: The contributions of our paper are:

• An empirical characterization of Terraform-related static
analysis alerts; and

• An evaluation of actionability of static analysis alerts from
practitioners’ perspectives.

The rest of the paper is organized as follows. Section II
provides necessary background information and discusses re-
lated work. Section III presents the methodology to answer
our research questions. We report the results in Section IV.

Section V discusses implications and limitations of our paper.
Finally, we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

We provide background and related work in this section.

A. Background on Terraform Manifests

Terraform is syntactically defined using the HashiCorp Con-
figuration Language (HCL) [7]. There are two constructs in
Terraform: arguments and blocks. Arguments are used for
value assignments. Blocks are used to describe infrastructure-
related entities, such as resources and variables.

A Terraform entity can be uniquely identified by its block
types and labels. For example, Listing 1 shows 3 Ter-
raform entities used for creating a docker infrastructure.
The first Terraform entity, var.nginx_ext_port, is a variable
that sets the external port of the container. The second en-
tity, docker_image.nginx, is a resource that creates a docker
image with tag “nginx:latest”. The third Terraform entity,
docker_container.nginx, is a resource that creates a docker
container of name “mycontainer” whose image depends on
resource.docker_image.nginx and whose external port depends
on var.nginx_ext_port. Terraform resources represent actual
infrastructure objects [17].

In example_tf_repo/variables.tf
variable "nginx_ext_port" {
type = number
default = 8000

}

In example_tf_repo/main.tf
resource "docker_image" "nginx" {
name = "nginx:latest"

}

resource "docker_container" "nginx" {
image = docker_image.nginx.image_id
name = "mycontainer"
ports {

internal = 80
external = var.nginx_ext_port

}
}

Listing 1: An example Terraform manifest.

B. Related Work

Our paper is closely related with prior work in the domain of
IaC-related static analysis. Sharma et al. [30] and Opendebeek
et al. [15] applied static analysis to identify maintainability
issues respectively, in Puppet and Ansible manifests. Re-
searchers have also investigated security issues in IaC. In
separate publications, Rahman et al. developed static analysis
tools to identify security bugs in Ansible [21], Puppet [20],
and Kubernetes manifests [22]. Reis et al. [23] and Saavedra
et al. [25] pursued similar efforts for Ansible, Chef, and Puppet
manifests, to facilitate better precision and recall compared to
existing tools. Rahman et al. [20]’s paper was replicated by
Hortlund [9], who reported the security weakness density to
be less than reported by Rahman et al., due to false positives

generated by SLIC. Bhuiyan and Rahman [3] reported similar
observations: they manually inspected 2,764 Puppet manifests,
and documented SLIC to generated 1,560 false positives.
Rahman and Parnin [19] constructed TaintPup, which applies
information flow analysis to reduce false positives.

The above-mentioned prior work show promise in applying
static analysis tools for Ansible, Chef, and Puppet manifests.
However, there is a lack of research on Terraform-related static
analysis, which we address in our paper.

III. METHODOLOGY

This section provides the methodology to answer our research
questions.

A. RQ1: How do practitioners within a proprietary organi-
zation perceive the actionability of Terraform-related static
analysis alerts?

We use an online survey to answer RQ1. The survey in-
cludes three questions: (i) “SQ1: Do you understand the alert
message?”, (ii) “SQ2: Does the alert message help you to
understand the root cause of the alert that can help you to
fix?”, and (iii) “SQ3: Are you willing to fix the reported defect
as determined by the alert?”.

Each of these three questions had two options: ‘YES’ and
‘NO’. We derive these questions by taking motivation from
prior research that has used the concept of understandabil-
ity [27] and willingness to fix [8] as surrogate measures to
determine actionability of static analysis alerts.

For each question, we presented definitions and exam-
ples for each alert message category identified by applying
Checkov [2], a static analysis tool, on Company A’s Terraform
repository. We derive alert message categories by applying
open coding on the collected 74 alert messages from Company
A’s Terraform repository. Open coding is a qualitative analysis
technique that is used to identify commonalities in structured
or unstructured text [28]. Upon application of open coding, we
derive five alert message categories for which at least five in-
stances were reported. We select the threshold of five instances
to exclude alert message categories that were infrequent in
Company A’s Terraform repository. Table II presents the names
and definitions for each derived alert message category.

Participants of the survey are practitioners working full-time at
Company A. We invite all Terraform developers at Company A
who worked on the proprietary repository to a Zoom channel
where we inform them about voluntary participation of our
survey.

B. RQ2: What categories of static analysis alerts appear
in open source and proprietary Terraform manifests? How
frequently do alerts appear for each category?

We answer RQ2 using the following steps:

TABLE I: Overview of the Studied Open Source and Proprietary Terraform Repositories

Name # Commits # TF Dirs. # Tf Files # TF Ent. # TF Reso.

terraform-aws-modules/terraform-aws-eks 934 14 57 916 58
poseidon/typhoon 1,523 18 132 981 391
aws-ia/terraform-aws-eks-blueprints 1,182 97 455 2187 197
philips-labs/terraform-aws-github-runner 1,996 22 113 613 115
nozaq/terraform-aws-secure-baseline 344 17 85 523 103
GoogleCloudPlatform/cloud-foundation-fabric 3,756 162 756 4279 560
kube-hetzner/terraform-hcloud-kube-hetzner 1,083 2 18 231 34
maddevsio/aws-eks-base 490 8 63 431 74
kbst/terraform-kubestack 557 35 153 762 92
cattle-ops/terraform-aws-gitlab-runner 800 9 45 378 60
Proprietary Repository 1,367 57 227 1,941 383

TABLE II: Alert Message Categories Used in the Survey

Category Definition
Key manage-
ment

Messages related to key management

Logging Messages related to logging
Permission
of IAM
Policies

Messages related to permission of identity access
management (IAM)

Replication Messages related to enabling cross-region replication
Versioning Messages related to data versioning

1) Repository Collection: For answering RQ2, we use two
sources: one proprietary Terraform repository created and
maintained by Company A, and 10 OSS repositories with
Terraform manifests. As use of one repository is limiting
for answering RQ2, we also select top 10 OSS Terraform
repositories hosted on GitHub based on star count. First and
third authors of the paper use GitHub topics 1 to identify the
top 10 repositories, so that repositories used for education
purposes and with limited activity, as measured by one commit
per month, are not included in our analysis. Table I provides
an overview of the Terraform repositories used in our analysis.
The ‘Name’, ‘Commits’, ‘TF Dirs.’, ‘Tf Files’, ‘TF Enti.’, and
‘TF Reso.’ columns respectively, represent the name, commit
count, Terraform directories, entities, files, and resources for
each repository.
2) Application of Static Analysis: We use Checkov [2] to
apply static analysis. Listing 1 shows an example alert gen-
erated by Checkov in Static Analysis Results Interchange
Format (SARIF) [1]. In Listing 1, ruleId, level and message
respectively, provides the alert name, alert importance, and
detailed information for the alert of interest. Also, using uri,
startLine, and endLine, Checkov reports the location of the
alert.

Manual Verification: Static analysis tools are susceptible to
generating false positives. Checkov is no different. False pos-
itives generated by Checkov could influence results for RQ2.
We mitigate this risk by manually inspecting each generated
alert by Checkov for Company A’s Terraform repository.
Checkov generated 74 alerts in total for Company A’s Ter-
raform repository. The last author conduct manual verification
and observe no false positive instances for the collected 74

1https://github.com/topics/terraform?l=hcl

1 {
2 "ruleId": "CKV_AWS_21",
3 "level": "error",
4 "message": {
5 "text": "Ensure all data stored in the
6 S3 bucket have versioning enabled"
7 },
8 "locations": [
9 {

10 "physicalLocation": {
11 "artifactLocation": {
12 "uri":
13 "terraform/layer1-aws/aws-cloudtrail.tf"
14 },
15 "region": {
16 "startLine": 14, "endLine": 18
17 }
18 }
19 }
20]
21 }

Listing 1: Example partial static analysis alert generated by
Checkov in SARIF format.

alerts. Here, a false positive instance is defined as an alert that
is not by any entity within a module.
3) Alert Quantification: We use two metrics to answer RQ2.
First, we report the proportion of alerts that belong to each
alert category. Second, we report the distribution of alert count
per module for all Terraform modules in our repositories with
minimum, maximum, average, and standard deviation.

C. RQ3: How do static analysis alerts in Terraform manifests
correlate with resources that have dependencies?

We answer RQ3 by first constructing a Terraform entity
dependency graph. Second, we compute graph metrics to
determine the correlation between static analysis alerts and
entity dependencies. We describe these steps in the following
subsections.
1) Construction of Terraform Entity Dependency Graph: The
Terraform entity dependency graph is a directed graph with
four types of nodes: (i) directory of the Terraform manifest,
(ii) Terraform manifest, (iii) a non-Terraform file, and (iv)
entity in Terraform manifest. An edge exists between nodes if
there are ‘has’ or ‘depends on’ relationships between nodes,
e.g., if a directory has a Terraform file, then an edge will
exist between a directory node and a Terraform file node. The

Terraform entity dependency graph is constructed for each of
the 10 OSS repositories and the Company A repository. We
used the ‘networkx’ library 2 to construct the Terraform entity
dependency graph.

Figure 1 is an illustration of a Terraform entity dependency
graph based on the code snippet presented in Listing 1.
In Figure 1, green, red, and blue nodes represent a file
system directory, Terraform file and Terraform entity, respec-
tively. Red and green edges represent the ‘has’ and ‘de-
pends_on’ relationships. For example, our graph shows that
docker_container.nginx, a Terraform resource in file main.tf,
depends on var.nginx_ext_port in another Terraform file vari-
ables.tf in the same directory.

Fig. 1: Terraform entity graph for the code snippet presented
in Listing 1.

2) Hypothesis Evaluation: We hypothesize that Terraform
resources with dependencies are correlated with the count of
static analysis alerts. We evaluate our hypothesis by first cal-
culating a centrality metric called PageRank [16]. Second, we
apply statistical tests to identify any quantitative correlation.

PageRank Calculation: PageRank is a metric used to measure
the importance of nodes based on the structure of incoming
links from other nodes. We compute PageRank for each
Terraform resource included in the constructed dependency
graph. We repeat this calculation for each of the 10 OSS
repositories and the Company A repository. A relatively higher
PageRank score for a resource shows the resource to have
more dependencies than others.

Hypothesis Testing: We first apply Shapiro-Wilk test [29] to
assess normality of obtained PageRank scores. The results of
Shapiro-Wilk test show that the obtained PageRank scores do
not follow normal distribution. Therefore, we apply Mann-
Whitney U test [13] to answer if the difference between two
groups of centrality scores are statistically significant. We state
the following null and alternate hypotheses:

• Null: PageRank is not larger for Terraform entities with
static analysis alerts.

2https://github.com/networkx/networkx

• Alternate: PageRank is larger for Terraform entities with
static analysis alerts.

If p − value < 0.05, we reject the null hypothesis, accept
the alternative hypothesis, and report the difference to be
statistically significant.

IV. RESULTS

In this section, we provide answers to our research questions.

A. RQ1: How do practitioners within a proprietary organi-
zation perceive the actionability of Terraform-related static
analysis alerts?

In all, 10 practitioners agree to participate in our survey. Out
of 10 practitioners, 3 reported 1 year, 5 reported 1-2 years,
and 2 reported 3-4 years of experience in Terraform.

We answer RQ1 using Figure 2. From Figure 2, we observe
majority of the survey respondents to understand all five cate-
gories. In the case of root cause analysis, we observe majority
of the survey respondents to agree that the generated alert
messages provide information to understand the root cause.
For example >= 8 practitioners understood the root cause for
logging, key management, replication, and versioning.

Compared to understandability and root cause analysis, the
opinion is more divided for willingness to fix, i.e., whether
or not the surveyed practitioners will act upon the reported
alert, and fix the bug. While 9 out of 10 respondents agreed
to fix logging-related alerts, 5 out of 10 respondents were
not willing to fix permission of IAM policies and replication.
The alert messages regarding IAM policies and replication are
respectively, “Ensure access is controlled through single sign-
on (SSO) and not AWS IAM defined users” and “Ensure that S3
bucket has cross-region replication enabled”. As explanations,
two practitioners mentioned that they do not have the authority
to alter authentication or replication mechanism despite the
alert messages being valuable. The implication of this finding
is that static analysis tools for Terraform manifests need to
account for practitioner context.

In short, from our survey analysis we observe that Terraform-
related static analysis alerts support understandability and root
cause analysis, but acting upon these alerts is limited for
certain alert categories.

B. RQ2: What categories of static analysis alerts appear
in open source and proprietary Terraform manifests? How
frequently do alerts appear for each category?

We answer RQ2 by reporting the categories of static analysis
alert categories and their corresponding frequency in Table III.
We observe 5 of the 10 static analysis alert categories to be
related to security: application security, encryption, general
security, IAM, and supply chain. The total counts of alerts for
Company A’s repository and OSS repositories are respectively,
74 and 417.

Fig. 2: Answer to RQ1: Practitioners’ perceptions on understandability (SQ1), root cause information (SQ2), and willingness
to fix (SQ3) for the five alert message categories.

TABLE III: Answer to RQ2: Alert Categories with Definitions and Frequency

Alert Proportion Alert Dist. (Min, Max, Avg., Std. Dev.)
Category Definition Company A OSS Company A OSS
Application
security

Identify potential vulnerabilities in the application layer 0.0% 0.7% (0.0, 0.0, 0.0, 0.0) (0.0, 0.1, 0.0, 0.0)

Backup and
recovery

Ensure proper backup and recovery practices 12.2% 1.7% (0.0, 7.0, 1.0, 2.3) (0.0, 1.3, 0.2, 0.5)

Convention Checks for common best practices and conventions 1.4% 0.0% (0.0, 1.0, 0.1, 0.3) (0.0, 0.1, 0.0, 0.0)
Encryption Ensures that data is properly encrypted both in transit and rest 21.6% 9.6% (0.0, 7.0, 1.8, 2.2) (0.1, 2.4, 0.7, 0.9)
General
security

Covers a broad range of security checks that are not covered in
other categories

12.2% 18.9% (0.0, 7.0, 1.0, 2.3) (0.1, 3.8, 1.0, 1.3)

IAM Evaluates the management of user identities, permissions, and
access control

18.9% 8.6% (0.0, 5.0, 1.6, 1.7) (0.0, 1.7, 0.5, 0.7)

Kubernetes Evaluates Kubernetes configurations such as pod security, network
policies, and role-based access control

0.0% 4.1% (0.0, 0.0, 0.0, 0.0) (0.0, 1.1, 0.3, 0.4)

Logging Ensures proper logging and monitoring practices 25.7% 13.7% (0.0, 8.0, 2.1, 3.1) (0.0, 4.2, 0.7, 1.3)
Networking Evaluates network configurations such as subnet setup, security

group rules, and access control
8.1% 41.5% (0.0, 3.0, 0.7, 1.1) (0.0, 7.3, 1.5, 2.7)

Supply
Chain

Checks for vulnerabilities in the software supply chain 0.0% 1.2% (0.0, 0.0, 0.0, 0.0) (0.0, 0.3, 0.1, 0.1)

According to Table III, the most frequently occurring alert
category is Logging and Networking respectively, for Com-
pany A’s repository and OSS repositories. We also observe
certain alert categories to be present in OSS repositories but
not in Company A’s repository, namely, application security,
Kubernetes, and supply chain.

For the OSS repositories, the standard deviation for alert/-
module is higher than average for seven categories: backup
and recovery, encryption, general security, IAM, Kubernetes,
logging, and networking. For Company A’s repository, the
standard deviation for alert/module is higher than average for
seven categories: backup and recovery, convention, encryption,
general security, IAM, logging, and networking.

C. RQ3: How do static analysis alerts in Terraform manifests
correlate with resources that have dependencies?

We provide answers to RQ3 using Table IV where we report
the p-values and the PageRank score distribution for resources
with alerts (‘Stats [w/alerts]’) and resources without alerts
(‘Stats [wo/alerts]’).

Except for one, for all OSS Terraform repositories and for
Company A’s repository, Terraform resources with alerts have
higher PageRank scores than Terraform resources without

alerts. Results shown in Table IV provide empirical substan-
tiation to our hypothesis that resources with dependencies are
correlated with static analysis alert frequency. Considering
all of the 8 OSS repositories, the median PageRank score
for Terraform resources is 0.0016, which is 2.1 times higher
than resources with no alerts. In the case of Company A’s
repository, the median PageRank score is 1.5 times higher for
resources with alerts compared to resources for no alerts.

V. DISCUSSION

We discuss our findings by first reporting the lessons learned
from our empirical study. Next, we discuss Company A’s
future plans of using the constructed Terraform entity depen-
dency graph. Finally, we discuss the limitations of our paper.

A. Lessons Learned

In the following subsections, we report the lessons learned
from our empirical study.
1) Actions to Fix Identified Bugs: Figure 2 showcases ma-
jority of the survey respondents to find provided alerts un-
derstandable and helpful for root cause analysis. However,
whether or not the reported alert will be fixed is dependent
on the alert message category. This finding is consistent with
Rahman et al. [20], [21]’s findings, who reported practitioners
to not agree with all categories of security defects for IaC

TABLE IV: Answer to RQ3: Correlation between entity de-
pendency and alert frequency

Repository p-val Stats [w/alerts]
(Min, Max,
Median)

Stats [wo/alerts]
(Min, Max,
Median)

aws-eks-base 0.012 (0.0012, 0.0063,
0.0014)

(0.0012, 0.0139,
0.0013)

cloud-
foundation-
fabric

0.001 (0.0001, 0.0011,
0.0002)

(0.0001, 0.0010,
0.0001)

terraform-
aws-eks

0.001 (0.0007, 0.0099,
0.0026)

(0.0007, 0.0076,
0.0010)

terraform-
aws-eks-
blueprints

0.085 (0.0002, 0.0015,
0.0004)

(0.0002, 0.0018,
0.0003)

terraform-
aws-github-
runner

0.001 (0.0009, 0.0051,
0.0016)

(0.0007, 0.0067,
0.0008)

terraform-
aws-gitlab-
runner

< 0.001 (0.0031, 0.0106,
0.0079)

(0.0014, 0.0072,
0.0015)

terraform-
aws-secure-
baseline

< 0.001 (0.0012, 0.0088,
0.0025)

(0.0009, 0.0089,
0.0012)

terraform-
kubestack

0.001 (0.0007, 0.0040,
0.0017)

(0.0005, 0.0037,
0.0007)

typhoon < 0.001 (0.0004, 0.0171,
0.0004)

(0.0004, 0.0140,
0.0005)

Company A < 0.001 (0.0001, 0.0019,
0.0003)

(0.0001, 0.0070,
0.0002)

manifests. The implication of this finding is that actionability
of static analysis could be improved by accounting for alert
categories.

Lesson#1 - The alert category is a contributing factor when
practitioners take actions for Terraform-related static
analysis alerts.
2) Implications of Resource Dependencies for Fix Prioritiza-
tion: Results in Table IV show resource dependencies to cor-
relate with alert frequency for 10 out of 11 repositories. This
finding has implications for inspection and fix prioritization.
When reporting static analysis alerts, tools can provide higher
priority for resources that have dependencies. In this manner,
practitioners can learn which alerts to address and fix first
when multiple alerts are reported.

Lesson#2 - Terraform-related alerts appear more often for
resources with higher dependencies than others.
3) Company A’s Future Plans Regarding the Terraform Entity
Dependency Graph: First author of the paper, who is a prac-
titioner from Company A, have demonstrated the construction
of Terraform entity dependency graph in an internal company
meeting. The meeting generated interest among practitioners in
applying the graph for the following utilities: (i) visualization:
as visualization of infrastructure reduces complexity in design
and implementation [12], [24], the Terraform entity depen-
dency graph can aid Company A to design and implement
computing infrastructure more efficiently; and (ii) change
impact analysis: practitioners perceive the Terraform entity
dependency graph as a useful aid in analyzing the impact of

code changes, which in turn can be helpful for cost estimation
and change propagation.

Lesson#3 - Practitioners from Company A perceive the
Terraform entity dependency graph to be useful for visu-
alization and change impact analysis for Terraform-based
computing infrastructure.

B. Threats to Validity

This subsection discusses the limitations of our study.

• Internal Validity We use Checkov to obtain static anal-
ysis alerts. As static analysis tools tend to generate false
positives, RQ2-related results could be biased. We mitigate
this limitation by manually inspecting all 74 alerts obtained
for Company A’s repository, for which we observe no false
positives.

The Terraform entity dependency graph is susceptible to
generate errors when a Terraform directory contains errors,
which could impact the results for RQ3. We mitigate this
risk by using 11 Terraform repositories with 441 Terraform
directories, so that the impact of validation failures is low.

• External Validity We analyze 10 open source and 1 propri-
etary Terraform repositories using one tool called Checkov.
Use of one tool is susceptible to external validity as it may
miss defect categories. Findings from RQ1 are limited to the
perceptions of 10 practitioners from one organization, which
may not generalize for other practitioners. Also, results for
RQ2 and RQ3 are limited to the 11 repositories that we
analyzed.

VI. CONCLUSION

Despite Terraform’s prominence in implementing IaC, char-
acteristics of static analysis for Terraform manifests remains
under-explored. In this empirical study, we have addressed this
gap by analyzing the static analysis alerts that occur in 10 OSS
repositories and one proprietary Terraform repository, which is
owned by Company A. We have observed that the majority of
the surveyed practitioners to understand alert messages across
all categories. We have observed context of the alert to play
a role when determining whether or not to fix the defect
identified by the alert. We also have observed static analysis
alerts to appear more frequently for Terraform resources with
dependencies. Our findings lay the groundwork on how to
improve static analysis alerts for Terraform manifests, by con-
sidering the alert message category and resource dependencies.

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their
valuable feedback. This research was partially funded by the
U.S. National Science Foundation (NSF) Award # 2247141,
Award # 2310179, and Award # 2312321.

REFERENCES

[1] “Static Analysis Results Interchange Format (SARIF) Version 2.0,”
2019.

[2] “bridgecrewio/checkov,” May 2023, original-
date: 2019-11-27T08:55:14Z. [Online]. Available:
https://github.com/bridgecrewio/checkov

[3] F. A. Bhuiyan and A. Rahman, “Characterizing co-located insecure
coding patterns in infrastructure as code scripts,” in Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 27–32. [Online].
Available: https://doi.org/10.1145/3417113.3422154

[4] C. Dimastrogiovanni and N. Laranjeiro, “Towards understanding the
value of false positives in static code analysis,” in 2016 Seventh Latin-
American Symposium on Dependable Computing (LADC), 2016, pp.
119–122.

[5] Hashicorp, “Cracking the code to global success.” [Online]. Available:
https://www.hashicorp.com/case-studies/github

[6] ——, “Lending a helping hand.” [Online]. Available:
https://www.hashicorp.com/case-studies/asian-development-bank

[7] ——, “Syntax - configuration language: Ter-
raform: Hashicorp developer.” [Online]. Available:
https://developer.hashicorp.com/terraform/language/syntax/configuration

[8] S. Heckman and L. Williams, “A model building process for identifying
actionable static analysis alerts,” in 2009 International Conference on
Software Testing Verification and Validation, 2009, pp. 161–170.

[9] A. Hortlund, “Security smells in open-source infrastructure as code
scripts: A replication study,” 2021.

[10] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education,
2010.

[11] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find
bugs?” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 672–681. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486877

[12] P. Lourenço, J. P. Dias, A. Aguiar, and H. S. Ferreira, “Cloudcity:
A live environment for the management of cloud infrastructures,” in
Proceedings of the 14th International Conference on Evaluation of Novel
Approaches to Software Engineering, 2019.

[13] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[14] G. McGraw, “Software security,” Building security in, 2006.

[15] R. Opdebeeck, A. Zerouali, and C. De Roover, “Smelly variables
in ansible infrastructure code: Detection, prevalence, and lifetime,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, ser. MSR ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 61–72. [Online]. Available:
https://doi.org/10.1145/3524842.3527964

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[17] S. Pandya and R. Guha Thakurta, “Hands-on infrastructure as code with
hashicorp terraform,” in Introduction to Infrastructure as Code: A Brief
Guide to the Future of DevOps. Springer, 2022, pp. 99–133.

[18] A. Rahman, R. Mahdavi-Hezaveh, and L. Williams, “A
systematic mapping study of infrastructure as code research,”
Information and Software Technology, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584918302507

[19] A. Rahman and C. Parnin, “Detecting and characterizing propagation of
security weaknesses in puppet-based infrastructure management,” IEEE
Transactions on Software Engineering, pp. 1–18, 2023.

[20] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security
smells in infrastructure as code scripts,” in Proceedings of the 41st
International Conference on Software Engineering, ser. ICSE ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 164–175. [Online].
Available: https://doi.org/10.1109/ICSE.2019.00033

[21] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security
smells in ansible and chef scripts: A replication study,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 1, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3408897

[22] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An empirical
study,” ACM Trans. Softw. Eng. Methodol., dec 2022, just Accepted.
[Online]. Available: https://akondrahman.github.io/files/papers/tosem-
k8s.pdf

[23] S. Reis, R. Abreu, M. d’Amorim, and D. Fortunato, “Leveraging
practitioners’ feedback to improve a security linter,” in Proceedings
of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’22. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3560419

[24] R. Rohan and D. Amey, “Visualize your aws infrastructure
with amazon neptune and aws config,” May 2021. [Online].
Available: https://aws.amazon.com/blogs/database/visualize-your-aws-
infrastructure-with-amazon-neptune-and-aws-config/

[25] N. Saavedra and J. a. F. Ferreira, “Glitch: Automated polyglot
security smell detection in infrastructure as code,” in Proceedings
of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’22. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3551349.3556945

[26] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Commun.
ACM, vol. 61, no. 4, p. 58–66, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3188720

[27] ——, “Lessons from building static analysis tools at google,” Commu-
nications of the ACM, vol. 61, no. 4, pp. 58–66, 2018.

[28] J. Saldana, The Coding Manual for Qualitative Researchers. SAGE,
2015.

[29] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591–611, 1965.

[30] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference
on Mining Software Repositories, ser. MSR ’16. New York,
NY, USA: ACM, 2016, pp. 189–200. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2901761

