
Who Watches the Watchers? On the Reliability of Softwarizing
Cloud Application Management

Jiawei Tyler Gu, Zhen Tang, Yiming Su, Bogdan Alexandru Stoica, Xudong Sun,
William X. Zheng, Yue Zhang†, Akond Rahman†, Chen Wang‡, Tianyin Xu

University of Illinois Urbana-Champaign †Auburn University ‡IBM Research

Abstract
Modern cloud applications are increasingly managed by soft-
ware programs, often named “operators,” which automate
laborious, human-based operations. While operator programs
largely prevent human mistakes, their own reliability has un-
precedented impact on managed applications. This paper dis-
cusses the emerging challenges of operator program reliabil-
ity on cloud-native platforms like Kubernetes. Our work is
grounded in a rigorous analysis of 412 real-world failures
of thirteen Kubernetes operators. We find that challenges of
operator reliability come from the multifold complexity of an
operator’s interactions with its managed applications, environ-
ment, and user interface. Among these, operators’ interactions
with managed applications are the largest contributor to real-
world operator failures, but they are largely overlooked—these
interactions are often ad hoc and lack well-defined interfaces.
We advocate to rethink the management interface of cloud
applications and demonstrate this urgent need by showing
the prevalence of defects in existing operators. Specifically,
we develop a simple testing tool to exercise interactions be-
tween operators and the managed cloud applications, which
discovered 86 new bugs in six popular Kubernetes operators.

1 Introduction
Modern cloud applications are increasingly managed by soft-
ware programs which replace laborious, human-based opera-
tions [73, 74, 83, 100, 103]. On modern cloud platforms like
Kubernetes, these management programs are commonly re-
ferred to as “operators” [1], to draw analogies with human
operators [65]. Today, operators go far beyond application
deployment tasks like traditional infrastructure-as-code (IaC)
scripts do [66,99]. They are long-running production services
that continuously manage production applications (upgrading
software versions, updating configurations, autoscaling based
on workloads, handling unexpected failures, etc.).

While operator programs largely eliminate inadvertent hu-
man mistakes [55, 93–95, 97], their own correctness has un-
precedented impacts. A runaway operator can directly and
continuously damage bug-free applications in production. Re-
cent studies show that software bugs in operators can lead to
disastrous consequences like data loss, service unavailability,
and security issues [69, 87, 106, 115], along with other signifi-
cant production incidents [59, 60, 70, 81, 82, 113]. Given the

trend of AI-driven operators [62, 63, 80], ensuring their relia-
bility is crucial to prevent more frequent operator incidents.

In this paper, we discuss emerging challenges of operator
reliability in the context of cloud application management. In
principle, a reliable operator must (1) always reconcile the
managed applications to their desired states, (2) recover ap-
plications from undesired or error states, (3) tolerate transient
faults such as node crashes, and (4) be resilient to misoper-
ations. Recent work developed testing and verification tech-
niques [50, 69, 87, 106, 108, 109] for operator-like programs.
However, it is unclear whether and how much these efforts
have addressed real-world operator reliability, as they target
specific, predefined bug patterns (§2.2), so it is hard to tell if
they cover major types of production operator failures.

Our goal is to (1) demystify real-world operator reliability
challenges based on an in-depth analysis of 412 documented
operator failures, (2) pinpoint gaps in state-of-the-art tech-
niques for operator reliability, and (3) shed light on potential
solutions including system design, runtime support, as well
as software testing and verification. Different from recent
work [115] on characterizing how generic software bugs man-
ifest in operators (see §6), our work focuses on the essential
complexity of softwarizing cloud application management
and the fundamental challenge of ensuring correct interactions
between operators and the cloud applications they manage.

Our analysis shows that reliability challenges come from
the multifold complexity of operators’ interactions with (1)
cloud applications, (2) cloud platform like Kubernetes, (3) co-
located controllers, and (4) user interface. Prior work studied
(2)–(3) for testing and verification [50, 69, 87, 106, 108, 110].
Specifically, (2)–(3) are done by modeling an operator as a
controller running in distributed systems with faults [106,108],
asynchrony [106, 108], and interference with other con-
trollers [87]; (4) is done by user interface fuzzing [69] and
declarative programming [110]. No prior work discussed (1).

A main finding is that erroneous interactions with the man-
aged applications are the dominant causes of operator fail-
ures in the field—they contribute 42% to the studied opera-
tor failures, outnumbering other interaction issues. Unfortu-
nately, such interactions are largely overlooked in bug studies
like [115] and in testing/verification techniques. Techniques
that treat operators as controllers [87, 106, 108] are inherently
application agnostic. Techniques for operator programs like
Acto [68, 69] have no application-specific knowledge—Acto

Unready

Ready

Replica-0

Primary

Replica-1

failover()
Error

Log lag:
0Mb

Replica-0

Primary

Replica-1

failover()
Data loss

Role:
SyncStandby

Replica-0

Primary

Replica-1

failover()
Error

Role:
AsyncStandby

Log lag:
1Mb

(a) ZL/PostgresOp-429 (b) ZL/PostgresOp-600 (c) ZL/PostgresOp-2276

Figure 1: Three failover operation failures of a commercial
PostgreSQL operator (ZL/PostgresOp). Each failure was
caused by the operator’s violating a different precondition
required by PostgreSQL’s failover operation.

skips application-specific properties during test generation,
as it cannot infer information of such properties based on
platform APIs (e.g., Kubernetes native resources).

In essence, today’s cloud applications lack well-defined
management interfaces for operators. However, many criti-
cal management operations have sophisticated semantics and
their correctness relies on application configuration, states,
execution environments, etc.; many of them are not exposed
explicitly. It is challenging for operator developers to capture
all fine-grained operation semantics and observe application
internal states, especially considering that operator developers
may not be application developers (instead, they are applica-
tion users). As a result, interactions between operators and
applications are often ad hoc and error-prone.

Figure 1 illustrates the problem using real-world exam-
ples from a commercial PostgreSQL operator. The code for
performing a failover operation was reported buggy and got
(partially) fixed at least three times; each failure led devel-
opers to discover a precondition for safe failover, which was
previously unknown to them. The first bug [17] caused a Post-
greSQL outage as the operator failed to complete the failover
operation—the operator tried to promote a bootstrapping Post-
greSQL node to be the next leader and never retried when the
promotion failed. The second bug [18] led to data loss: Post-
greSQL was configured to run in asynchronous replication
mode, and the operator mistakenly promoted a node with large
write-ahead log lag to be the new leader. The data loss could
have been prevented by promoting a node with up-to-date
logs. The third bug [43] failed the failover operation as the
operator did not choose the nodes with a SyncStandby role as
leader candidates. The role is required when PostgreSQL is
configured to run in synchronous replication mode. In each
case, developers patched the operator to satisfy violated pre-
conditions and added new tests a posteriori.

We advocate to rethink management operation interface
of cloud applications and improve their manageability. We
demonstrate the urgent need by showing the prevalence of
defects residing in operator-application interactions of mature,
widely used Kubernetes operators. We develop a simple test-
ing tool named OAT to exercise how an operator manages the

target cloud applications. OAT uses targeted testing policies
to exercise operator-application interactions by instructing
the operator to run different operations on its managed ap-
plication. A key challenge is to automatically generate valid,
meaningful operation commands that exercise the operator-
application interface, with minimal input from developers.
OAT learns such application-specific commands from exam-
ples in the operator’s test suite, and relies on large language
models to synthesize them when examples are unavailable.
To drive the application to certain bug-triggering states, OAT
also injects various faults that are expected to be handled by
the operator, with policies guided by our study.

We applied OAT to six popular Kubernetes operators for
managing Cassandra, Kafka, MariaDB, MinIO, MongoDB,
and TiDB. OAT found 86 new bugs that have severe conse-
quences on application availability, reliability, and security.
So far, 53 of these bugs have been confirmed and 28 have
been fixed. In addition, OAT revealed 13 undocumented man-
agement operation semantics through testing.

Contributions. This paper makes four main contributions:
• A discussion on emerging challenges of operator reliability

for softwarized cloud application management;
• An analysis of 412 operator failures, with a focus on those

where the operator failed to manage cloud applications;
• A practical testing tool, OAT, for exercising operator-

application interactions, which found 86 new bugs in six
popular Kubernetes operators (53 confirmed and 28 fixed);

• Artifact: https://github.com/xlab-uiuc/acto/tree/nsdi26-ae.

2 Background
Software operators are management programs running atop
modern cloud platforms such as Kubernetes [57], Twine [111],
and ECS [92]. They constitute the management plane of cloud
applications. Different from traditional infrastructure-as-code
(IaC) that are often ad hoc, one-off scripts [66, 99], operators
are developed as long-running production services embodied
in reusable, well-maintained system programs [1].

In modern cloud platforms like Kubernetes, operators are
implemented as custom controllers [10] that continuously
reconcile the application from its current states to desired
states. The desired states are specified through a declarative
interface (e.g., Custom Resource [5] in Kubernetes). In this
way, users declare what states they want their applications to
be in, and the operator addresses how to drive applications to
reach the desired states. Operators invoke Kubernetes APIs to
allocate system resources (e.g., pods and volumes), creating
application execution environments. Operators also interact
with the running application to update its runtime behavior.

2.1 Interactions
An operator, by design, involves complex, multi-dimensional
interactions (Figure 2), which introduce unique reliability
challenges beyond generic software bugs.

https://github.com/zalando/postgres-operator
https://github.com/xlab-uiuc/acto/tree/nsdi26-ae

O
pe
ra
to
r

Pod API

Volume
Controller

Co-located
Operators

Vol. API Ctrl API
User

Application
Process

File/
Directory

...

Cloud Application

...

… Metrics,
etc.

1

2 3

4

Pod
Controller

Cloud Platform Co-op

Figure 2: Multi-dimensional interactions between an oper-
ator and its managed application, environment, and users.

1 Interactions with the managed application. Operators
are designed for managing applications and thus must interact
with them. Such interactions are often application-specific
because applications, even when similar, have different APIs.
Such interactions are embodied in different forms, includ-
ing invoking application APIs, executing CLI commands in
the application pod, setting environment variables or startup
scripts, and changing application configuration files. Take a
ZooKeeper operator as an example. To add a new ZooKeeper
node, the operator must update the quorum membership. It
executes CLI commands to register the new node to the quo-
rum and sets its config startup argument to use a designated
configuration file. The operator queries ZooKeeper’s ruok
API to observe its current state.

2 Interactions with the cloud platform. Operators rely on
the cloud platform to manage system resources (pods, data
volumes, network policies, etc.) that are allocated to the man-
aged applications. In Kubernetes, system resources are repre-
sented as API objects [9] that are reconciled by Kubernetes
built-in controllers. Kubernetes operators manage system re-
sources by creating and updating API objects with desired
configurations, e.g., creating a Pod object with the desired
image and resource constraints to run the application.

3 Interactions with co-located operators/controllers. Op-
erators may interact with other operators or custom controllers
on the cloud platform. In Kubernetes, operators usually avoid
doing so directly; the interactions happen implicitly when two
or more operators/controllers manage the same set of system
resources. For example, Istio is a custom controller that mod-
ifies application-level communications by injecting sidecars
into application containers. The altered policy may conflict
with how the operator manages the application’s network.

4 Interactions with user interface. Kubernetes operators de-
fine user interfaces in the form of Custom Resources (CRs) [5].
Here, “users” refer to entities, like upstream services or AI
agents [80], that define the application’s desired states. Each
CR specifies a collection of properties describing the state of
the managed application, such as container images, configura-
tions, replica counts, etc. Operation commands are embodied
by specifying desired states. Desired states are declared by
creating CRs and assigning values to their properties.

Tool Scope Mechanism

Software Testing and Fault Injection
Acto [68, 69] Operator Functional testing by fuzzing desired states
Sieve [106, 107] Controller Model-based fault injection testing
Mutiny [50] Kubernetes Injecting general faults to controllers
MeshTest [123] Controller Func. testing for ServiceMesh controllers

Formal Verification and Model Checking
Anvil [105, 108] Controller Verifying liveness and safety properties
Kivi [87] Controller Model checking controller interactions

Programming and System Support
DCM [110] Controller Declarative programming support
KEP-2340 [4] Controller Preventing reading stale state from caches
Transaction [15] Controller Transaction support for controllers

Table 1: Recent efforts on improving operator/controller
reliability. None of them addresses how operators interact
with the managed applications (the focus of this paper).

2.2 Existing Efforts
Given the importance of operator reliability, recent work fo-
cuses on improving Kubernetes operators. Table 1 categorizes
existing efforts into (1) software testing and fault injection, (2)
formal verification and model checking, and (3) programming
and system support. Note that most techniques do not target
operators for cloud applications, but focus on controllers—in
modern cloud platforms like Kubernetes, operators are im-
plemented as custom controllers [10]. These techniques are
application-agnostic and cannot address operator-application
interactions (1 in §2.1).

Table 1 does not show developer-written tests in the form
of unit, integration, and system tests. However, as reported by
prior work [69,106,123], existing manually written tests rarely
capture state transitions or cover failure scenarios. Most of
them are unit tests that only test operator code without reason-
ing about the managed applications or system environments.

3 Methodology and General Findings
3.1 Methodology
We collected a dataset of 412 failures of 13 popular Kuber-
netes operators and conducted a systematic analysis. Table 2
lists the studied Kubernetes operators and their information.

The operators are selected with the following guidelines:
(1) they are all open-source projects so that we can reproduce
the failures and thoroughly understand their root causes. (2)
they cover a diverse set of modern cloud applications, includ-
ing server applications (e.g., MySQL and PostgreSQL), dis-
tributed applications (e.g., Kafka and ZooKeeper), platform
runtimes and frameworks (e.g., Knative and KubeBlocks);
we deliberately selected two PostgreSQL operators to com-
pare different operators of the same application. (3) they are
all mature software projects developed by either the official
developers of target applications or companies that provide
commercial services based on the applications. The sizes of
the projects are typically tens of thousands of lines of code.

For each studied operator, we randomly sampled a hundred

Operator Application Dev. # Stars LOC # Cases

CassOp Cassandra K8ssandra 176 30K 17
CN/PostgresOp PostgreSQL EDB 3,807 106K 37
CockroachOp CockroachDB Official 288 18K 14
KafkaOp Kafka Strimzi 4,631 195K 47
KnativeOp Knative Official 179 18K 13
KubeBlocks Multiple ApeCloud 1,781 156K 33
MinIOOp MinIO Official 1,133 17K 63
MongoOp MongoDB Percona 312 28K 30
RabbitMQOp RabbitMQ Official 830 15K 16
SolrOp Solr Official 243 21K 21
TiDBOp TiDB Official 1241 230K 35
ZooKeeperOp ZooKeeper Pravega 362 6K 22
ZL/PostgresOp PostgreSQL Zalando 4,133 34K 64

Table 2: Thirteen Kubernetes operators we studied. “#
Cases” refered to the number of studied failures.

closed, fixed issues that report failure cases from its issue
database and manually inspected every issue. We filter out
feature requests, user questions, or issues related to building
and testing. We only considered closed issues that conclude
root causes with sufficient information. Finally, we collected
412 operator failure cases (the last column in Table 2 shows
the number of failures of each studied operator).

During our analysis, each failure case was analyzed by at
least two authors to minimize human errors and subjectivity
in the interpretation and categorization.

3.2 General Findings

Finding 1: The majority (52.2%) of the studied operator
failures are caused by defects in operators’ interactions with
external entities (see §2.1), which significantly outnumber
bugs in operators’ internal program logic.

Figure 3a shows the distribution of root-cause locations of
the 412 operator failures studied. The results show that defects
which manifested via interactions are dominating operator
failures, which are two times more prevalent than bugs in
operator programs (e.g., nil-pointer dereference, logic flaws,
etc.) referred to as “internal”. This finding corroborates recent
analysis [69] that unit tests are insufficient to test operator
reliability, because unit tests only target program-level correct-
ness but can hardly exercise an operator’s external interactions
(e.g., with the applications and environments). Unfortunately,
as reported in [69], many existing operator projects heavily
rely on unit-level testing for quality assurance. Therefore, in
this paper we focus on interaction-related failures which are
unique to operators. Bugs internal to operators are not funda-
mentally different from traditional software bugs which have
been studied extensively in the literature.

The remaining failures were caused by defects in the de-
ployment scripts of the operators (mostly Helm Charts [6])
and by misuses of the operators. While these cases are in-
teresting, they are orthogonal to the operator’s design and
implementation, and thus are not the focus of this paper.

Interaction (52.2%)
Internal (25.2%)

Operator Deploy
Script (13.8%)

Misuse (8.7%)

(a) Root-cause locations.

App. Outage
 (50.2%)

App. Partial
Outage (8.8%)

App. Data
Loss (3.3%) Operator Outage (8.4%)

App. Misconfig.
 (13.5%)

Performance Issue
 (6.0%)

Reliability Issue
 (7.4%)

Security Issue (2.3%)

(b) Consequences.

Figure 3: Root-cause locations of the studied 412 operator
failures (3a), and the consequences of the 215 interaction-
related operator failures (3b).

Finding 2: The majority (62.3%) of interaction-related
operator failures had a catastrophic impact, e.g., application
full outages, partial outages, and data loss.

Figure 3b shows the consequences of the 215 interaction-
related operator failures. 50.2% (108/215) resulted in full
outages of the managed applications. For example, Mon-
goOp failed to reconfigure MongoDB cluster membership
after changing pod IPs [41], leaving MongoDB pods unable
to connect with each other and causing a full outage. 8.8%
caused partial failures of the managed applications, making
certain important features unavailable such as data backup
services, e.g., MongoDB lost the backup service due to in-
consistent TLS configurations among the backup agents and
Mongod [37]. 3.3% caused silent data loss (e.g., Figure 1b).

The other 29.3% (63/215) interaction failures led to un-
desired application behaviors including misconfigurations,
degraded performance, reliability issues (e.g., incorrect repli-
cas), and security risks (e.g., incorrect permissions). Although
these failures did not cause explicit application outages, they
are harder to detect and have severe production implications.

Only 8.4% (18/215) interaction failures affected the oper-
ator programs (e.g., crashes and hangs). For operators, such
consequences are arguably the least severe as they do not di-
rectly affect managed applications in production, even though
they result in management service unavailability (e.g., the
application cannot autoscale after the operator crashes).

Finding 3: Failure of managing applications is the largest
category (42.3%) among all operator interaction failures.

Table 3 shows the distribution of failures manifested on
different types of interactions (see §2.1). The largest category
is operator-application interaction failure, i.e., the operator
failed to manage applications. The operators’ interactions
with the cloud platform (Kubernetes) and user interfaces also
make up a significant percentage of the studied failures. The
former tells the complexity of managing system resources
(e.g., pods, volumes, and networks) for applications, and the
latter shows the challenge of correctly implementing complex
declarative operation interfaces [110]. Operators’ interaction
with co-located controllers has a small percentage, as appli-
cations are often exclusively managed by one operator. The
failed interactions are mostly with third-party controllers man-
aging low-level resources such as networks and telemetry.

https://github.com/k8ssandra/cass-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cockroachdb/cockroach-operator
https://github.com/strimzi/strimzi-kafka-operator
https://github.com/knative/operator
https://github.com/apecloud/kubeblocks
https://github.com/minio/operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/apache/solr-operator
https://github.com/pingcap/tidb-operator
https://github.com/pravega/zookeeper-operator
https://github.com/zalando/postgres-operator

Operator 1 App. 2 Platf. 3 Co-op 4 User Total

CassOp 2 0 1 5 8
CN/PostgresOp 15 1 0 4 20
CockroachOp 4 6 0 2 12
KafkaOp 7 9 0 5 21
KnativeOp 0 4 1 8 13
KubeBlocks 12 7 0 1 20
MinIOOp 3 5 1 7 16
MongoOp 15 4 0 1 20
RabbitMQOp 3 10 1 0 14
SolrOp 5 2 2 2 11
TiDBOp 9 7 1 3 20
ZooKeeperOp 9 3 2 6 20
ZL/PostgresOp 7 7 0 6 20

Total 91 (42%) 65 (30%) 9 (5%) 50 (23%) 215

Table 3: Distribution of different types of interaction fail-
ures of the studied operators.

While the interactions with managed applications are error-
prone and caused the most failures, few existing studies or
tools (see §2.2) address them. Hence, in the remainder of this
paper we focus on operator-application failures to understand
why operators failed to manage cloud applications.

4 Failures of Managing Applications
An operator manages cloud applications through continuous
state reconciliation [57, 69, 106, 108]. The operator observes
the state of the managed application. If the current application
state deviates from the desired state, it issues management
operations to reconcile the current state to the desired state.
For example, if the number of replicas in the desired state is
larger than that in the current state, the operator will scale
up the managed application. The scale-up operation would
take a series of actions to add a new replica node, e.g., (1)
allocating a new pod, (2) running a replica node using the
new pod, and (3) updating the membership of the application
to add the new replica. A reconciliation is invoked when
users update the desired state or the current state changes
(e.g., unexpected failures). Operator-application interactions
during a management operation include:

• Application API. An operator calls APIs of the applica-
tions to invoke their internal procedure, e.g., calling Post-
greSQL’s API to start failover (Figure 1).

• Application configuration. The operator updates the ap-
plication’s configuration by updating configuration files,
databases, or ConfigMap objects [2].

• Execution environment. The operator changes the execu-
tion environment of its managed applications, such as the
files and environment variables.

• Resource provisioning. The operator allocates (and de-
allocates) system resources such as pods [12], volumes [11],
and services [13] for the managed application based on its
configuration or scaling operations.

Patterns Description Fail. # (%)

Semantic The operator violates operation semantics
violations required by the application (Fig. 1, 4a–4b). 58 (63.7%)

State The operator fails to observe internal
observability states of the application (Figure 4d). 15 (16.5%)

Version The operator fails to handle inconsistent
incompatibility behavior across app. versions (Figure 4e). 11 (12.1%)

Mishandling The operator mishandles errors returned
app. errors by the application (Figure 4f). 7 (7.7%)

Total 91

Table 4: Patterns of operator-application interaction fail-
ures. Figure 4 provides concrete examples of each pattern.

Finding 4: We find four main failure patterns (Table 4):

• The majority (63.7%) of studied application-management
failures are caused by the operator violating its managed
application’s operation semantics.

• A significant percentage (16.5%) of management failures
are caused by the gaps that prevent the operator from
observing the application internal states.

• Incompatibility between the operator and its managed
application also causes a significant percentage (12.1%)
of failures, triggered by upgrading application versions.

• The remaining cases (7.7%) are caused by the operator
mishandling application errors.

4.1 Operation Semantic Violations
The most common failure pattern is that the operators fail to
satisfy the operation semantics of the applications; as a result,
they issue unsafe operations that break the applications.

Cloud applications are large, sophisticated systems, with
complex management semantics that define how they should
be managed correctly. Unfortunately, in practice, such se-
mantics are not always explicitly documented and are rarely
formally specified. Hence, it is difficult for the operator to
comprehend and encode an application’s operation semantics
in a sound and complete manner, especially when operator
developers may not be application developers.

Finding 5: Violations of application operation semantics
are not accidental, but reflect the essential complexity of
softwarizing cloud application management. The semantics
are not explicitly documented or formally specified, and are
often encoded based on experience.

We discuss common violated application operation semantics.

4.1.1 Application Configuration
Many operations are done by changing the application’s con-
figuration at runtime, either by updating a configuration file
(which requires restarting the application process) or by call-
ing the application’s configuration API/CLI. It requires oper-
ators to manage application configuration correctly. Software
configuration management is a known challenge and is well
studied in the literature [91, 104, 116–118, 121].

https://github.com/k8ssandra/cass-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cockroachdb/cockroach-operator
https://github.com/strimzi/strimzi-kafka-operator
https://github.com/knative/operator
https://github.com/apecloud/kubeblocks
https://github.com/minio/operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/apache/solr-operator
https://github.com/pingcap/tidb-operator
https://github.com/pravega/zookeeper-operator
https://github.com/zalando/postgres-operator

Create m1

Operator MinIO

Scaleup

m1

m0Err: Waiting for
m0 to format the
disks

m0
Members:
[m0]

Members:
[m0,]

Members:
[m0, m1]

?

(a) Semantic violations (app. config). Min-
IOOp did not update membership configura-
tion of m0 when adding m1 [34].

Create
backup

Operator MongoDB

Update backup
config

Start
backup

Backup
started with
stale config

Out of order

(b) Semantic violations (order). MongoOp
did not wait for configuration updates to finish
before starting the backup operation [28].

chmod /pgdata 755

FATAL: /pgdata has
invalid permission
Should be 750 or 700

PG

PostgreSQLOperator

Recover
from
backup

Start PG on /pgdata

(c) Semantic violations (env.). CN/Postgre-
sOp mistakenly set the mode of the data direc-
tory to be too permissive [32].

Operator Kafka# desired config
timeout.ms=1000

Write config and restart Kafka
current config
timeout.ms=“1000”

Read config from Kafka
“1000” != 1000:

Write config and restart Kafka
(every two minutes)

Config
timeout.
ms

(d) State observability. KafkaOp fails to ob-
serve that the current configuration matches
the desired one due to type mismatch, result-
ing in infinite restarts [20].

Operator PG (v3.0) PG (v3.1)

Check
health

Check health

streaming

Healthy

Error

running

Upgrade
PG to v3.1

running

(e) Version incompatibility. PostgreSQL v3.1
introduced a new healthy state “streaming,”
which confused ZL/PostgresOp as it only con-
siders “running” as a healthy state [35].

decommission(Cass-1)

Err: no space left on Cass-0

Operator Cassandra

Scale
down

Cass-0
Cass-1

Cass-0
Cass-1

User: Enlarge disk
Decommission never retried
Scale down failed

(f) Mishandling application errors. CassOp
never retried the failed node decommission op-
eration, after the user resolved the error [48].

Figure 4: Real-world examples of operator-application interaction failures (Tables 4 and 5 define the categories).

Configuration issues in the operator failures have very dif-
ferent patterns. Prior studies on software configuration focus
on validating individual configuration values against their
type, range, and system constraints, as their violations are re-
ported to be dominating errors [118]. However, we observe no
traditional configuration error (e.g., no individual parameter
error). Our hunch is that the practice of automating configura-
tion by operators minimizes inadvertent mistakes and errors.

Instead, deep semantics of application configuration are
surfaced and are hard for operators to capture. Among the
14 configuration-related operator failures, 11 of them involve
interdependent configuration across nodes and components.
Few technique addresses them. Only three have offending
configuration in the same configuration file, but involving
multiple parameters (two violated order dependencies and
one violated a value dependency [61]).

Finding 6: Deep semantics of application configuration, in-
cluding cross-parameter, cross-component, and cross-node
configuration, are the sources (14/14) of violations that lead
to misconfiguration-related operator failures.

Figure 4a shows an example of cross-node misconfigura-
tion where different MinIO replica nodes should have consis-
tent membership lists, which was violated by MinIOOp due
to a bug. Such patterns are common but manifest in different
forms. For example, in four cases, operators set inconsistent
TLS configurations among different application components,
causing interoperability issues. In several cases, the configu-

Patterns Description Fail. # (%)

Configuration Configuration of the managed application
across nodes and components (Figure 4a). 21 (36.2%)

Ordering Order dependency among multiple inter-
(mul. ops) dependent operations (Figure 4b). 18 (31.0%)

Precondition Preconditions of an operation in terms of
(single op.) application states (Figure 1). 11 (19.0%)

Environment Execution environment of the app. (Fig. 4c). 8 (13.8%)

Total 58

Table 5: The types of violated operation semantics.

ration involves different parameters across components, e.g.,
MongoOp updated MongoDB servers to tlsRequired, but
it did not enable TLS for the MongoDB monitor.

A more subtle issue is the cross-component dependency
between configuration and code. For example, when the TiDB
cluster runs with TiFlash component, the Placement Driver
(PD) needs to have placement-rules enabled [24]. When Mon-
goDB cluster runs in sharding mode, all Mongod instances
are expected to run with the shardsvr configuration [22].

The remaining seven failures all fall into a simple pattern—
the operator failed to update the configuration of the running
application. The essence is that application’s configuration in-
terfaces (both file, databases, and API) are overly complicated,
e.g., multiple files with overwriting relationships, and multi-
ple databases with different scopes. The operator updated the
wrong file [27, 39, 40] that was not read by the application,
or the wrong database with limited scope [25, 26, 29]. In all

https://github.com/minio/operator
https://github.com/minio/operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/cloudnative-pg/cloudnative-pg
https://github.com/strimzi/strimzi-kafka-operator
https://github.com/zalando/postgres-operator
https://github.com/k8ssandra/cass-operator

these cases, the operator believed a successful configuration
update, while the application ran with an old configuration.

4.1.2 Ordering
Due to the asynchronous nature of operations and their depen-
dencies, we find that incorrect ordering of concurrent, interde-
pendent operations is a frequent failure pattern. In 31.0% (18
out of 58) of operation semantic violations, the preconditions
are violated due to incorrect coordination of interdependent
operations issued by the operator (Table 5).

No order enforced. In 12 cases, the operator did not enforce
any order against operations that have order dependencies.
Due to the asynchrony of distributed operations, an opera-
tion issued early in time is not guaranteed to finish before
an operation issued later. This caused two failure patterns:
(1) a later operation was executed before an early operation
and invalidated the early operation, as shown in Figure 4b,
and (2) a later operation was executed during the execution
of an early operation, causing interference. For example, to
scale down a CockroachDB cluster, CockroachOp first stops
the CockroachDB process and then removes the container.
However, if the container is deleted during the stop operation,
the operation fails, leaving the cluster in an inconsistent state.

Incorrect ordering. In the other six failures, the operator
enforced a wrong order. For example, when launching a Post-
greSQL cluster, the KubeBlocks starts PostgreSQL nodes one
by one. A correct order is to start the leader node first and then
follower nodes, because each follower must contact the leader
to join the quorum. However, KubeBlocks starts nodes ran-
domly. In KB-3485, KubeBlocks started a follower first, and
the follower kept waiting for the leader to join; meanwhile,
KubeBlocks also kept waiting for the follower to enter the
ready state before starting the leader node, causing a deadlock.
Finding 7: Correct (partial) ordering of management oper-
ations needs to be enforced to avoid dependency violations.
Atomicity of operation execution, e.g., by lightweight trans-
action, may help avoid conflicts of concurrent operations.

4.1.3 Preconditions
A generic pattern is the violation of preconditions of an op-
eration, which applies to individual operations. (Ordering of
multiple operations can be viewed as a special case.) Figure 1
shows an example that the PostgreSQL failover operation
has at least three preconditions: the target node must (1) be
in a ready state, (2) not lag behind, and (3) have the role of
SyncStandby. Any violations fail the failover operation.

We find that PostgreSQL failover is inherently error-prone.
Both PostgreSQL operators (ZL/PostgresOp and CN/Postgre-
sOp) introduced multiple failures of failover operations. In
one case, CN/PostgresOp failovers a node when it has a full
disk, without checking if the target node has sufficient disk
space, a precondition. The target node has the same disk capac-
ity and is also full; failover exacerbated rather than resolved

the error. In essence, the failover operation of PostgreSQL
is error-prone by design, requiring operators to enumerate
fine-grained preconditions on application internal states.

Some preconditions require additional operations to satisfy.
For example, user traffic needs to be rerouted from a node be-
fore starting a failover operation on the node in KubeBlocks;
data needs to be migrated before shutting down a node in Solr.
Such preconditions are commonly violated (by multiple oper-
ators), causing partial failures [36] and data loss [31, 42, 44].

Finding 8: Violations of preconditions on application
states mostly happen to operations that handle failures (e.g.,
failover) and reduced capacity (e.g., downscaling); these
operations tend to have complex, subtle preconditions and
have major impact on applications.

4.1.4 Environment
The remaining eight failure cases were caused by the opera-
tors incorrectly preparing or managing the execution environ-
ment of the managed applications. In these cases, the operator
either did not create the files or data directories expected by
the applications, or misconfigured their permissions (e.g., Fig-
ure 4c). As a result, the applications failed to read from or
write to the designated locations. We find that all these fail-
ures happened when the operators attempted to revamp an
existing execution environment or restore a previously cre-
ated environment from a backup, instead of a normal startup
procedure from a clean-slate environment.

4.2 State Observability
The state-reconciliation principle relies on the observability
of application states. Different from the cluster states that are
encoded in well-defined state objects [9], it is challenging to
observe an application’s internal states which are less defined
and do not have unified schemas. As the second largest causes
(16.5%), the operator cannot reliably check if the current
application state matches the desired state.

Finding 9: All the observability-related failures are caused
by ad hoc monitors of the application’s internal state or ad
hoc encoding of the application state.

Readiness and liveness monitors. Kubernetes allows op-
erators to register monitors (called probes [3]) that check
readiness and liveness of managed applications. Eight (out
of 15) failures were caused by ad hoc, unreliable probes. Un-
reliable readiness probes may incorrectly instruct clients to
connect to unready applications and fail client requests. A
common pattern is to use approximate signals, such as con-
tainer startup [33] and DNS resolution [46], to indicate appli-
cation readiness; such signals are flaky.

Unreliable liveness probes may incorrectly instruct Kuber-
netes to reboot the application containers, causing disruptions.
In all three cases [21,30,47], the liveness probes reported false
alarms due to timeout of the probes when applications were

https://github.com/apecloud/kubeblocks/issues/3485

running slow. The three issues were resolved by enlarging the
timeout and reducing runtime probing overhead, which are
workarounds rather than fundamental resolutions.

Encoding states. Without application support, operators
have to implement their own logic for interpreting the appli-
cation’s current status and encoding them in a way that can
be compared with the desired state. In 7 (out of 15) cases,
the operator failed to check the semantic equivalence of the
application’s current state and the desired state. This causes
operators to keep reconciling applications even when the ap-
plication has already reached the desired state, as shown in
Figure 4d. The encoding is nontrivial, e.g., CN/PostgresOp
checks if a PostgreSQL instance is stopped based on the text
output of the pg_ctl status command, which is brittle as the
output is different when PostgreSQL runs in different locales.

We inspected the probes implemented by the studied
operators; most of them use simple, brittle checks (e.g.,
dummy client requests), which are unreliable and cannot ad-
dress real-world failure modes (e.g., slow, gray, partial, and
metastable failures) [72, 76, 78, 88], despite many iterations
(e.g., [23]). The deficiency of probes corroborates a recent
industry report [67]. Integrating advanced observability tech-
niques [77,84,85,96] and state-encoding interface are desired
but are challenging for diverse cloud applications.

4.3 Version Incompatibility
Version incompatibility is the third largest root cause (12.1%)
of operator failures. The failures were manifested when the
operator upgraded the managed application—the new appli-
cation version is incompatible with the operator.

Finding 10: Version incompatibility issues are often rooted
in ad hoc, brittle assumptions made by the operators.

Figure 4e shows an example where ZL/PostgresOp as-
sumed statuses other than “running” to be erroneous, which is
broken when PostgreSQL introduces a new healthy state. In
another case [38], CN/PostgresOp checks if WAL archive is
available based on the existence of a successful archive. This
works in the old versions of PostgreSQL that always creates
WAL archives periodically. This assumption is broken when
the new version of PostgreSQL changed its behavior—when
there is no database activity, WAL archive will be skipped.
This new behavior makes CN/PostgresOp believe the WAL
archive is never available and impairs backup operations.

Version compatibility is a classic software reliability prob-
lem and has been recently studied in the context of software
upgrades [120, 122]. However, different from traditional soft-
ware compatibility, it is challenging to ensure compatibility
between the operator and the managed application, without a
clean management interface. Specifically, an operator is ex-
pected to work with different versions of the managed applica-
tions as software upgrading is a basic feature of all the studied
operators (Table 2). We assert that, without a well-defined

management interface, compatibility between an operator and
its managed applications cannot be systematically solved.

4.4 Mishandling Application Errors
Error handling is a long-lasting challenge and a well-studied
problem [64, 71, 86, 119]. Since the operator should reconcile
application to the desired state from any state (including er-
ror states), it is responsible for handling application errors.
However, as mature cloud applications already implement ex-
tensive error handling, an interesting question is—what kinds
of errors should and should not be handled by the operators?
In principle, an operator should handle errors that cannot be
handled by the application; however, the line is often blurry.

In 5 (out of 7) failure cases, the operator did not handle
errors—when the application returned an error code, the oper-
ator chose to exit (e.g., Figure 4f). It is a simple, safe strategy,
but may miss opportunities.

In the other two cases, the operator mishandled application
errors. For example, TiDBOp treated all errors in the applica-
tion pod to be transient, and waited for them to recover before
issuing any other operations. However, permanent errors can
cause the operator to hang, preventing critical operations like
upscaling that could mitigate failures. The fix is to prioritize
upscaling operations over waiting for pod recovery.

4.5 Discussion
The above study reveals the significant challenges of correctly
managing today’s cloud applications using softwarized opera-
tors. Certainly, an ultimate solution is to rethink and redesign
cloud applications that are fully autonomous, eliminating the
needs of external management. While such solutions are revo-
lutionary and fundamental, they may not be realized in a short
term. Below, we discuss potential directions to improve cloud
application manageability in a more evolutionary way.

4.5.1 The Case for Management Interfaces
There is an alarming lack of techniques to validate whether
an operator correctly follows the application’s management
operation semantics. The current practice of relying on ap-
plication documentation to implement correct operations is
error-prone—documentation is often incomplete and vague,
and sometimes even wrong. As evidence, operation semantic
violations are prevalent and have severe consequences (§4.1).
There is a pressing need to build management interfaces that
precisely describe operation semantics for applications.

We envision that application management interfaces are
much simpler programs compared to the original applica-
tion but preserve its management operation semantics. For
example, for an application API, the management interface
should precisely describe the conditions for this API to suc-
ceed, including constraints on configurations, environments,
and application states. Management interfaces should also be
versioned and evolved as the applications evolve to prevent
version incompatibility (§4.3).

Management interfaces can be used for different purposes.
We envision testing techniques that use management inter-
faces as mocks to check if an operator correctly interacts with
an application, and validation techniques that allow operators
to perform dry runs of their operations before interacting with
the application. The interfaces could also enable developers
to measure the interface complexity and evaluate the manage-
ability of their applications in a similar vein as [51, 52].

Developing management interfaces is challenging as ma-
ture applications tend to have complex management operation
semantics. We envision that management interface for each
API could be derived by preserving only the conditions that
appear along the path of the API invocation and abstracting
away other details, similar to how performance interfaces [79]
capture only latency-relevant behaviors.

4.5.2 Formal Model
We envision that the formal model of a management interface
is written as a state machine and is used as an executable spec-
ification. The state machine model naturally captures asyn-
chronous and concurrent interactions between operators and
applications. The state machine model includes actions repre-
senting all management APIs exposed by applications (e.g.,
PostgreSQL’s API to start failover), as well as background
actions (e.g., a PostgreSQL node gets in a ready state). The
model should also define a collection of bad states which are
reachable by invalid operations, such as starting failover
on an unready PostgreSQL node.

The model could enable formal verification of operator
programs. Existing verification frameworks like Anvil [108]
lack a systematic way to model the interactions between the
operator and the application. It burdens operator developers to
manually write specifications of the application APIs, which
is ad hoc and hard to be complete. In fact, a bug was found
in a ZooKeeper operator verified by Anvil, which was caused
by “an incomplete specification of a trusted ZooKeeper API
that did not cover ZooKeeper misconfigurations [108].”

The model could also enable model checking of the opera-
tor and runtime monitoring/verification. For example, model
checking the operator and the model together can detect oc-
currence of bad states (safety violations) caused by buggy
operations. Runtime verification with the model can also re-
port and block buggy operations that violate preconditions.

The model is only useful if it accurately captures the man-
agement operation semantics. A potential solution that has
been proven effective for key-value stores [54] and file sys-
tems [101] is to perform property-based testing to compare the
behavior of the model and the application. There are many ex-
citing research problems that lie in how to develop, maintain,
and even synthesize formal models as management interfaces.

4.5.3 Improving Testing of Softwarized Operators
The importance of operator reliability demands automatic test-
ing techniques for detecting defects in operator-application

interactions and preventing interaction failures. Such testing
must advance existing techniques in two aspects:

First, the tool must systematically exercise the operator-
application interactions. Specifically, it must generate opera-
tion commands that can mutate application-specific properties
through the declarative user interface.

Finding 11: 70.3% (64/91) of target failures must be trig-
gered by operation commands that change the desired states
through the declarative user interface; among them, 71.9%
(46/64) need to specify application-specific properties.

Existing tools for operator and controller testing [69, 106]
are application agnostic—they only mutate system resources
properties, but skip application-specific properties.

Second, the new tool must inject faults against applications.

Finding 12: 40.7% (37/91) of target failures need to be
triggered by external faults that occur on the applications.

No existing testing tool (Table 1) considers faults that hap-
pen to the managed applications. They only reason about
faults on the cloud platform or the operators.

5 Testing Operator-Application Interactions

Driven by the discussion in §4.5.3, we develop OAT, a sim-
ple tool for testing interactions between operators and their
managed cloud applications. OAT targets bugs that manifest
via different patterns of operator-application interaction fail-
ures (Table 4). Those bugs cannot be found by existing tools
as they are all application agnostic (see §2.2). Due to space
limit, we present the high-level implementation of OAT and
the results of applying it to several Kubernetes operators in
this section. More details can be found in §A and §B.

5.1 Implementation of OAT
OAT follows the end-to-end paradigm of operator/controller
testing that exercises the target operator together with the ap-
plication [69, 106, 123]. It organizes tests into test campaigns.
In each campaign, OAT keeps generating new operation com-
mands and/or injecting faults which drive the operator to
continuously reconcile the application, until a bug is caught
or a time budget is reached. Operation commands change
desired application states, while faults change current states.

During a test campaign, OAT monitors the application with
two key principles: (1) normal operation commands should
not affect the availability of the applications in production,
and (2) operators should handle external events correctly;
OAT only injects transient faults (a node crash, a network
delay, or a connection timeout) that are common in real-world
deployment and are expected to be handled by the operators.

OAT must address two main technical challenges:

• How to explore the state space? It is prohibitively expen-
sive to enumerate all possible application states and all
possible faults, not to mention their combinations.

• How to automatically generate application-specific opera-
tions? To detect diverse bugs, the testing tool should invoke
different types of management operations.

5.1.1 Exploring State Space
OAT takes an empirical approach to explore the application’s
state space during its test campaign. Its testing policy is driven
by our analysis (see Table 6). We separate concerns of gener-
ating operation commands that drive the operator to reconcile
the application to different desired states, (discussed in §5.1.2)
and injecting faults that disturb current application states. Dur-
ing a test campaign, OAT continuously runs tests where each
test realizes one pattern of Table 6.

The faults are injected during state reconciliation using
ChaosMesh [19]. For container crashes, OAT kills the applica-
tion container to test failover and recovery-related operations.
For network disconnection, OAT drops network requests be-
tween operator and application containers to test if the op-
erator correctly handles returned errors. For network delay,
OAT blocks network requests of the operator until it observes
subsequent ones to force a different order.

Limitation. OAT’s exploration strategy provides no guaran-
tee to exhaustively exercise all possible failure cases on the
operator-application interactions; thus it is not complete.

5.1.2 Synthesizing Application-Specific Properties

OAT generates operation commands by synthesizing applica-
tion specific properties into a desired state declaration. The
key challenge is to automatically generate different values of
application-specific properties that are semantically valid and
meaningful. Randomly fuzzing property values is ineffective,
e.g., assigning a randomly generated string to an image ID or
a ConfigMap object does not yield a valid desired state.

OAT synthesizes application-specific property values us-
ing two approaches. First, mature operator projects include
abundant developer-written unit tests, where developers cre-
ated operation commands that specify application-specific
properties (e.g., tests need to create application configuration
and specify container images). In Kubernetes, an operation
command is embodied by a declaration of a desired state. A
desired state is described by properties of Custom Resource
(CR) [5]; the resource refers to the application and properties
describe its container image, configuration, replica count, etc.

OAT extracts values of each property from different tests
and synthesizes them into new desired state. The extraction
and synthesis are done automatically, because the desired state
is defined structurally in CR Definition (CRD) [5]. Note that
OAT is not redundant with original unit tests: (1) the desired-
state declaration is synthesized from multiple examples in
different tests (using a similar idea as Frankencerts [56]),
(2) the synthesized commands are not for unit testing, but for
testing operator-application interactions. OAT requires at least
two values for each property to drive state reconciliation.

Patterns Operation Commands Faults

Se
m

an
tic

s

Configuration Update app configuration N/A

Ordering Update app-specific properties Delay operations

State Update app-specific properties Crash app container

Environment Update app security context N/A

State observability Update app-specific properties N/A

Error handling Update app-specific properties Operation timeout

Incompatibility Update app image versions N/A

Table 6: OAT’s test policies for different failure patterns.

Second, when examples from existing tests are unavailable,
OAT leverages large language models (LLMs) to generate
values for application-specific properties. OAT uses a prompt
(Figure 6) that includes the definition of the property, its de-
scription, and type information (extracted from the CRD [5]);
it asks an LLM to output valid values in a YAML format.

The two techniques complement each other—developer-
written examples are semantically valid and tend to exercise
realistic scenarios, while the LLM fallback ensures coverage
of every property. On average, 82.2% of property values of
an operator can be extracted from the artifacts in the project.

Note that the synthesis is done offline before a test cam-
paign (where OAT applies synthesized commands).

5.1.3 User Interface
With aforementioned efforts, OAT provides a fully automatic
solution for operator testing. Users only need to provide three
inputs: (1) a manifest for building and deploying the operator,
(2) the definition of state declaration (e.g., the CRD of Ku-
bernetes operators [5]), and (3) the operator repository (OAT
scans the code and configuration files to synthesize operation
commands). Note that these are standard inputs for operator
testing tools [69, 104, 123].

OAT encourages users to provide additional application-
specific utilities which will significantly enhance its ability:
State monitors. OAT cannot comprehend application-defined
states that are not reflected or not precisely encoded in state-
query API of Kubernetes. For example, in Kubernetes, appli-
cation configurations are commonly encoded in a ConfigMap
object which serializes the application file into a text blob.
It is both ineffective and brittle to check if the application
reaches desired configuration by directly comparing the blob
(see §4.2). OAT thus benefits from user-defined configuration
monitors that query application configuration and serialize
them into a unified format for equivalence check.
Application workloads. OAT also benefits from developer-
provided application workloads that can be used to measure
the availability of the cloud application. We expect normal
operations to not affect application availability. For tests with
injected faults (we only inject common, transient faults), we
expect the application availability should not drop below a
predefined threshold (95% in our evaluation).

Operator Operation State Version Error Internal TotalSemantics Observ. Compat. Handling

CassOp 7 0 1 0 2 10
KafkaOp 2 1 0 0 0 3
MariaDBOp 9 1 0 1 16 27
MinIOOp 1 0 0 0 1 2
MongoOp 18 2 1 3 2 26
TiDBOp 9 2 1 0 6 18

Total 46 6 3 4 27 86

Table 7: New bugs found by OAT in evaluated operators.

5.2 Experiment Setup
We apply OAT to six popular, mature Kubernetes operators
which manage critical cloud applications (see Table 7). We se-
lect five operators from our study (Table 2) that cover different
types of applications with different management requirements.
We would like to check whether bugs with similar patterns
still exist in the latest versions of these operators. We also
select a new operator MariaDBOp to check if our work can
generalize. We test the latest versions of these six operators
(the version is hyperlinked in Table 7).

For each operator, we provide OAT with a state monitor for
application configuration and an application workload which
measures application availability (§5.1.3), implemented in
88–208 lines of Python code. In our experience, porting a new
operator takes less than eight developer-hours.

All tests are run on CloudLab Clemson c6420 machines
with 2 Intel Xeon Gold 6142 CPUs (16 cores) and 376 GB
of memory, with Ubuntu 22.04 LTS. OAT generates 339–
2480 unique operation commands and takes 6.2–63.2 machine
hours to finish the test campaigns for each operator.

5.3 Results and Experience

Finding 13: Defects in operator-application interactions
are still prevalent, which are significant threats to operator
reliability. OAT found 86 new bugs in the six evaluated
operators; 53 were confirmed and 28 were fixed.

Table 7 presents the bugs found by OAT of different pat-
terns in each operator. OAT detected 86 new bugs and reported
no false alarm (see §B.2). OAT found bugs in every tested
operator and bugs in all studied patterns. The result shows that
operator reliability is a significant concern—existing software
engineering practices used by the operator projects cannot
effectively prevent defects in operators in terms of their inter-
actions with the cloud applications. Note that all the studied
operator projects have extensive unit and integration tests.

The failure patterns of detected bugs match our expected
distribution (see Table 4). Violations of the application’s man-
agement operation semantics are the largest category (46 out
of 86). Among them, 33 bugs violate the semantics of applica-
tion configuration; 6 bugs violate preconditions of operations;
2 bugs set up incorrect execution environment; 5 bugs violate
order dependencies of multiple operations.

Finding 14: Existing documents on application manage-
ment are too vague to follow and miss important manage-
ment operation semantics.

For 13 (out of 46) operation semantic violations found by
OAT, no document describes the semantics. In CassOp-695,
the requirements for changing num_tokens on an existing
Cassandra cluster are not specified in the official Cassandra
document, but only exist in online blog posts [7] or experience
reports [16]. The CassOp did not implement the semantic re-
quirements for changing num_tokens, causing the Cassandra
cluster to crash after the reconfiguration.

The rest 33 operation semantic violations have documents,
but were incorrectly implemented by the operators. We found
that some of the operation semantics are too vague to rigor-
ously follow. In MariaDBOp-1226, the MariaDB document
specifies the precondition for restarting a node as “transfer
all client connections from the node you are about to upgrade
to the other nodes [14]” without specifying the concrete op-
erations needed to transfer the client connections. The more
concrete precondition is to perform primary stepdown before
restarting the primary. Some operation semantics are scattered
around the document which are hard to find. For example,
one of the preconditions for the MariaDB recovery operation
is specified in the known issue section [8].

Finding 15: OAT exposed diverse patterns of code bugs at
the operator-application boundary. In particular, 62.8% of
the bugs found manifest through code-level patterns that do
not appear in our study, showing the challenges of imple-
menting reliable operators and the breadth of bug spectrum.

OAT tests operator-application interactions without assum-
ing particular code idioms. Therefore, it can find diverse bug
patterns that manifest through the interaction failures. Among
the 86 new bugs, only 37.2% (32) match the code-level pat-
terns previously catalogued in our study (§4). The remaining
62.8% highlight that implementing operators reliably cannot
be assured by targeting known faulty patterns alone. Many
failures arise because the operator-application interface is
under-specified and embeds implicit semantics. We summa-
rize new bug patterns uncovered by OAT:
• Silent configuration overruling. Configuration updates are

silently overruled by the operator due to buggy logic when
merging updated with existing values. In MongoOp-1335,
MongoOp hardcoded the tlsMode argument which over-
writes any changes of the net.tls.mode parameter.

• Configuration-operation dependency. Some configuration
changes require operations beyond updating parameter
values. For example, updating directoryperdb for Mon-
goDB requires creating a backup, stopping the MongoDB
instance, updating the directoryperdb value, restarting
the MongoDB instance, and restoring from the backup.
In MongoOp-1241, MongoOp changes directoryperdb
without these operations, causing MongoDB to crash.

https://github.com/k8ssandra/cass-operator/tree/v1.22.1
https://github.com/strimzi/strimzi-kafka-operator/tree/0.45.0
https://github.com/mariadb-operator/mariadb-operator/tree/helm-chart-0.30.0
https://github.com/minio/operator/tree/v7.0.0
https://github.com/percona/percona-server-mongodb-operator/tree/v1.16.0
https://github.com/pingcap/tidb-operator/tree/v1.6.0
https://github.com/mariadb-operator/mariadb-operator
https://github.com/k8ssandra/cass-operator/issues/695
https://github.com/mariadb-operator/mariadb-operator/issues/1226
https://perconadev.atlassian.net/browse/K8SPSMDB-1335
https://perconadev.atlassian.net/browse/K8SPSMDB-1241

• Brittle observability. Operators use probes that only apply
to specific configurations. In MariaDBOp-1096, MariaD-
BOp uses a prepared query statement as the liveness probe.
This query statement is broken when MariaDB is config-
ured with max_prepared_stmt_count=1, causing MariaD-
BOp to keep restarting healthy MariaDB instances.

• Version incompatibility between application components.
In MongoOp-1157, downgrading the MongoDB cluster
from v7.0.8 to v6.0.15 causes the MongoOp to become
stuck in an intermediate state where mongos instances are
running in v7.0.8, and mongod is running in v6.0.15. The
incompatibility causes the mongos instances to become
unhealthy, while MongoOp waits for them to become ready.

• Internal bugs. 27 bugs are triggered by operator-application
interactions but stem from internal issues (Table 7). OAT
exposed bugs that result in inconsistencies between the
application interface and its implementation. In MDEV-
35754, MariaDB’s configuration interface specifies 512
MB max for transaction_prealloc_size but code allows
only 128 MB. OAT also exposed operator’s internal bugs
(e.g., nil pointer dereference [45]). This further shows the
challenges of hardening already under-specified interfaces.

Finding 16: 43.0% (37/86) of the bugs require application-
specific state monitors and workloads to capture.

These bugs cannot be captured by regular oracles that check
crashing behavior, error logs, or state objects (used by prior
work [69]). Instead, they are manifested through inconsisten-
cies between application configuration states and the Con-
figMap object (33 bugs) and transient application unavailabil-
ity (4 bugs). In MongoOp-1334, MongoOp uses TCP connec-
tion success as the readiness probe for MongoDB. During a
rolling upgrade, MongoOp restarts each MongoDB instance
only after confirming the previous instance to be fully ready
to ensure the majority quorum. However, MongoDB may suc-
cessfully establish TCP connection but in the booting phase.

6 Related Work
We discussed recent efforts on improving reliability of con-
trollers and operators in §2.2. The most related work is
Acto [68,69] which is the only technique that targets operators
for cloud applications (the others all target controllers). How-
ever, Acto does not address operator-application interactions,
which, as shown by our study, is a major cause of operator
failures. OAT is inspired by Acto and adopts its end-to-end
testing paradigm. Unlike Acto, OAT focuses on application-
specific properties to exercise how the operator manages the
cloud application. OAT also considers various faults, while
Acto only performs functional testing without external faults.

Xu et al. [115] characterize how generic software bugs man-
ifest in operators. Our work differs in three aspects. First, we
focus on understanding the essential complexity of softwariz-
ing cloud application management rather than bug character-
ization. Second, their study characterizes generic software

bugs in operators, whereas we focus on operator failures man-
ifested through the interactions between operators and cloud
applications; we find interaction failures are dominant root
causes but largely overlooked. Third, we emphasize potential
solutions in addition to bug characteristics—advocating for
rethinking management interfaces and developing OAT to test
operator-application interactions.

The operator-application interaction failures can be viewed
as a special kind of cross-system interaction failures [112].
Operators are not involved in the control and data planes
of cloud applications; they construct the management plane.
They interface with cloud applications’ internal management
components which were studied in [112].

Our work is complementary to studies on reliability of
Infrastructure-as-Code (IaC) [66,75,98,99]. Unlike IaC which
mostly handles one-shot, static infrastructure deployment,
operators manage the entire application lifecycle, handling
continuous upgrades, runtime reconfiguration, failover, re-
covery, etc. This increased complexity forces operators to
reason about evolving application states and understand ap-
plication management operation semantics, which IaC scripts
do not commonly address. Consequently, bugs in IaC scripts
typically surface at first deployment, whereas operator bugs
emerge during reconciliation of applications in production.

Prior work validates the implementation correctness of
cloud application interface semantics [89, 90]. In contrast,
we focus on operation semantics correctness: misuses of the
management interface that violate operation requirements.

Our work is also inspired by work on network management
analysis [49,51,52,58,114], especially those on management
complexity from a reliability perspective. Compared with
routers and switches, cloud applications are more diverse and
complex, creating new challenges for management operations.

7 Concluding Remarks
We discussed the essential challenges of softwarizing cloud
application management based on 412 real-world operator
failures and developed OAT, a testing tool which exposed 86
new bugs in six popular Kubernetes operators, showing that
reliability remains a major concern. We advocate to rethink
the management interface, and envision formal specifications
as interfaces to enable various systematic testing and verifica-
tion techniques. As cloud applications scale and evolve, man-
ageability must return as a first-class design principle [53],
especially as operators shift toward software and AI.

Acknowledgement
We thank the anonymous reviewers, and our shepherd, Chang
Lou, for their insightful comments. We thank Wentao Zhang,
Thrivikraman Varadharajan, Tianyi Huang, and Zhixing
(Mark) Zhang for helping study operator issues. This work
was funded in part by NSF CNS-2145295, CNS-2130560,
SHF-2312321, and an IIDAI Entrepreneurship grant.

https://github.com/mariadb-operator/mariadb-operator/issues/1096
https://perconadev.atlassian.net/browse/K8SPSMDB-1157
https://jira.mariadb.org/browse/MDEV-35754
https://jira.mariadb.org/browse/MDEV-35754
https://perconadev.atlassian.net/browse/K8SPSMDB-1334

References

[1] Cloud Native Computing Foundation Operator White
Paper. https://www.cncf.io/wp-content/uploads/
2021/07/CNCF_Operator_WhitePaper.pdf.

[2] ConfigMaps. https://kubernetes.io/docs/
concepts/configuration/configmap.

[3] Configure Liveness, Readiness and Startup Probes.
https://kubernetes.io/docs/tasks/configure-
pod-container/configure-liveness-readiness-
startup-probes.

[4] Consistent Reads from Cache. https://
github.com/kubernetes/enhancements/blob/
77044f023b737d42d30d4d99015a12556ea099a1/
keps/sig-api-machinery/2340-Consistent-reads-
from-cache/README.md.

[5] Custom Resources. https://kubernetes.io/docs/
concepts/extend-kubernetes/api-extension/
custom-resources/.

[6] Helm Charts. https://helm.sh/.

[7] How to tweak the number of num_tokens (vnodes) in live
Cassandra cluster. https://www.pythian.com/blog/
technical-track/tweak-number-of-num_tokens-
vnodes-in-live-cassandra-cluster.

[8] MariaDB Known Issues: You Must Enable Exactly N Storage
Engines. https://mariadb.com/kb/en/transaction-
coordinator-log-overview/#known-issues.

[9] Objects In Kubernetes. https://kubernetes.io/docs/
concepts/overview/working-with-objects.

[10] Operator Pattern. https://kubernetes.io/docs/
concepts/extend-kubernetes/operator/.

[11] Persistent Volumes. https://kubernetes.io/docs/
concepts/storage/persistent-volumes.

[12] Pods. https://kubernetes.io/docs/concepts/
workloads/pods.

[13] Service. https://kubernetes.io/docs/concepts/
services-networking/service.

[14] Upgrade Galera Cluster. https://mariadb.com/docs/
galera-cluster/galera-management/upgrading-
galera-cluster.

[15] Why we can’t have nice things: implementing transactions
in Kubernetes. https://kcsna2024.sched.com/event/
1nSjl.

[16] Cassandra vnodes: can I lower the number on slower
nodes and expect rebalancing to occur automati-
cally? https://stackoverflow.com/questions/
32416642/cassandra-vnodes-can-i-lower-
the-number-on-slower-nodes-and-expect-
rebalancing/32419325#32419325, 2015.

[17] Ensure operator moves pods from a decommissioned
node. https://github.com/zalando/postgres-
operator/issues/429, 2018.

[18] Improve failover during rolling updates. https://github.
com/zalando/postgres-operator/issues/600, 2019.

[19] Chaos mesh — a solution for system resiliency on kuber-
netes. https://dzone.com/articles/chaos-mesh-a-
chaos-engineering-solution-for-system, 2020.

[20] KafkaConnector resources restarting every 2 minutes.
https://github.com/strimzi/strimzi-kafka-
operator/issues/2981, 2020.

[21] Make LivenessProbe,ReadinessProbe initialdelaysec-
onds,timeout configurable through CRD. https://github.
com/pravega/zookeeper-operator/issues/275,
2020.

[22] Migration from sharding to replica set doesn’t work in some
cases. https://perconadev.atlassian.net/browse/
K8SPSMDB-345, 2020.

[23] Operator status must reflect the status of mongos. https://
perconadev.atlassian.net/browse/K8SPSMDB-302,
2020.

[24] PD placement rules should be enabled if using Ti-
Flash. https://github.com/pingcap/tidb-
operator/issues/2219, 2020.

[25] Pooler issue after upgrade to 1.5. With “error: unexpected
response from login query”. . https://github.com/
zalando/postgres-operator/issues/1060, 2020.

[26] Schema creation failed with permission error in prepared-
Databases. https://github.com/zalando/postgres-
operator/issues/1130, 2020.

[27] zoo.cfg updated parameters are not picked up during rolling
restarts. https://github.com/pravega/zookeeper-
operator/issues/222, 2020.

[28] Backup doesn’t start with current main images. https://
perconadev.atlassian.net/browse/K8SPSMDB-584,
2021.

[29] Default privileges are not set in public schema.
https://github.com/zalando/postgres-operator/
issues/1420, 2021.

[30] Topic Operator failing to start with
io.vertx.core.VertxException: Thread blocked.
https://github.com/strimzi/strimzi-kafka-
operator/issues/6046, 2021.

[31] Try to behave better when upgrading ephemeral
SolrClouds. https://github.com/apache/solr-
operator/issues/365, 2021.

[32] FATAL: data directory “/var/lib/postgresql/data/pgdata”
has invalid permissions’ when bootstrapping cluster
from backup. https://github.com/cloudnative-pg/
cloudnative-pg/issues/625, 2022.

[33] Improve components’ readiness check mecha-
nisms. https://github.com/pingcap/tidb-
operator/issues/4760, 2022.

[34] Manual action required to expand MinIO tenant. https:
//github.com/minio/operator/issues/995, 2022.

[35] No switchover candidate found. https://github.com/
zalando/postgres-operator/issues/1992, 2022.

https://www.cncf.io/wp-content/uploads/2021/07/CNCF_Operator_WhitePaper.pdf
https://www.cncf.io/wp-content/uploads/2021/07/CNCF_Operator_WhitePaper.pdf
https://kubernetes.io/docs/concepts/configuration/configmap
https://kubernetes.io/docs/concepts/configuration/configmap
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes
https://github.com/kubernetes/enhancements/blob/77044f023b737d42d30d4d99015a12556ea099a1/keps/sig-api-machinery/2340-Consistent-reads-from-cache/README.md
https://github.com/kubernetes/enhancements/blob/77044f023b737d42d30d4d99015a12556ea099a1/keps/sig-api-machinery/2340-Consistent-reads-from-cache/README.md
https://github.com/kubernetes/enhancements/blob/77044f023b737d42d30d4d99015a12556ea099a1/keps/sig-api-machinery/2340-Consistent-reads-from-cache/README.md
https://github.com/kubernetes/enhancements/blob/77044f023b737d42d30d4d99015a12556ea099a1/keps/sig-api-machinery/2340-Consistent-reads-from-cache/README.md
https://github.com/kubernetes/enhancements/blob/77044f023b737d42d30d4d99015a12556ea099a1/keps/sig-api-machinery/2340-Consistent-reads-from-cache/README.md
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://helm.sh/
https://www.pythian.com/blog/technical-track/tweak-number-of-num_tokens-vnodes-in-live-cassandra-cluster
https://www.pythian.com/blog/technical-track/tweak-number-of-num_tokens-vnodes-in-live-cassandra-cluster
https://www.pythian.com/blog/technical-track/tweak-number-of-num_tokens-vnodes-in-live-cassandra-cluster
https://mariadb.com/kb/en/transaction-coordinator-log-overview/#known-issues
https://mariadb.com/kb/en/transaction-coordinator-log-overview/#known-issues
https://kubernetes.io/docs/concepts/overview/working-with-objects
https://kubernetes.io/docs/concepts/overview/working-with-objects
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/workloads/pods
https://kubernetes.io/docs/concepts/workloads/pods
https://kubernetes.io/docs/concepts/services-networking/service
https://kubernetes.io/docs/concepts/services-networking/service
https://mariadb.com/docs/galera-cluster/galera-management/upgrading-galera-cluster
https://mariadb.com/docs/galera-cluster/galera-management/upgrading-galera-cluster
https://mariadb.com/docs/galera-cluster/galera-management/upgrading-galera-cluster
https://kcsna2024.sched.com/event/1nSjl
https://kcsna2024.sched.com/event/1nSjl
https://stackoverflow.com/questions/32416642/cassandra-vnodes-can-i-lower-the-number-on-slower-nodes-and-expect-rebalancing/32419325#32419325
https://stackoverflow.com/questions/32416642/cassandra-vnodes-can-i-lower-the-number-on-slower-nodes-and-expect-rebalancing/32419325#32419325
https://stackoverflow.com/questions/32416642/cassandra-vnodes-can-i-lower-the-number-on-slower-nodes-and-expect-rebalancing/32419325#32419325
https://stackoverflow.com/questions/32416642/cassandra-vnodes-can-i-lower-the-number-on-slower-nodes-and-expect-rebalancing/32419325#32419325
https://github.com/zalando/postgres-operator/issues/429
https://github.com/zalando/postgres-operator/issues/429
https://github.com/zalando/postgres-operator/issues/600
https://github.com/zalando/postgres-operator/issues/600
https://dzone.com/articles/chaos-mesh-a-chaos-engineering-solution-for-system
https://dzone.com/articles/chaos-mesh-a-chaos-engineering-solution-for-system
https://github.com/strimzi/strimzi-kafka-operator/issues/2981
https://github.com/strimzi/strimzi-kafka-operator/issues/2981
https://github.com/pravega/zookeeper-operator/issues/275
https://github.com/pravega/zookeeper-operator/issues/275
https://perconadev.atlassian.net/browse/K8SPSMDB-345
https://perconadev.atlassian.net/browse/K8SPSMDB-345
https://perconadev.atlassian.net/browse/K8SPSMDB-302
https://perconadev.atlassian.net/browse/K8SPSMDB-302
https://github.com/pingcap/tidb-operator/issues/2219
https://github.com/pingcap/tidb-operator/issues/2219
https://github.com/zalando/postgres-operator/issues/1060
https://github.com/zalando/postgres-operator/issues/1060
https://github.com/zalando/postgres-operator/issues/1130
https://github.com/zalando/postgres-operator/issues/1130
https://github.com/pravega/zookeeper-operator/issues/222
https://github.com/pravega/zookeeper-operator/issues/222
https://perconadev.atlassian.net/browse/K8SPSMDB-584
https://perconadev.atlassian.net/browse/K8SPSMDB-584
https://github.com/zalando/postgres-operator/issues/1420
https://github.com/zalando/postgres-operator/issues/1420
https://github.com/strimzi/strimzi-kafka-operator/issues/6046
https://github.com/strimzi/strimzi-kafka-operator/issues/6046
https://github.com/apache/solr-operator/issues/365
https://github.com/apache/solr-operator/issues/365
https://github.com/cloudnative-pg/cloudnative-pg/issues/625
https://github.com/cloudnative-pg/cloudnative-pg/issues/625
https://github.com/pingcap/tidb-operator/issues/4760
https://github.com/pingcap/tidb-operator/issues/4760
https://github.com/minio/operator/issues/995
https://github.com/minio/operator/issues/995
https://github.com/zalando/postgres-operator/issues/1992
https://github.com/zalando/postgres-operator/issues/1992

[36] Number of client connections not reevaluated dynamically
in the teardown script. https://github.com/pravega/
zookeeper-operator/issues/482, 2022.

[37] PMM client cannot connect to mongodb when requireTLS
mode activated. https://perconadev.atlassian.net/
browse/K8SPSMDB-765, 2022.

[38] Single node PG 15 cluster stuck in Taking first backup.
https://github.com/cloudnative-pg/cloudnative-
pg/issues/896, 2022.

[39] Bug: Cluster unrecoverable because of incorrect pri-
mary_slot_name. https://github.com/cloudnative-
pg/cloudnative-pg/issues/3588, 2023.

[40] BUG: pg_hba.conf is not valid for postgresql-patroni-
ha. https://github.com/apecloud/kubeblocks/
issues/2184, 2023.

[41] Cluster unready after switching from expose LoadBalancer
to ClusterIP. https://perconadev.atlassian.net/
browse/K8SPSMDB-841, 2023.

[42] Data lost when inject network delay fault to Redis
cluster. https://github.com/apecloud/kubeblocks/
issues/5107, 2023.

[43] Failover fails with synchronous_mode and 2 in-
stances. https://github.com/zalando/postgres-
operator/issues/2276, 2023.

[44] Support managed scale down of SolrClouds. https:
//github.com/apache/solr-operator/issues/559,
2023.

[45] Cass-operator crashes when using configSecret for Cassandra
configuration. https://github.com/k8ssandra/cass-
operator/issues/705, 2024.

[46] Check if the CLUSTER_JOIN endpoint is ready instead
of just resolving it. https://github.com/apecloud/
kubeblocks/issues/6390, 2024.

[47] Liveness probe failing for Prometheus Exporter connected to
a large SolrCloud. https://github.com/apache/solr-
operator/issues/693, 2024.

[48] Operator doesn’t revalidate cluster state if node decommis-
sion failed due to disk size check. https://github.com/
k8ssandra/cass-operator/issues/639, 2024.

[49] AKELLA, A., AND MAHAJAN, R. A Call to Arms for Man-
agement Plane Analytics. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (HotNets-XIII) (2014).

[50] BARLETTA, M., CINQUE, M., DI MARTINO, C., KALBAR-
CZYK, Z. T., AND IYER, R. K. Mutiny! How Does Kuber-
netes Fail, and What Can We Do About It? . In 2024 54th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’24) (June 2024).

[51] BENSON, T., AKELLA, A., AND MALTZ, D. Unraveling the
Complexity of Network Management. In Proceedings of the
6th USENIX Symposium on Networked System Design and
Implementation (NSDI’09) (Apr. 2009).

[52] BENSON, T., AKELLA, A., AND SHAIKH, A. Demystifying
Configuration Challenges and Trade-Offs in Network-based

ISP Services. In Proceedings of 2011 Annual Conference
of the ACM Special Interest Group on Data Communication
(SIGCOMM’11) (Aug. 2011).

[53] BIANCHINI, R., MARTIN, R. P., NAGARAJA, K., NGUYEN,
T. D., AND OLIVEIRA, F. Human-Aware Computer System
Design. In Proceedings of the 10th Workshop on Hot Topics
in Operating Systems (HotOS-X) (June 2005).

[54] BORNHOLT, J., JOSHI, R., ASTRAUSKAS, V., CULLY, B.,
KRAGL, B., MARKLE, S., SAURI, K., SCHLEIT, D., SLAT-
TON, G., TASIRAN, S., VAN GEFFEN, J., AND WARFIELD,
A. Using Lightweight Formal Methods to Validate a Key-
Value Storage Node in Amazon S3. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP’21)
(Oct. 2021).

[55] BROWN, A. B., AND PATTERSON, D. A. Undo for Operators:
Building an Undoable E-mail Store. In Proceedings of the
2003 USENIX Annual Technical Conference (ATC’03) (June
2003).

[56] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND

SHMATIKOV, V. Using Frankencerts for Automated Adver-
sarial Testing of Certificate Validation in SSL/TLS Imple-
mentations. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy (SP’14) (May 2014).

[57] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E.,
AND WILKES, J. Borg, Omega, and Kubernetes. Communi-
cations of the ACM 59, 5 (May 2016), 50–57.

[58] CANINI, M., VENZANO, D., PEREŠÍNI, P., KOSTIĆ, D.,
AND REXFORD, J. A NICE Way to Test OpenFlow Ap-
plications. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI’12)
(Apr. 2012).

[59] CEBULA, M., AND SHERROD, B. 10 Weird Ways to Blow Up
Your Kubernetes. In KubeCon North America (Nov. 2019).

[60] CHEKRYGIN, I. Keep the Space Shuttle Flying: Writing
Robust Operators. In KubeCon Europe (May 2019).

[61] CHEN, Q., WANG, T., LEGUNSEN, O., LI, S., AND XU,
T. Understanding and Discovering Software Configuration
Dependencies in Cloud and Datacenter Systems. In Proceed-
ings of the 2020 ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’20) (Nov. 2020).

[62] CHEN, Y., PAN, J., CLARK, J., SU, Y., ZHEUTLIN, N.,
BHAVYA, B., ARORA, R., DENG, Y., JHA, S., AND XU,
T. Stratus: A Multi-agent System for Autonomous Reliabil-
ity Engineering of Modern Clouds. In Proceedings of the
39th Annual Conference on Neural Information Processing
Systems (NeurIPS’25) (Dec. 2025).

[63] CHEN, Y., SHETTY, M., SOMASHEKAR, G., MA, M.,
SIMMHAN, Y., MACE, J., BANSAL, C., WANG, R., AND RA-
JMOHAN, S. AIOpsLab: A Holistic Framework to Evaluate
AI Agents for Enabling Autonomous Clouds. In Proceed-
ings of the 8th Annual Conference on Machine Learning and
Systems (MLSys’25) (May 2025).

[64] CHEN, Y., SUN, X., NATH, S., YANG, Z., AND XU, T. Push-
Button Reliability Testing for Cloud-Backed Applications

https://github.com/pravega/zookeeper-operator/issues/482
https://github.com/pravega/zookeeper-operator/issues/482
https://perconadev.atlassian.net/browse/K8SPSMDB-765
https://perconadev.atlassian.net/browse/K8SPSMDB-765
https://github.com/cloudnative-pg/cloudnative-pg/issues/896
https://github.com/cloudnative-pg/cloudnative-pg/issues/896
https://github.com/cloudnative-pg/cloudnative-pg/issues/3588
https://github.com/cloudnative-pg/cloudnative-pg/issues/3588
https://github.com/apecloud/kubeblocks/issues/2184
https://github.com/apecloud/kubeblocks/issues/2184
https://perconadev.atlassian.net/browse/K8SPSMDB-841
https://perconadev.atlassian.net/browse/K8SPSMDB-841
https://github.com/apecloud/kubeblocks/issues/5107
https://github.com/apecloud/kubeblocks/issues/5107
https://github.com/zalando/postgres-operator/issues/2276
https://github.com/zalando/postgres-operator/issues/2276
https://github.com/apache/solr-operator/issues/559
https://github.com/apache/solr-operator/issues/559
https://github.com/k8ssandra/cass-operator/issues/705
https://github.com/k8ssandra/cass-operator/issues/705
https://github.com/apecloud/kubeblocks/issues/6390
https://github.com/apecloud/kubeblocks/issues/6390
https://github.com/apache/solr-operator/issues/693
https://github.com/apache/solr-operator/issues/693
https://github.com/k8ssandra/cass-operator/issues/639
https://github.com/k8ssandra/cass-operator/issues/639

with Rainmaker. In Proceedings of the 20th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI’23) (Apr. 2023).

[65] DOBIES, J., AND WOOD, J. Kubernetes Operators: Automat-
ing the Container Orchestration Platform. O’Reilly Media,
Inc., 2020.

[66] DROSOS, G.-P., SOTIROPOULOS, T., ALEXOPOULOS, G.,
MITROPOULOS, D., AND SU, Z. When Your Infrastructure Is
a Buggy Program: Understanding Faults in Infrastructure as
Code Ecosystems. Proc. ACM Program. Lang. (Oct. 2024).

[67] GANATRA, V., PARAYIL, A., GHOSH, S., KANG, Y., MA,
M., BANSAL, C., NATH, S., AND MACE, J. Detection Is
Better Than Cure: A Cloud Incidents Perspective. In Proceed-
ings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’23) (Nov. 2023).

[68] GU, J. T., SUN, X., TANG, Z., WANG, C., VAZIRI, M., LE-
GUNSEN, O., AND XU, T. Acto: Push-Button End-to-End
Testing for Operation Correctness of Kubernetes Operators.
USENIX ;login: (Aug. 2024).

[69] GU, J. T., SUN, X., ZHANG, W., JIANG, Y., WANG, C.,
VAZIRI, M., LEGUNSEN, O., AND XU, T. Acto: Automatic
End-to-End Testing for Operation Correctness of Cloud Sys-
tem Management. In Proceedings of the 29th Symposium on
Operating Systems Principles (SOSP’23) (Oct. 2023).

[70] GUILLOUX, S. Writing a Kubernetes Operator: the Hard
Parts. In KubeCon North America (Nov. 2019).

[71] GUNAWI, H. S., RUBIO-GONZÁLEZ, C., ARPACI-
DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND LIBLIT,
B. EIO: Error Handling is Occasionally Correct. In
Proceedings of the 6th USENIX Conference on File and
Storage Technologies (FAST’08) (Feb. 2008).

[72] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOLLIHER,
C., SUNDARARAMAN, S., LIN, X., EMAMI, T., SHENG, W.,
BIDOKHTI, N., MCCAFFREY, C., SRINIVASAN, D., PANDA,
B., BAPTIST, A., GRIDER, G., FIELDS, P. M., HARMS, K.,
ROSS, R. B., JACOBSON, A., RICCI, R., WEBB, K., AL-
VARO, P., RUNESHA, H. B., HAO, M., AND LI, H. Fail-Slow
at Scale: Evidence of Hardware Performance Faults in Large
Production Systems. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies (FAST’18) (Feb.
2018).

[73] HAASE, S. How an Operator Becomes the Hero of the Edge.
In OperatorCon (May 2019).

[74] HALL, C. AWS, Google, Microsoft, Red Hat’s New Registry
to Act as Clearing House for Kubernetes Operators. https:
//www.datacenterknowledge.com/open-source/aws-
google-microsoft-red-hats-new-registry-act-
clearing-house-kubernetes-operators, Mar. 2019.

[75] HASSAN, M. M., SALVADOR, J., SANTU, S. K. K., AND

RAHMAN, A. State Reconciliation Defects in Infrastructure
as Code. In Proceedings of the ACM on Software Engineering
(July 2024).

[76] HUANG, L., MAGNUSSON, M., MURALIKRISHNA, A. B.,
ESTYAK, S., ISAACS, R., AGHAYEV, A., ZHU, T., AND

CHARAPKO, A. Metastable Failures in the Wild. In Proceed-
ings of the 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’22) (July 2022).

[77] HUANG, P., GUO, C., LORCH, J. R., ZHOU, L., AND DANG,
Y. Capturing and Enhancing In Situ System Observability for
Failure Detection. In Proceedings of the 13th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI’18) (Oct. 2018).

[78] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG,
Y., CHINTALAPATI, M., AND YAO, R. Gray Failure: The
Achilles’ Heel of Cloud-Scale Systems. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems (HotOS-
XVI) (May 2017).

[79] IYER, R., MA, J., ARGYRAKI, K., CANDEA, G., AND RAT-
NASAMY, S. The Case for Performance Interfaces for Hard-
ware Accelerators. In Proceedings of the 19th Workshop on
Hot Topics in Operating Systems (HOTOS-XIX) (2023).

[80] JHA, S., ARORA, R., WATANABE, Y., YANAGAWA, T.,
CHEN, Y., CLARK, J., BHAVYA, B., VERMA, M., KU-
MAR, H., KITAHARA, H., ZHEUTLIN, N., TAKANO, S.,
PATHAK, D., GEORGE, F., WU, X., TURKKAN, B. O., VAN-
LOO, G., NIDD, M., DAI, T., CHATTERJEE, O., GUPTA,
P., SAMANTA, S., AGGARWAL, P., LEE, R., MURALI, P.,
AHN, J.-W., KAR, D., RAHANE, A., FONSECA, C., PARAD-
KAR, A., DENG, Y., MOOGI, P., MOHAPATRA, P., ABE, N.,
NARAYANASWAMI, C., XU, T., VARSHNEY, L. R., MAHIN-
DRU, R., SAILER, A., SHWARTZ, L., SOW, D., FULLER, N.
C. M., AND PURI, R. ITBench: Evaluating AI Agents across
Diverse Real-World IT Automation Tasks. In Proceedings
of the 42th International Conference on Machine Learning
(ICML’25) (July 2025).

[81] KUMAR, H., AND ŠAFRÁNEK, J. Storage on Kubernetes -
Learning From Failures. In KubeCon North America (Nov.
2019).

[82] LAGRESLE, M. Moving to Kubernetes: the Bad and the Ugly.
In ContainerDays (June 2019).

[83] LANDER, R. Kubernetes Operators: Should You Use
Them? https://tanzu.vmware.com/developer/blog/
kubernetes-operators-should-you-use-them/, July
2021. VMware Blog.

[84] LENERS, J. B., GUPTA, T., AGUILERA, M. K., AND WAL-
FISH, M. Improving Availability in Distributed Systems with
Failure Informers. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementation
(NSDI’13) (Apr. 2013).

[85] LENERS, J. B., WU, H., HUNG, W.-L., AGUILERA, M. K.,
AND WALFISH, M. Detecting failures in distributed systems
with the Falcon spy network. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (SOSP’11) (Oct.
2011).

[86] LI, A., LU, S., NATH, S., PADHYE, R., AND SEKAR, V.
ExChain: Exception Dependency Analysis for Root Cause
Diagnosis. In 21st USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’24) (Apr. 2024).

[87] LIU, B., LIM, G., BECKETT, R., AND GODFREY, P. B. Kivi:
Verification for Cluster Management. In Proceedings of the

https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://www.datacenterknowledge.com/open-source/aws-google-microsoft-red-hats-new-registry-act-clearing-house-kubernetes-operators
https://tanzu.vmware.com/developer/blog/kubernetes-operators-should-you-use-them/
https://tanzu.vmware.com/developer/blog/kubernetes-operators-should-you-use-them/

2024 USENIX Annual Technical Conference (ATC’24) (July
2024).

[88] LOU, C., HUANG, P., AND SMITH, S. Understanding, Detect-
ing and Localizing Partial Failures in Large System Software.
In Proceedings of the 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’20) (Feb. 2020).

[89] LOU, C., JING, Y., AND HUANG, P. Demystifying and
Checking Silent Semantic Violations in Large Distributed
Systems. In Proceedings of the 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’22)
(July 2022).

[90] LOU, C., PARIKESIT, D. S., HUANG, Y., YANG, Z., DI-
WANGKARA, S., JING, Y., KISTIJANTORO, A. I., YUAN,
D., NATH, S., AND HUANG, P. Deriving Semantic Checkers
from Tests to Detect Silent Failures in Production Distributed
Systems. In Proceedings of the 19th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’25)
(July 2025).

[91] MEHTA, S., BHAGWAN, R., KUMAR, R., ASHOK, B.,
BANSAL, C., MADDILA, C., BIRD, C., ASTHANA, S., AND

KUMAR, A. Rex: Preventing Bugs and Misconfiguration
in Large Services using Correlated Change Analysis. In
Proceedings of the 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’20) (Feb. 2020).

[92] MELISSARIS, T., NABAR, K., RADUT, R., REHMTULLA, S.,
SHI, A., CHANDRASHEKAR, S., AND PAPAPANAGIOTOU, I.
Elastic Cloud Services: Scaling Snowflake’s Control Plane.
In Proceedings of the 13th ACM Symposium on Cloud Com-
puting (SOCC’22) (Nov. 2022).

[93] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MARTIN,
R. P., AND NGUYEN, T. D. Understanding and Dealing with
Operator Mistakes in Internet Services. In Proceedings of the
6th USENIX Conference on Operating Systems Design and
Implementation (OSDI’04) (Dec. 2004).

[94] OLIVEIRA, F., TJANG, A., BIANCHINI, R., MARTIN, R. P.,
AND NGUYEN, T. D. Barricade: Defending Systems Against
Operator Mistakes. In Proceedings of the 5th European Con-
ference on Computer Systems (EuroSys’10) (Apr. 2010).

[95] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON,
D. A. Why Do Internet Services Fail, and What Can Be
Done About It? In Proceedings of the 4th USENIX Sympo-
sium on Internet Technologies and Systems (USITS’03) (Mar.
2003).

[96] PANDA, B., SRINIVASAN, D., KE, H., GUPTA, K., KHOT,
V., AND GUNAWI, H. S. IASO: A Fail-Slow Detection and
Mitigation Framework for Distributed Storage Services. In
Proceedings of the 2019 USENIX Annual Technical Confer-
ence (ATC’19) (July 2019).

[97] PATTERSON, D., BROWN, A., BROADWELL, P., CANDEA,
G., CHEN, M., CUTLER, J., ENRIQUEZ, P., FOX, A., KICI-
MAN, E., MERZBACHER, M., OPPENHEIMER, D., SASTRY,
N., TETZLAFF, W., TRAUPMAN, J., AND TREUHAFT, N.
Recovery-Oriented Computing (ROC): Motivation, Defini-
tion, Techniques, and Case Studies. Tech. Rep. UCB//CSD-
02-1175, University of California Berkeley, Mar. 2002.

[98] RAHMAN, A., FARHANA, E., PARNIN, C., AND WILLIAMS,
L. Gang of Eight: A Defect Taxonomy for Infrastructure
as Code Scripts. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE
’20) (Oct. 2020).

[99] RAHMAN, A., PARNIN, C., AND WILLIAMS, L. The Seven
Sins: Security Smells in Infrastructure as Code Scripts. In
Proceedings of the 41st International Conference on Software
Engineering (ICSE’19) (May 2019).

[100] RATIS, P. Lessons Learned using the Operator Pattern to build
a Kubernetes Platform. In USENIX SREcon (Oct. 2021).

[101] RIDGE, T., SHEETS, D., TUERK, T., GIUGLIANO, A., MAD-
HAVAPEDDY, A., AND SEWELL, P. SibylFS: Formal Specifi-
cation and Oracle-based Testing for POSIX and Real-world
File Systems. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP’15) (Oct. 2015).

[102] SHETTY, M., CHEN, Y., SOMASHEKAR, G., MA, M.,
SIMMHAN, Y., ZHANG, X., MACE, J., VANDEVOORDE, D.,
LAS-CASAS, P., GUPTA, S. M., NATH, S., BANSAL, C.,
AND RAJMOHAN, S. Building AI Agents for Autonomous
Clouds: Challenges and Design Principles. In Proceedings of
15th ACM Symposium on Cloud Computing (SoCC’24) (Nov.
2024).

[103] SOSA, C., AND BHATIA, P. Application management
made easier with Kubernetes Operators on GCP Market-
place. https://cloud.google.com/blog/products/
containers-kubernetes/application-management-
made-easier-with-kubernete-operators-on-gcp-
marketplace, May 2019. Google Cloud Blog.

[104] SUN, X., CHENG, R., CHEN, J., ANG, E., LEGUNSEN, O.,
AND XU, T. Testing Configuration Changes in Context to Pre-
vent Production Failures. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI’20) (Nov. 2020).

[105] SUN, X., GU, J. T., RIVERA, C., CHAJED, T., HOWELL, J.,
LATTUADA, A., PADON, O., SURESH, L., SZEKERES, A.,
AND XU, T. Anvil: Building Kubernetes Controllers That Do
Not Break. USENIX ;login: (June 2024).

[106] SUN, X., LUO, W., GU, J. T., GANESAN, A., ALAGAP-
PAN, R., GASCH, M., SURESH, L., AND XU, T. Automatic
Reliability Testing for Cluster Management Controllers. In
Proceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’22) (July 2022).

[107] SUN, X., LUO, W., GU, J. T., GANESAN, A., ALAGAPPAN,
R., GASCH, M., SURESH, L., AND XU, T. Sieve: Chaos
Testing for Kubernetes Controllers. USENIX ;login: (Nov.
2024).

[108] SUN, X., MA, W., GU, J. T., MA, Z., CHAJED, T., HOWELL,
J., LATTUADA, A., PADON, O., SURESH, L., SZEKERES,
A., AND XU, T. Anvil: Verifying Liveness of Cluster Man-
agement Controllers. In Proceedings of the 18th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI’24) (July 2024).

[109] SUN, X., SURESH, L., GANESAN, A., ALAGAPPAN, R.,
GASCH, M., TANG, L., AND XU, T. Reasoning about mod-

https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace
https://cloud.google.com/blog/products/containers-kubernetes/application-management-made-easier-with-kubernete-operators-on-gcp-marketplace

ern datacenter infrastructures using partial histories. In Pro-
ceedings of the 18th Workshop on Hot Topics in Operating
Systems (HotOS-XVIII) (May 2021).

[110] SURESH, L., AO LOFF, J., KALIM, F., JYOTHI, S. A., NAR-
ODYTSKA, N., RYZHYK, L., GAMAGE, S., OKI, B., JAIN,
P., AND GASCH, M. Building Scalable and Flexible Cluster
Managers Using Declarative Programming. In Proceedings
of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20) (Nov. 2020).

[111] TANG, C., YU, K., VEERARAGHAVAN, K., KALDOR,
J., MICHELSON, S., KOOBURAT, T., ANBUDURAI, A.,
CLARK, M., GOGIA, K., CHENG, L., CHRISTENSEN, B.,
GARTRELL, A., KHUTORNENKO, M., KULKARNI, S.,
PAWLOWSKI, M., PELKONEN, T., RODRIGUES, A., TIBRE-
WAL, R., VENKATESAN, V., AND ZHANG, P. Twine: A
Unified Cluster Management System for Shared Infrastruc-
ture. In Proceedings of the 14th USENIX Conference on
Operating Systems Design and Implementation (OSDI’20)
(Nov. 2020).

[112] TANG, L., BHANDARI, C., ZHANG, Y., KARANIKA, A., JI,
S., GUPTA, I., AND XU, T. Fail through the Cracks: Cross-
System Interaction Failures in Modern Cloud Systems. In
Proceedings of the 18th European Conference on Computer
Systems (EuroSys’23) (May 2023).

[113] TEMPLETON, G., AND DAVIDSON, S. How a Couple of
Characters (and GitOps) Brought Down Our Site. In KubeCon
Europe (May 2022).

[114] XING, J., HSU, K.-F., XIA, Y., CAI, Y., LI, Y., ZHANG, Y.,
AND CHEN, A. Occam: A Programming System for Reliable
Network Management. In Proceedings of the 19th European
Conference on Computer Systems (EuroSys’24) (Apr. 2024).

[115] XU, Q., GAO, Y., AND WEI, J. An Empirical Study on
Kubernetes Operator Bugs. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’24) (Sept. 2024).

[116] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND

PASUPATHY, S. Early Detection of Configuration Errors to
Reduce Failure Damage. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI’16) (Nov. 2016).

[117] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T.,
YUAN, D., ZHOU, Y., AND PASUPATHY, S. Do Not Blame
Users for Misconfigurations. In Proceedings of the 24th
Symposium on Operating System Principles (SOSP’13) (Nov.
2013).

[118] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUN-
DARAM, L. N., AND PASUPATHY, S. An Empirical Study
on Configuration Errors in Commercial and Open Source
Systems. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP’11) (Oct. 2011).

[119] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G., ZHAO,
X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple Test-
ing Can Prevent Most Critical Failures: An Analysis of Pro-
duction Failures in Distributed Data-intensive Systems. In
Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14) (Oct. 2014).

[120] ZHAI, E., CHEN, A., PISKAC, R., BALAKRISHNAN, M.,
TIAN, B., SONG, B., AND ZHANG, H. Check before You
Change: Preventing Correlated Failures in Service Updates.
In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’20) (Feb. 2020).

[121] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE, N.,
BALA, V., XU, T., AND ZHOU, Y. EnCore: Exploiting Sys-
tem Environment and Correlation Information for Misconfig-
uration Detection. In Proceedings of the 19th International
Conference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS’14) (Mar. 2014).

[122] ZHANG, Y., YANG, J., JIN, Z., SETHI, U., RODRIGUES,
K., LU, S., AND YUAN, D. Understanding and Detecting
Software Upgrade Failures in Distributed Systems. In Pro-
ceedings of the 28th ACM Symposium on Operating Systems
Principles (SOSP’21) (Oct. 2021).

[123] ZHENG, N., QIAO, T., LIU, X., AND JIN, X. MeshTest:
End-to-End Testing for Service Mesh Traffic Management. In
Proceedings of the 22nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI’25) (Apr. 2025).

A More Details of OAT

A.1 Testing State Transitions

OAT models an operator’s input as a pair of an application’s
existing state and its desired state [69]. Operators monitor and
reconcile any divergence between the existing and desired
state. When a mismatch occurs, the operator initiates a state
transition to drive the application from its existing state to a
new state, to match the desired state.

Given an operator, OAT automatically generates end-to-
end tests which effectively explore different types of state
transitions. Each test starts in a consistent state, where the
existing state matches the desired state. The test then triggers
a state transition by creating a divergence between the existing
and desired states. OAT explores the space of possible state
transitions by employing three strategies: (1) declaring new
desired states, (2) perturbing the existing states, and (3) both,
described as follows:

• To test normal application operations (e.g., reconfigura-
tion), OAT triggers state transitions by declaring new de-
sired states. Based on Finding 11 (§4.5.3), the majority
of application interaction failures require changing the de-
sired states. Among these, a majority require changing
application-specific properties. The key challenge is to
effectively synthesize application-specific properties for
generating desired state declarations.

• To test operations which are only triggered when the ap-
plication needs to handle a faulty state (e.g., failover and
recovery operations), OAT triggers state transitions by per-
turbing the existing application state via fault injection.
OAT checks if the application state is reconciled back to
the desired state after the transient faults are removed.

• To test operators’ ability to handle errors during operations,
OAT both declares new desired states and perturbs the ex-
isting states in a test. We expect operators to be able to
tolerate transient faults happening in the middle of the state
transition (e.g., handle operation errors), and eventually
drive the application to the declared desired state.

OAT workflow. OAT tests operators with the strategies men-
tioned above in three phases. First, it generates valid desired
state declarations with semantically meaningful values for
application-specific properties (§A.2). Second, it generates
end-to-end tests by systematically combining these declara-
tions with fault injection (§A.3). Finally, it executes each test
in local Kubernetes clusters and validates their outcomes us-
ing automatic oracles (§A.4). OAT reports test failures along
with the state transition for reproduction.

A.2 Generating State Declarations
OAT generates desired state declarations that effectively ex-
ercise operator-application interactions through diverse state

MariaDB CRD
galera.sst:
type: string
description: Snapshot State Transfer used when new
Pods join cluster

...

Large Language Models

Pr
om

pt

kind: MariaDB
spec:
galera.sst:
“mariabackup”

...

Existing tests and usage examples

galera.sst:
- “mariabackup”
- “mysqldump”
- “rsync”

kind: MariaDB
spec:
galera.sst:
“mariabackup”

...

kind: MariaDB
spec:
galera.sst:
“mariabackup”

...

Figure 5: Synthesizing values for the galera.sst property
using existing tests and usage examples, and LLMs.

transitions. Typically, application-specific properties accept
only a narrow, specific set of values. The key challenge is to
automatically synthesize a wide array of such semantically
meaningful values. For example, MariaDB’s state snapshot
transfer method accepts few values, including “mariabackup”,
“mysqldump”, and “rsync.” Testing with different values exer-
cises the operator’s ability to reconfigure this property cor-
rectly across state transitions. Randomly fuzzing property
values is ineffective: it generates mostly invalid values that
are rejected by the operator and application, and does not
explore valid state transitions.

OAT synthesizes application-specific property values using
(1) developer-written values or (2) large language models.

Developer-written values. Mature operator projects already
contain unit tests and usage examples that instantiate desired
state declarations with meaningful property values. In Kuber-
netes, the desired states are described by properties of Custom
Resources (CRs) [5] and are structured according to the Cus-
tom Resource Definition (CRD). OAT thus can automatically
parse the desired state declarations based on the CRD to ex-
tract property values. It then combines values across different
examples to construct new desired states. This process en-
sures that synthesized declarations are realistic, while also
exploring new operations not covered in existing tests. For
example, in Figure 5, for the MariaDBOp, OAT identifies
“mariabackup” as a valid value for the galera.sst property
by mining existing CR examples. To trigger state transitions,
OAT requires at least two values per property.

Large Language Models (LLMs). Not all properties are
covered by existing unit tests and usage examples. When
no example is found, OAT queries a LLM with a structured
prompt. The prompt includes the property’s definition, natural
language description, and type information from the CRD, and
asks the model to produce candidate values in YAML format.
In Figure 5, the LLM generates additional valid values for
galera.sst, such as “mysqldump” and “rsync,”, which extend
coverage beyond what appears in developer tests. Figure 6
shows the LLM prompt used for the property. Although LLM-

Context:
You are a expert of the mariadb-operator of the
Kubernetes ecosystem. You are tasked with
providing values for properties of the MariaDB
CRD.

Prompt:
Here is the property that need values:
- name: spec.galera.sst
- description: SST is the Snapshot State Transfer

used when new Pods join the cluster.
- type: string

The property has a datatype and description
provided above, please make sure the generated
value satisfies the datatype and description.

Provide two values for the property and please
follow the YAML format. Directly give me the
YAML object without any other message, for
example:

spec:
galera:
sst: value

spec:
galera:
sst: value

Figure 6: An example LLM prompt for synthesizing values
for the galera.sst property for MariaDBOp.

generated values may occasionally be invalid, OAT filters
these cases during testing: invalid values are rejected by the
operator or application and discarded automatically.
Tradeoffs. Developer-written values are semantically valid
and exercise realistic scenarios, yet are not always available
(82% property coverage in our evaluation). LLMs can synthe-
size values for uncovered properties, but may generate invalid
ones due to hallucination. We find 78% of LLM-generated
values to be valid (§B.2). OAT prioritizes developer-written
values if available, and uses LLM-generated values otherwise.

A.3 Perturbing Existing Application State
Application-operator interaction failures arise not only from
transitions starting from healthy states but also from error
states caused by external events (Finding 12, §4.5.3). OAT
injects application faults to perturb the existing state, to test
whether operators can: (1) recover the application back to de-
sired states from error states, and (2) tolerate faults that occur
during state transitions and eventually drive the application to
the desired state. OAT injects three fault types that commonly
occur in production environments and expose operator bugs:
container crashes, network delays, and network partitions.

To test the correctness of the failover and recovery opera-
tions of operators, OAT injects transient application container
crashes to drive the existing state to an error state. OAT then
removes the fault, and checks that the operator successfully
reconciles the application back to the desired state.

To test if operators can tolerate faults occurring during
operations, OAT combines fault injection with new desired
states. Specifically, OAT introduces a persistent fault to the
application and then declares a new desired state to trigger
reconciliation. With the persistent fault, the operator cannot
successfully complete reconciliation. OAT then removes the
fault and checks if the application state eventually matches the
new desired state. OAT uses network delays to test operation
ordering dependencies (see §4.1.2) and network partitions to
test operation error handling (see §4.4).

A.4 Test Oracles
OAT employs automatic oracles to check whether the applica-
tion state after the state transition matches the desired state in
each test. Similar to previous works [69,106], OAT checks for
explicit or implicit state mismatches by observing the appli-
cation state through the Kubernetes API objects. Kubernetes
APIs provide limited visibility into application internal state
and cannot detect silent failures where applications are run-
ning in incorrect states (e.g., running with old configuration
values). Additionally, operators are required to maintain high
availability during state transitions, and checking application
state only after the transition completes cannot detect tran-
sient availability violations. To address these limitations, OAT
can leverage optional user-provided utilities that expose ap-
plication internal state and monitor availability throughout
transitions, significantly enhancing bug detection capability.

State monitors. OAT benefits from application state moni-
tors which can check applications’ internal state against the
desired state. Specifically, we found that configuration state
monitors are easy to implement, but effective at detecting
configuration-related operation semantic violations. For ex-
ample, a MariaDB configuration state monitor can be imple-
mented by (1) getting the current configuration from MariaDB
by running a SHOW VARIABLES command, (2) parsing the Mari-
aDB configuration into key-value pairs, and (3) comparing
them with the declared desired configuration.

Application workload. Operators are required to maintain
high availability for distributed applications during normal
operations, e.g., through careful rolling upgrades and leader
re-election before decommissioning an application instance.
Such failures cannot be detected by checking the application
state after the operation finishes; instead, it requires continu-
ously monitoring the application availability during the opera-
tion. OAT benefits from user-provided application workloads
(e.g., periodic read and write requests) and uses them to mon-
itor the application availability by checking the success rate
of application requests during state transitions.

A.5 Implementation Details
We implemented OAT for Kubernetes operators in approxi-
mately 1,200 lines of Python code, on top of the Acto frame-
work [68, 69]. We reuse helpful utilities from Acto, such as

https://github.com/mariadb-operator/mariadb-operator

setting up Kubernetes clusters and test parallelization. As
Acto does not consider faults, we implemented new fault in-
jection logic for OAT in about 1,000 lines of code. Specifically,
OAT uses the ChaosMesh [19] to inject faults into the applica-
tions. Value synthesis, including collecting developer-written
values and prompts for LLM (GPT-4o), takes about 200 lines.

OAT exposes a simple programming interface for custom
test oracles. Users implement custom oracles as Python func-
tions that take a runtime context as the argument, allowing
them to query the current system state and return the test
result. OAT loads user-provided functions and invokes them
during each test to validate outcomes. The user-provided state
monitors and application workloads (§5.1.3) are also provided
through this interface.

B More Details on OAT Evaluation
B.1 Efficiency and Cost
Table 8 shows the number of tests and machine hours OAT
takes to test each operator. All experiments run on Cloud-
Lab Clemson c6420 machines equipped with two 16-core
Intel Xeon Gold 6142 CPUs and 376 GB of memory running
Ubuntu 22.04 LTS. OAT generates 339–2,480 tests across the
tested operators, with 24–259 faults injected. It takes 6.2–63.2
machine hours to run these tests across the operators.

The cost of using GPT-4o to generate values for application-
specific properties is low (Table 8). OAT consumed 11,761 to-
kens (including prompt, input, and output tokens) on average
for each operator. Currently, the monetary cost of generating
values using GPT-4o API is about 0.005 USD per operator.

B.2 False Positives
OAT reports no false alarms. Most operation commands gen-
erated by OAT declare valid desired application states. A
reliable operator must reconcile the cloud application to these
valid states. If the operator fails to reconcile or crashes, then
OAT catches a true failure. We then inspect each failure and
identify the underlying root causes in the operator programs.

If the generated operation commands declare an invalid ap-
plication state (which is known as misoperations), we expect a
reliable operator not to crash or drive the cloud application to
an error state (e.g., application outages or partial failures). In
other words, we expect reliable operators to prevent misopera-
tions from failing their managed operations. If a misoperation
fails the operator or its managed application, OAT detects a
misoperation vulnerability [69], as discussed in §5.3. Note
that misoperation vulnerabilities are considered serious relia-
bility threats [69, 116, 117], as they are commonly introduced
by human mistakes or AI hallucinations (if AI is used to
interfere with these operators [62, 102]).

In summary, every alarm reported by OAT is either an
operator bug or a misconfiguration vulnerability. OAT re-
ported 1094 alarms in total for the six evaluated operators.
384 alarms are caused by 86 bugs in operators and 710 alarms

Operator # Prop. # Config # Tests # Faults Time (hrs)

CassOp 8 229 1,846 70 63.2
KafkaOp 92 233 2,164 432 37.2
MariaDBOp 35 259 2,480 212 56.7
MinIOOp 19 24 339 122 6.2
MongoOp 53 93 1,585 326 57.5
TiDBOp 76 126 1,468 544 51.2

Table 8: Detailed information on the tests run by OAT.
“Prop.” refers to the application-specific properties; “Config”
refers to the unique application configurations OAT generated.
“Test” refers to tests run by OAT, each of which realizes a
failure pattern in Table 6.

are caused by the 396 misoperation vulnerabilities. These
misconfiguration vulnerabilities are mainly caused by LLM-
generated property values and configuration parameter values.
GPT-4o generated semantically meaningful values for 78% of
application-specific properties and application configuration.

https://github.com/k8ssandra/cass-operator
https://github.com/strimzi/strimzi-kafka-operator
https://github.com/mariadb-operator/mariadb-operator
https://github.com/minio/operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/pingcap/tidb-operator

	Introduction
	Background
	Interactions
	Existing Efforts

	Methodology and General Findings
	Methodology
	General Findings

	Failures of Managing Applications
	Operation Semantic Violations
	Application Configuration
	Ordering
	Preconditions
	Environment

	State Observability
	Version Incompatibility
	Mishandling Application Errors
	Discussion
	The Case for Management Interfaces
	Formal Model
	Improving Testing of Softwarized Operators

	Testing Operator-Application Interactions
	Implementation of Oat
	Exploring State Space
	Synthesizing Application-Specific Properties
	User Interface

	Experiment Setup
	Results and Experience

	Related Work
	Concluding Remarks
	More Details of Oat
	Testing State Transitions
	Generating State Declarations
	Perturbing Existing Application State
	Test Oracles
	Implementation Details

	More Details on Oat Evaluation
	Efficiency and Cost
	False Positives

