Evaluating the Quality of Open Source Ansible Playbooks:
An Executability Perspective

Pemsith Mendis
Auburn University
Auburn, Alabama, USA
jpm0011@auburn.edu

Yue Zhang
Auburn University
Auburn, Alabama, USA
yzz0229@auburn.edu

ABSTRACT

Infrastructure as code (IaC) is the practice of automatically manag-
ing computing platforms, such as Internet of Things (IoT) platforms.
IaC has gained popularity in recent years, yielding a plethora of
software artifacts, such as Ansible playbooks that are available on
social coding platforms. Despite the availability of open source soft-
ware (OSS) Ansible playbooks, there is a lack of empirical research
on the quality of these playbooks, which can hinder the progress
of TaC-related research. To that end, we conduct an empirical study
with 2,952 OSS Ansible playbooks where we evaluate the quality of
OSS playbooks from the perspective of executability, i.e., if publicly
available OSS Ansible playbooks can be executed without failures:
From our empirical study, we observe 71.5% of the mined 2,952 An-
sible playbooks cannot be executed as is because of four categories
of failures.

CCS CONCEPTS

« Software and its engineering — Software configuration
management and version control systems.

KEYWORDS

Ansible, data quality, devops, executability, infrastructure as code

ACM Reference Format:

Pemsith Mendis, Wilson Reeves, Muhammad Ali Babar, Yue Zhang, and Akond
Rahman. 2024. Evaluating the Quality of Open Source Ansible Playbooks: An
Executability Perspective. In Proceedings of the 4th International Workshop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEA4DQ °24, July 15, 2024, Porto de Galinhas, Brazil

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0672-1/24/07

https://doi.org/10.1145/3663530.3665019

Wilson Reeves
Auburn University
Auburn, Alabama, USA
wgr0009@auburn.edu

Muhammad Ali Babar
University of Adelaide
Adelaide, Australia
ali.babar@adelaide.edu.au

Akond Rahman

Auburn University
Auburn, Alabama, USA
akond@auburn.edu

on Software Engineering and Al for Data Quality in Cyber-Physical System-
s/Internet of Things (SEA4DQ °24), July 15, 2024, Porto de Galinhas, Brazil.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3663530.3665019

1 INTRODUCTION

Infrastructure as code (IaC) is the practice of automatically manag-
ing computing platforms [7, 10], such as Internet of Things (IoT)
platforms [18]. IaC has gained popularity in recent years, yielding
multiple benefits for organizations. For example, use of Ansible
scripts was one of the contributing factors for IxN Engineering to
support over 7,000 IoT devices [2].

The popularity and usefulness of IaC languages have triggered in-
terest amongst researchers and industry practitioners alike [13].
Such interest has played a pivotal role in generating datasets of
TaC scripts, such as open source software (OSS) Ansible playbooks.
Generation of IaC-related datasets could be potentially of use to
practitioners. However, there is a lack of empirical research on
the quality of OSS IaC scripts, which may prohibit practitioners
in gaining the full advantage of using IaC scripts. One aspect of
evaluating quality of publicly available OSS Ansible playbooks is
investigating and quantifying executability, i.e. if playbooks can be
executed without generating failures. A systematic empirical inves-
tigation can provide insights on the quality of publicly-available
Ansible playbooks from the perspective of executability, which till
date remains under-explored. Accordingly, we answer the following
research questions:

e RQ1: How frequently can we execute publicly-available Ansible
playbooks without failures?

o RQ2: What categories of failures occur when executing publicly-
available Ansible playbooks?

We conduct an empirical study with 2,952 OSS Ansible playbooks
to answer our research questions. From our execution process, we
separate out failures, and their corresponding crash reports that
occurred during execution. With the collected crash reports, we
apply open coding [20] to derive the categories of failures that
occur while executing Ansible playbooks.

https://doi.org/10.1145/3663530.3665019
https://doi.org/10.1145/3663530.3665019

SEA4DQ ’24, July 15, 2024, Porto de Galinhas, Brazil

1 =——

2 - name: Update Application servers
3 hosts: appservers

4 remote_user: root

5

6 tasks:

7 - name: Install package on ABC
8 yum:

9 name: ABC

10 state: latest

11

12 - name: Write to a file
13 template:

14 src: /srv/abc.j2

15 dest: /etc/abc.conf

17 - name: Update db servers
18 hosts: databases
19 remote_user: root

21 tasks:

22 - name: Install package on XYZ
23 yum:

24 name: XYZ

25 state: latest

Listing 1: Example Ansible Playbook

Contributions: We list our contributions as follows:

e A categorization of failures that occur when executing publicly-
available Ansible playbooks; and

e An evaluation of the executability of publicly-available Ansible
playbooks.

2 BACKGROUND AND RELATED WORK

In this section, we provide necessary background and discuss re-
lated work in this domain.

2.1 Background

Infrastructure as code (IaC) is the practice of automatically man-
aging computing platforms [7, 10]. IaC uses code to automatically
provision infrastructure including physical and virtual resources
and environments at scale [7]. IaC scripts need to be well designed,
tested and version controlled the same as any other software code
produced [9]. IaC languages, such as Ansible use a state reconcilia-
tion approach using which it identifies the differences between the
desired state and the actual state of the infrastructure, and apply
changes only if differences exist [15].

We provide background information on Ansible as it is one of the
most popular languages to implement IaC [6, 12, 14]. An Ansible
script is developed using Yet Another Markup Language (YAML) [1,
6] where Ansible users provide the tasks that need to be executed
to setup necessary computing infrastructure. A playbook is an
Ansible script with one or multiple ‘tasks’ that are executed against
a specified host or host groups within the inventory. One of more
tasks can be grouped into a ‘play’. There can be one or more plays
within a playbook, and each play can be mapped to a specific host
or a host group [1] as shown in Listing 1. When executing the
playbook the tasks in play ‘Update Application servers’ will be
run across all application servers and the tasks in play ‘Update db
servers’ will run against all database servers.

Mendis, Reeves, Babar, Zhang, Rahman

Table 1: Dataset Attributes

Attribute Value
Total Repositories 56
Total Ansible Playbooks 2,952
Total Commits 240,775
Total Number of Lines of Code 163,769

2.2 Related Work

Our paper is closely related with prior research that have used
program analysis in the context of IaC. We observe majority of
the research publications to rely on coding pattern-based static
analysis to identify defects in IaC scripts. For example, Hassan
and Rahman [6] used static analysis to identify anti-patterns in
Ansible test code. As other examples, researchers in separate publi-
cations developed static analysis tools to detect security weaknesses
in Ansible [11, 14, 17], Chef [17], and Puppet [16, 19] scripts. Re-
searchers [21] have also used static analysis to investigate code
properties that cause maintainability problems. In short, we ob-
serve a lack of research related to measuring quality of TaC scripts
with respect to executability, which we address in our paper.

3 METHODOLOGY
We describe the methodology for RQ1 and RQ2 in this section.

3.1 Methodology for RQ1

3.1.1 Playbook Collection. We use a publicly available dataset
of Ansible playbooks curated by Hassan and Rahman [6]. The
dataset contains 2,952 playbooks mined from 56 OSS repositories.
Attributes of the downloaded repositories are available in Table 1.

3.1.2 Executing Ansible Playbooks. We use an Ansible controller
and one managed node [3]. An Ansible controller is a control node
where the machine in which Ansible command line interface tools
are executed. A managed node is target node that Ansible control
node will manage [5]. The control node has a memory of 8GB and
2 CPUs, and the managed node is assigned a memory of 2GB and 2
CPUs. Both nodes use the CentOS Stream 9 operating system.

3.1.3 Methodology to Answer RQ1. We answer RQ1 by executing
the collected set of 2,952 playbooks using our execution harness
described in Section 3.1.2 once. We use ‘Ansible Runner’ [4] a tool
that can execute Ansible playbooks. ‘Ansible Runner’ is available as
a package as part of Ansible Tower/AWX [4]. Upon completion, we
separate out playbooks for which we observe no failures. A failure
is termination of the ability of a playbook to perform a required
function [8], which can generate a crash. We report the proportion
of playbooks with no failures.

3.2 Methodology for RQ2
We answer RQ2 using the following steps:

Multi-round Execution of Ansible Playbooks: We answer RQ2
by performing multiple rounds of playbook execution. For each
round of execution, we record the count of failures. For each failure,
we obtain the corresponding crash report. We stop execution if
there are no failure categories for which >= 100 crashes appear.

Evaluating the Quality of Open Source Ansible Playbooks: An Executability Perspective

Crash Report Collection: We separate out playbooks for which
we observe failures using the methodology in Section 3.1.2. We also
collect the crash reports for each playbook that generated a failure.

Qualitative analysis: We apply a qualitative analysis technique
called open coding [20] on the obtained text from the collected
crash reports. Open coding is a qualitative analysis technique that
identifies themes or categories from unstructured text sources, such
as crash reports [20]. Upon application of open coding, we derive
failure categories where each category is mapped to an exception
for which the crash occurred.

Deriving Fix Strategies: For each identified failure type, we first
examine the corresponding crash report from where we identify five
strings. This examination is performed by the first author. Second,
we use the Google search engine in incognito mode to analyze
Internet artifacts, such as blog posts. We read the first 10 search
results to derive the fix strategy for the exception in the crash.
Third, we apply the fix strategy obtained from the previous step
for a set of 10 playbooks that correspond to the failure category. If
the fix strategy repairs the exception for 10 playbooks for which
the failure occurred, then we apply the strategy for all playbooks.
If crash count is >= 100 we identify and apply fix strategies to
resolve the failure, and apply another round of execution. We stop
execution if there are no failure categories with >= 100 crashes.

4 RESULTS

We provide answers to our research questions as follows:

Answer to RQ1. : We are able to execute 841 of the 2,952 playbooks
(28.5%) in our dataset without any failures. The remaining 2,110
playbooks (71.5%), the execution resulted in failures.

Answer to RQ2. : From our qualitative analysis with 2,110 crash
reports, we derive four failure categories that are described below.
A mapping of each category and their corresponding exception
message is available in Table 2. The “Total’ row represents the
count of exceptions obtained for ‘Iteration-0’, ‘Tteration-1’, and
‘Tteration-2’. We stop at ‘Tteration-2’ because after ‘Iteration-2’ we
do not observe the crash count to be >= 100 for any of the four
failure categories.

[-Environment Inference: This category is defined as failures
that occur due to incorrect assumptions, references, or inferences
in the system’s operating environment. We identify 10 types of
exceptions for this category as shown in Table 2.

II-Deprecation: This category is defined as failures that occur
due to components or features in the software that have become
obsolete. We identify three types of exceptions, as shown in Table 2.

III-Play Semantics: This category is defined as failures that occur
because of how Ansible interprets and/or executes commands. We
found 13 types of exceptions for this category, as shown in Table 2.

IV-File Operations: This category is defined as failures that occur
because of file operations such as read, write, and delete. We find
three types of exceptions related to file operations.

Fix Strategies: We identify the following strategies to fix crashes:

SEA4DQ 24, July 15, 2024, Porto de Galinhas, Brazil

Table 2: Error Types and Error Counts by Iteration

Category Exception Iter.-0 Iter.-1 Iter.-2
Role was not found 1185 180 180
Missing host pattern 514 51 56
Module/action missing 282 109 109
Field ‘hosts’ has an 15 105 2
Environment invalid value
Inference ? ANSIBLE_REPO_PATH’ is 4 4 4
undefined
>import_playbook_role_- 4 7 7
name’ is undefined
Hosts 1list cannot be 1 1 1
empty
Could not resolve action 1 1 1
Could not find specified 0 31 31
file in role
Error when evaluating 0 2 2
variable in import path
Deprecated and has been 36 34 34
Deprecation removed
Invalid old style role 1 1 1
requirement
The use of ’user’ is 1 1 1
deprecated
Not a valid attribute 23 23 23
for a Play
Conflicting action 13 29 29
statements
Requested handler was 5 5 5
Play not found
. Malformed 4 4 4
Semantics Invalid vars_prompt data 4 4 4
structure
Not a valid attribute 2 8 8
for a Task
Unexpected parameter 2 2 2
type in action
Unexpected Exception 1 9 9
Invalid options for 1 1 1
import_tasks
Included task files must 1 1 1
contain a list of tasks
Unable to read either as 1 1 1
JSON nor YAML
Expected a string but 1 1 1
got object
Task has extra params 0 1 1
Fi Attempting to decrypt 4 6 6
ile
. but no vault secrets
Operation file found
Unable to retrieve file 3 4 4
contents
Unable to retrieve 1 1 1
documentation
Total 2,110 627 524

Adding roles locations in roles_path parameter: We add locations that
contain roles as values for the ‘roles_path’ configuration parameter
in ‘ansible.cfg’ to fix the failure related to ‘role was not found’.

Adding missing host groups: We add the relevant host groups within
the referenced inventory file. We identify the referenced host groups
with a Python script that iterates through all playbooks within the
dataset, and output a list of host groups in text format that can be
easily appended to the existing inventory file or hosts file.

Adding module locations in library parameter: We add all possible
locations of modules within the dataset by adding paths in the
‘library’ configuration parameter within the ansible.cfg file.

SEA4DQ ’24, July 15, 2024, Porto de Galinhas, Brazil

Changing host group in playbook: We resolve the failure due to
‘Field hosts has an invalid value’ by changing the hosts key value to
an already existing host group within the inventory file. We use a
Python script that iterates through all playbooks within the dataset
and programmatically update the hosts key value if the original
hosts key value has a variable referenced.

In the first iteration, i.e., ‘Tteration-0" we do not apply any fix strate-
gies. With the identified fix strategies, we execute the collected
Ansible playbooks in two iterations: (i) in the first iteration, upon ap-
plying the four fix strategies 2,326 out of 2,952 playbooks (78.8%) are
executed without failures; and (ii) in the second iteration, upon reap-
plying the four fix strategies 2,421 out of 2,952 playbooks (82.2%)
are executed without failures.

5 DISCUSSION AND CONCLUSION
5.1 Discussion

5.1.1 Implications. The implications of our empirical study are:

Implication-1: Using our four fix strategies listed in Section 4
we increase the proportion of executable playbooks from 28.5% to
82.2%. The implication of this finding is that fix strategies obtained
from crowdsourced knowledge can aid in fixing failures attributed
to publicly available playbooks. Both researchers and practitioners
can use our identified set of strategies as heuristics on how to
resolve playbook-related failures.

Implication-2: Our fix strategies are not comprehensive as 17.8% of
the playbooks still result in failures after applying the four strategies.
Researchers can further investigate what other strategies can aid
in comprehensive playbook executability.

5.1.2 Threats to Validity. The limitations of our paper are:

Conclusion Validity: Our paper relies on a specific execution
harness to execute the collected set of Ansible playbooks. This can
influence the frequency of executability of the collected playbooks,
as well as the identified categories of failures.

External Validity: Our paper is susceptible to external validity
as we only use one dataset provided Hassan and Rahman [6]. Our
findings may not generalize to other OSS and proprietary datasets.
Furthermore, the reported executability rate may be different for
other types of data sources, such as GitHub Gists.

5.2 Conclusion

While there has been a plethora of publicly-available IaC arti-
facts, such as Ansible playbooks, there has been a lack of under-
standing about whether these artifacts can be executed to perform
infrastructure-related operations. To address this, we have con-
ducted an empirical study to assess the executability of publicly
available Ansible playbooks. From our empirical study, we have
found that 28.5% of 2,952 Ansible playbooks can be executed with-
out generating failures. We have also observed that using four fix
strategies derived from crowdsourced knowledge sources, 82.2%
of the playbooks can be executed. Based on our findings, we rec-
ommend practitioners to use our identified set of fix strategies as
heuristics to resolve playbook-related failures.

Mendis, Reeves, Babar, Zhang, Rahman

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their valuable
feedback. This research was partially funded by the U.S. National
Science Foundation (NSF) Award # 2247141 and # 2312321. This
work has benefited from Dagstuhl Seminar 23082 “Resilient Soft-
ware Configuration and Infrastructure Code Analysis”

REFERENCES

[1] Ansible. [n.d.]. Ansible playbooks. https://docs.ansible.com/ansible/latest/.
[Accessed 29-09-2023].

[2] Ansible. 2019. AnsibleFest Atlanta - Scaling Ansible for IoT Deployments. https:
//www.ansible.com/scaling-ansible-for-iot-deployments

[3] Ansible. 2023. Ansible community documentation. https://docs.ansible.com/.
[Online; accessed 19-December-2022].

[4] Ansible. 2023. Ansible Runner ansible-runner documentation. https://ansible.
readthedocs.io/projects/runner/en/stable. [Accessed 29-09-2023].

[5] Ansible. 2024. Network Getting Started. https://docs.ansible.com/ansible/latest/

network/getting_started/index html. [Online; accessed 19-December-2023].

[6] Mohammad Mehedi Hassan and Akond Rahman. 2022. As code testing: Charac-

terizing test quality in open source ansible development. In 2022 IEEE Conference
on Software Testing, Verification and Validation (ICST). IEEE, 208-219.

[7] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Re-

leases Through Build, Test, and Deployment Automation (1st ed.). Addison-Wesley

Professional.

IEEE. 2010. IEEE Standard Classification for Software Anomalies. IEEE Std

1044-2009 (Revision of IEEE Std 1044-1993) (2010), 1-23. https://doi.org/10.1109/

IEEESTD.2010.5399061

[9] John Klein. 2019. INFRASTRUCTURE AS CODE-FINAL REPORT. https://api.
semanticscholar.org/CorpusID:225061723

[10] NIST. 2023. infrastructure as code. https://csrc.nist.gov/glossary/term/
infrastructure_as_code. [Online; accessed 25-Sep-2023].

[11] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2023. Control and

Data Flow in Security Smell Detection for Infrastructure as Code: Is It Worth

the Effort?. In 2023 IEEE/ACM 20th International Conference on Mining Software

Repositories (MSR). 534-545. https://doi.org/10.1109/MSR59073.2023.00079

Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian A. Tamburri.

2020. Towards a Catalogue of Software Quality Metrics for Infrastructure Code.

ArXiv abs/2005.13474 (2020). https://doi.org/10.1016/].jss.2020.110726

Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy

Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, Michael Stumm,

Shari Whitaker, and Laurie Williams. 2017. The Top 10 Adages in Continuous

Deployment. IEEE Software 34, 3 (2017), 86-95. https://doi.org/10.1109/MS.2017.

86

[14] Akond Rahman, Dibyendu Brinto Bose, Yue Zhang, and Rahul Pandita. 2024.

An empirical study of task infections in Ansible scripts. Empirical Software

Engineering 29, 1 (2024), 34.

Akond Rahman and Chris Parnin. 2023. Detecting and Characterizing Propaga-

tion of Security Weaknesses in Puppet-based Infrastructure Management. IEEE

Transactions on Software Engineering (2023).

Akond Rahman, Chris Parnin, and Laurie Williams. 2019. The seven sins: Security

smells in infrastructure as code scripts. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). IEEE, 164-175.

[17] Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and Laurie Williams. 2021.
Security Smells in Ansible and Chef Scripts: A Replication Study. ACM Trans.
Softw. Eng. Methodol. 30, 1, Article 3 (Jan. 2021), 31 pages. https://doi.org/10.
1145/3408897

[18] RED HAT. 2021. Tips on managing IoT devices at the edge with Red Hat Ansible

Automation. https://www.redhat.com/en/blog/tips-managing-iot-devices-edge-

red-hat-ansible-automation

Sofia Reis, Rui Abreu, Marcelo d’Amorim, and Daniel Fortunato. 2023. Leveraging

Practitioners’ Feedback to Improve a Security Linter. In Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering (Rochester,

MI, USA) (ASE °22). Association for Computing Machinery, New York, NY, USA,

Article 66, 12 pages. https://doi.org/10.1145/3551349.3560419

[20] J. Saldana. 2009. The Coding Manual for Qualitative Researchers. Sage. https:

//books.google.co.in/books?id=OE7LngEACAA]J

Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your

Configuration Code Smell?. In Proceedings of the 13th International Conference

on Mining Software Repositories (Austin, Texas) (MSR ’16). ACM, New York, NY,

USA, 189-200. https://doi.org/10.1145/2901739.2901761

—_
)

[12

(13

=
&

[16

=
)

[21

Received 2024-04-05; accepted 2024-05-04

https://docs.ansible.com/ansible/latest/
https://www.ansible.com/scaling-ansible-for-iot-deployments
https://www.ansible.com/scaling-ansible-for-iot-deployments
https://docs.ansible.com/
https://ansible.readthedocs.io/projects/runner/en/stable
https://ansible.readthedocs.io/projects/runner/en/stable
https://docs.ansible.com/ansible/latest/network/getting_started/index.html
https://docs.ansible.com/ansible/latest/network/getting_started/index.html
https://doi.org/10.1109/IEEESTD.2010.5399061
https://doi.org/10.1109/IEEESTD.2010.5399061
https://api.semanticscholar.org/CorpusID:225061723
https://api.semanticscholar.org/CorpusID:225061723
https://csrc.nist.gov/glossary/term/infrastructure_as_code
https://csrc.nist.gov/glossary/term/infrastructure_as_code
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1016/j.jss.2020.110726
https://doi.org/10.1109/MS.2017.86
https://doi.org/10.1109/MS.2017.86
https://doi.org/10.1145/3408897
https://doi.org/10.1145/3408897
https://www.redhat.com/en/blog/tips-managing-iot-devices-edge-red-hat-ansible-automation
https://www.redhat.com/en/blog/tips-managing-iot-devices-edge-red-hat-ansible-automation
https://doi.org/10.1145/3551349.3560419
https://books.google.co.in/books?id=OE7LngEACAAJ
https://books.google.co.in/books?id=OE7LngEACAAJ
https://doi.org/10.1145/2901739.2901761

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methodology
	3.1 Methodology for RQ1
	3.2 Methodology for RQ2

	4 Results
	5 Discussion and Conclusion
	5.1 Discussion
	5.2 Conclusion

	References

