
Challenges with Responding to
Static Analysis Tool Alerts

Nasif Imtiaz, Akond Rahman, Effat Farhana, and Laurie Williams
North Carolina State University, Raleigh, North Carolina

Email: simtiaz@ncsu.edu, aarahman@ncsu.edu, efarhan@ncsu.edu, lawilli@ncsu.edu

Abstract—Static analysis tool alerts can help developers detect
potential defects in the code early in the development cycle.
However, developers are not always able to respond to the alerts
with their preferred action and may turn away from using the
tool. In this paper, we qualitatively analyze 280 Stack Overflow
(SO) questions regarding static analysis tool alerts to identify
the challenges developers face in understanding and responding
to these alerts. We find that the most prevalent question on SO
is how to ignore and filter alerts, followed by validation of false
positives. Our findings confirm prior researchers’ findings related
to notification communication theory as 44.6% of the SO ques-
tions that we analyzed indicate developers face communication
challenges.

Index Terms—Static analysis tool, alerts, warnings, barriers,
Stack Overflow

I. INTRODUCTION

Static analysis tools (SATs) can be used to detect potential
code defects (alerts) that could lead to field failure early in the
software development process without having to execute the
code [7], [10]. For example, the “goto fail” defect in a widely-
used SSL implementation caused acceptance of invalid SSL
certificates [19], and a date-formatting defect that caused large-
scale Twitter outage [14], could have been avoided through
static analysis [18]. Heartbleed [1], an infamous security
defect, is now also detectable by a static analysis tool [20].

However, SATs also come with shortcomings that make
developers turn away from using these tools [10]. Unactionable
(e.g. false positives) alerts are a dominant problem that these
tools suffer from [13], [16]. Through interviews with develop-
ers, Johnson et al. [10] found that false positives; the way in
which the alerts are presented; and a lack of customizability
are barriers to the use of static analysis tools. An article from
Google also emphasizes that unactionable, incomprehensible,
and untrustworthy alerts, among other things, are reasons that
developers do not always use these tools [18]. The above-
mentioned prior research [18] [10] suggest that the more
effective alert messages are in helping developers acting on
the alert, the more acceptance the SATs will have.

The goal of this paper is to aid static analysis tool makers to
design effective alert presentation techniques by identifying the
challenges developers face in responding to alert messages.
We analyze questions related to SAT alerts on Stack Overflow
(SO) to categorize the challenges that cause developers seek
help on SO. We chose SO as it is a popular question and
answer website for developers. To motivate this goal, consider
Figure I as an example SO post. The user gets a “null pointer

Fig. 1. A sample SO post regarding an SAT alert

dereference” alert from the FindBugs static analysis tool that
appears on a specific line of Java code. But the user is unable to
understand how that line of code can dereference a null pointer
and, therefore, asks a question on SO. The accepted answer
tells us that while the alert is indeed true, it points to the wrong
line number of code. An accurate problem description from
the alert message in this case, could have saved the developer’s
time in fixing the alert more quickly.

Previously, Johnson et al. [9] performed a think-aloud study
with developers using program analysis tools, and identified
10 kinds of communication challenges developers face in
responding to the alerts. This paper builds on their work
of Johnson by identifying challenges regarding SAT alerts
in the context of questions asked by developers on SO. In
prior work, researchers mined questions posted on SO to
identify programming concerns and challenges in specific sub-
domains through qualitative analysis [12], [15]. Following
similar approaches, we ask:

• RQ1: What categories of challenges do static analysis
tool (SAT) alerts related questions fall under?

• RQ2: How many questions without an accepted answer
do SAT alerts related question categories yield?

• RQ3: How many views do SAT alerts related question
categories yield?

We conduct an empirical study using the MSR2019 Mining
Challenge dataset [3]. By systemically applying a set of filter-
ing criteria, we identify 280 SO questions related to SAT alerts
and perform qualitative analysis to categorize the challenges
developers face while responding to the alerts. Researchers in
prior work have studied the reasons why developers do not
always want to use SATs and how alert messages miscom-
municate with them [9], [10], [18]. The research methods of
this prior work involved interviews, surveys, and participant

Prep
rin

t



observation. In this study, we look at the problem from a
different perspective — that is developers asking questions
on SO; and aim to examine prior findings with empirical
evidence. Our contribution is a categorization of questions
that developers ask on SO regarding SAT alerts.

II. METHODOLOGY

We use the MSR 2019 Mining Challenge Dataset provided
by Baltes and colleagues [3]. The following subsections sum-
marize the four steps of our empirical study.

A. Step One: Filter SO posts

To identify the SO posts regarding questions on SAT alerts,
we look for certain tags and keywords in the question title of
a post. A tag is a keyword or label that categorizes an SO
question with similar questions and helps the interested com-
munity to find and answer that question [2]. When developers
ask a question about a specific tool, they commonly use the
tool’s name as a tag.

As a first step to determine if a question is about an SAT,
we look for the names of popular SATs in the list of tags of
an SO question. We use a list of SATs from OWASP (Open
Web Application Security Project) [21] and checked if the SO
platform contains any tag for these tools. We found 10 open
source and 6 commercial SATs that have their respective tag
on the SO platform. We also include the tag “static-analysis”.
The first row in Table I lists all the 17 tags that we look for
in the tags of an SO question.

At the next step, we determine if each SO question is related
to alert messages as we are not interested in any other aspects
of SATs that developers may ask about (e.g. tool setup). To do
this, we see if the question title contains any keyword that is
synonymous to or related to alerts. The second row in Table I
lists 9 keywords that we look for in an SO question title. We
include keywords “positive”, “negative”, “right”, and “wrong”
as we notice that developers often ask on the validity of an SAT
alert. We also had “report” and “result” as two other keywords
in this list, but after primary investigation, we found that these
two terms generated irrelevant results (e.g. configure, export,
or format a tool report). Therefore, we discarded these two
terms from our final list.

We select the SO questions that contain at least one of the
selected 17 tags and contain at least one of the 9 keywords in
their title. Similar to prior work, we discard a question in case
of negative votes as it may indicate the question is ill-formed
or confusing [23]. Finally, step one resulted in 468 SO posts
on which we apply a manual inspection.

TABLE I
KEYWORDS USED TO QUERY SO POSTS

Tags fxcop, bandit, brakeman, findbug, find-sec-bug,
flawfinder, pmd, prefast, sonarqube, spotbug, cover-
ity, fortify, klocwork, parasoft, pvs-studio, veracode,
static-analysis

Keywords
in Title

warning, alert, alarm, positive, negative, notif (to
cover notify and notification), output, right, wrong

B. Step Two: Prepare Coding Scheme

In order to categorize the SO questions based on what
challenges developers have faced, we need a coding scheme.
Previously, Johnson et al. [9] have studied the challenges in
interpreting program analysis tool notifications (i.e., alerts) and
proposed a notification communication theory. The theory
comprises of 10 communication challenges developers face
with alert messages. The challenges fall under two broad
categories: Knowledge Gap and Knowledge Mismatch.
Knowledge Gap is a gap between developer’s knowledge and
the information provided by the tool alert. The 5 challenges
categorized under Knowledge Gap are: General Knowledge
Gaps; Conceptual Knowledge Gaps; Notification Experience
Gaps; Problem Importance Gaps; and Problem Resolution
Gaps. Knowledge Mismatch is a mismatch between what
a developer expects an alert to communicate and what the
alert actually communicates. The 5 challenges categorized
under Knowledge Mismatch are: General Problem Description
Mismatch; Information Salience Mismatch; Visual Communi-
cation Mismatch; Consistent Communication Mismatch; and
Familiar Communication Mismatch. We start our qualitative
coding based on the challenges from notification communica-
tion theory and add new challenges if a need arises.

Three authors conducted a pilot analysis of randomly-
sampled 50 SO posts. Through this pilot analysis, we see 3
recurring themes in many SO posts that are not related to
communication challenges. Therefore, we decided to add 3
new categories of challenges to our coding scheme in addition
to the 10 challenges from communication theory.

1) Ignore/Filter alerts: The questioner wants to ignore or
filter some alert(s) based on a criteria but does not know
how to. For example, the questioner may want to ignore
(or, filter out) all alerts under a certain alert type.

2) False Positive Validation: The questioner suspects an
alert as a false positive (FP) and wants to validate it.

3) Handling False Positives: The questioner identifies an
alert as a false positive and wants to know how to use
the tool to take desired action (e.g. mark as an FP).

We use this coding scheme that consists of 13 challenges to
manually code 468 SO posts found in Step One, outlined in
Section II-A. We discard a post as invalid if it does not relate
to SAT alerts, and categorize as “Others” if the post is valid
but does not fall under any of the 13 categories.

C. Step Three: Manual Coding

Through a pilot analysis, three authors sat together to
discuss and come to a common understanding on how to
code the SO posts. In many cases, an SO post could point to
multiple categories. For example, a developer could ask for a
solution on how to fix an alert due to not comprehending a pro-
gramming concept in the alert message which indicates both
conceptual knowledge and problem resolution gap. However,
the authors decided to code each post to a single category —
the challenge that seemed most relevant given the discussion
context (question, answers, and comments). The first author

Prep
rin

t



TABLE II
FINDINGS - RQ1, RQ2, RQ3

Categories of Challenges Q UNS VQ
Ignore/Filter Alerts 23.9% 38.8% 702

ignore an alert type 8.2% 34.8% 1041
ignore single alert 7.6% 28.6% 635
filter alerts based on code location 5.7% 62.5% 670

False Positive Validation 22.9% 32.8% 368
Problem Resolution Gap 19.6% 43.6% 636
Conceptual Knowledge Gap 11.1% 22.6% 803
Handling False Positives 8.6% 66.7% 328
General Problem Description Mismatch 7.5% 38.1% 418
General Knowledge Gap 2.5% 42.9% 109
Problem Importance Gap 1.4% 50.0% 420
Information Salience Mismatch 1.1% 33.3% 78
Consistent Communication Mismatch 1.1% 33.3% 1695
Visual Communication Mismatch 0.4% 100.0% 163

TABLE III
TOOL REPRESENTATION

SonarQube 72 FindBugs 61 FxCop 40
PMD 17 Brakeman 13 Coverity 12

Fortify 9 PVS-Studio 8 KlocWork 6
Visual Studio 4 Veracode 3 Xcode 3

PREfast 2 Cppcheck 2 Others 29

then coded all the 468 posts. He discarded 188 of these posts
as invalid. The rest of the 280 posts were coded according
to the coding scheme discussed in Section II-B. The whole
process required around 12 hours of manual labor (assuming
1.5 minutes for an SO post in average).

To mitigate bias introduced by a single-coder rating from
the first author, the second and the third author coded a
subset of the 280 valid SO posts (30 posts each) to validate
and establish confidence in the first author’s rating. We then
measure Kohen’s Kappa agreement rate between the first
author and the validators. The two validators had a substantial
(.64) and a moderate agrrement (.54) with the first author [11].

D. Step Four: Analysis

To answer RQ1, we provide the list of categories that we
identified from manual coding (II-C). Then for each category
x, we report the frequency of questions (Q(x)) under that
category. To answer RQ2, we measure the proportion of
questions that has no accepted answer (UNS(x)) under each
category. The rate of questions with no accepted answer
(unsatisfactory answers) indicates which types of questions are
difficult to answer [17]. To answer RQ3, we report the median
view count (VQ(x)) of all the questions under each category
as the number of views indicate interest for a question from
both registered and non-registered users of SO platform [15].

III. FINDINGS

A. RQ1

The second column (Q) in Table II shows the frequency
of questions for each challenge category. Table III shows the
distribution of posts under different SATs in our dataset. We
find that the top six categories of challenges constitute more

than 90% of the total questions. Here, we describe our findings
for the top six categories:

1) Ignore/Filter alerts: Developers may want to ignore an
alert irrespective of false positives or not. Developers may
also want to filter the alerts based on alert type, code location
(files, methods, data type etc.), or priority. We find that how
to ignore/filter alerts in the SATs is the most discussed issue
on SO (67 posts, 23.9%). For example, the most viewed post
with the highest score and favorite votes in our dataset is a
question on how to ignore a single warning in FindBugs as
shown in Figure 2.

Fig. 2. The most viewed SO post regarding SAT alerts

A further categorization tells us that most posts under this
category are about how to ignore a specific alert type (23,
8.2%), while the second most dominant case is how to ignore
a single alert (22, 7.6%). There are 16 posts (5.7%) where
developer wants to ignore/filter alerts from certain parts of
the code (e.g. files/functions/data type). In 3 of the posts,
the developer wants to know how to ignore alerts of certain
priorities originally set by the tool.

2) False Positive Validation: The second highest number of
SO posts (64, 22.9%) comes across as false positive validation
where developers want their peers to validate their suspicion
of an alert as an FP. We further investigated the answers
and comments of these posts to categorize if the developer’s
suspicion was true or not. We find that while in 42 cases the
alert was indeed a false positive, in 13 cases the alert was a
true positive. In 3 cases, the alert was a false positive but SO
community still suggested good code practices to avoid the
alert. In 6 cases, we could not find a conclusive evidence if
the alert was true or not.

We noticed that in 25 cases where the alert was indeed
an FP, the developer actually used the SO post as a means
of documenting the FP and report a tool bug. In many
cases, maintainers of these tools responded to these SO posts
acknowledging the bug, and even updating the tool with a fix.
This trend sheds light on how toolmakers can actively attend
to developers feedback through SO to improve their SATs.

3) Problem Resolution Gap: The third dominant challenge
we find is Problem Resolution Gaps (PRG) with 55 (19.6%)
SO posts where the developer wants to know how to fix an
SAT alert as there lied a gap between what the developer
knows about resolving an alert and the resolution suggested
by the alert [9]. Johnson et al. identified that “most often
this gap was present because the notification did not include
information specific to resolution”. Among the 10 challenges
in the notification communication theory, we find that PRG is
the most dominant one. This finding is not surprising though

Prep
rin

t



as it is common for developers to ask for a possible solution
for their problems on SO — in this case, fixing SAT alerts.

4) Conceptual Knowledge Gap: Another challenge against
effective communication of alert messages that is also a
dominant issue on SO with 31 posts (11.1%) is Conceptual
Knowledge Gaps (CKG). According to Johnson et el., CKG
indicates a gap between developer’s knowledge on a program-
ming concept (e.g. serialization) and the information provided
by the alert regarding those concepts. For posts under these
category, we find that developers do not understand the concept
or theory behind the code defect described in an alert, and seek
help from the SO community on why there is a defect.

5) Handling False Positives: The next dominant challenge
(24 SO posts, 8.6%) that we find is how to handle the alerts
that the developer has already evaluated as a false positive. In
9 posts, the developer reports a code pattern that always raises
a false positive from the tool and wants to know if the tool
can be customized. In 13 posts, the developer wants to know
how to configure the tool to mark some alerts as false positive
and suppress them in the process.

6) General Problem Description Mismatch: According
to Johnson et al., General Problem Description Mismatch
(GPDM) is a mismatch between how the participant would
describe a problem and how the tool describes it. We find
21 posts (7.5%) where the developer was able to understand
the alert from an accepted answer with a better explanation.
Therefore, we code these posts as GPDM as our rational is
that the developer would have liked a similar explanation to
the accepted answer in the alert message generated by the tool.

B. RQ2, RQ3

The third (UNS) and the fourth column (VQ) in Table II
shows results for RQ2 and RQ3 respectively. Overall, SAT
alerts related questions have a median view count of 513 while
38.6% of the questions do not have a satisfactory (accepted)
answer. Among the top 6 categories, the lowest view count
for questions regarding False Positive Validation may explain
the highest rate of unsatisfactory answers. Also, false positive
patterns are more likely to be project specific and hence
may not find an answer from SO community. Conversely,
we see questions regarding Conceptual Knowledge Gap have
the highest view count with the lowest rate of unsatisfactory
answers. A possible reason behind this is that conceptual
questions regarding programming concepts are easier to find
an answer than tool-specific questions, as the former can
be answered by a more generic community. We also see
questions on how to filter alerts based on code location attract
high views, yet a low rate of satisfactory answers. Therefore,
filtering features may be of high interest to developers while
many SATs still lack them.

C. Threats to Validity

A major threat of our study is that we primarily use a single-
coder rating. Having multiple coder for each SO post could
ensure more reliable human evaluation. Also, one SO post
could point to multiple categories of challenges as discussed

in II-C. However, for the sake of simplicity, we decided to
code each post to a single category which may affect final
results.

IV. DISCUSSION

We find six challenges to constitute more than 90% of
the questions developers asked on SO regarding SAT alerts.
The questions come from more than 15 distinct tools which
indicates that these challenges are generic to all SATs. We find
that developers want to know how to ignore or filter alerts
based on different criteria. A possible explanation behind this
observation can be developer overload in triaging large volume
of alerts [8]. As a result, developers may want to focus on the
parts of the codebase and the alert types that are critical to the
project. Furthermore, prior work has shown that developers
prioritize different types of warnings under different develop-
ment contexts [22]. For example, developers may focus more
on code logic and concurrency during continuous integration
and on style conventions during code review. Also, the use of
SATs can be of complex nature which may confuse the new
users. For example, to ignore alerts, one has to write specific
code comments in PMD while specific code annotations in
FindBugs. Toolmakers may consider adding features to filter
the output alerts in a flexible, easy manner. We also find that
false positives (FP) are still a dominant issue in using SATs [5],
[13]. Developers may find specific code patterns that induce
FPs from the tools. Customizing the tools to specific project
requirements may increase the acceptance of SATs in this
regard.

We find that ineffective alert messages are also a major
barrier to act upon those alerts. Our study confirms notification
communication theory from prior work [9] as we find 44.6% of
all the questions that we analyzed stemmed from communica-
tion challenges. Our result suggests that it is often difficult for
developers to find correct fixes for the SAT alerts, and alert
messages can be unable to properly explain the underlying
problem. Integrated Development Environments (IDE) often
provide quick fixes for compiler error messages (e.g. Eclipse)
although their effectiveness is still being studied [4]. HelpMe-
Out is another tool that aids the debugging of error messages
by suggesting past solutions that others have applied [6].
Toolmakers may consider adding similar features to their SATs
so that developers are better aided by the alert messages.

V. CONCLUSION

We categorize SO questions regarding SAT alerts based on
the challenges developers face and find that top six categories
constitute more than 90% of all the questions. We find that
developers want more control over the tools on filtering the
alerts while false positives remain a challenge. The questions
from SO also strengthen notification communication theory
suggested in prior work that gaps and mismatches between
developers’ knowledge and the information provided in the
alert messages create challenges for developers in responding
to SAT alerts. While future research is required on automati-
cally suggesting alert resolution techniques and reducing false

Prep
rin

t



positives, our findings suggest that static analysis tool makers
should consider adding easy-to-use features for flexible alert
filtration and project-specific customization to their tools.

REFERENCES

[1] Heartbleed. https://en.wikipedia.org/wiki/Heartbleed. Accessed of Feb.
6, 2019.

[2] Tags. https://stackoverflow.com/tags.
[3] Sebastian Baltes, Christoph Treude, and Stephan Diehl. Sotorrent:

Studying the origin, evolution, and usage of stack overflow code
snippets. In Proceedings of the 16th International Conference on Mining
Software Repositories (MSR 2019), 2019.

[4] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson Murphy-Hill.
From quick fixes to slow fixes: Reimagining static analysis resolutions
to enable design space exploration. In Software Maintenance and
Evolution (ICSME), 2016 IEEE International Conference on, pages 211–
221. IEEE, 2016.

[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. A few billion lines of code later: using static analysis to find
bugs in the real world. Communications of the ACM, 53(2):66–75, 2010.

[6] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klem-
mer. What would other programmers do: suggesting solutions to error
messages. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1019–1028. ACM, 2010.

[7] Sarah Heckman and Laurie Williams. A model building process
for identifying actionable static analysis alerts. In Software Testing
Verification and Validation, 2009. ICST’09. International Conference
on, pages 161–170. IEEE, 2009.

[8] Sarah Heckman and Laurie Williams. A comparative evaluation of
static analysis actionable alert identification techniques. In Proceedings
of the 9th International Conference on Predictive Models in Software
Engineering, page 4. ACM, 2013.

[9] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder,
Emerson Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. A cross-
tool communication study on program analysis tool notifications. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 73–84. ACM, 2016.

[10] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. Why don’t software developers use static analysis tools to
find bugs? In Proceedings of the 2013 International Conference on
Software Engineering, pages 672–681. IEEE Press, 2013.

[11] J Richard Landis and Gary G Koch. The measurement of observer
agreement for categorical data. biometrics, pages 159–174, 1977.

[12] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo
Arango-Argoty. Secure coding practices in java: Challenges and vulner-
abilities. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 372–383. IEEE, 2018.

[13] Muhammad Nadeem, Byron J Williams, and Edward B Allen. High
false positive detection of security vulnerabilities: a case study. In
Proceedings of the 50th Annual Southeast Regional Conference, pages
359–360. ACM, 2012.

[14] Hacker News. Twitter outage report. https://news.ycombinator.com/
item?id=8810157, 2016.

[15] Akond Rahman, Asif Partho, Patrick Morrison, and Laurie Williams.
What questions do programmers ask about configuration as code? In
Proceedings of the 4th International Workshop on Rapid Continuous
Software Engineering, pages 16–22. ACM, 2018.

[16] Zachary P Reynolds, Abhinandan B Jayanth, Ugur Koc, Adam A
Porter, Rajeev R Raje, and James H Hill. Identifying and documenting
false positive patterns generated by static code analysis tools. In
Software Engineering Research and Industrial Practice (SER&IP), 2017
IEEE/ACM 4th International Workshop on, pages 55–61. IEEE, 2017.

[17] Christoffer Rosen and Emad Shihab. What are mobile developers asking
about? a large scale study using stack overflow. Empirical Software
Engineering, 21(3):1192–1223, 2016.

[18] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon,
and Ciera Jaspan. Lessons from building static analysis tools at google.
Communications of the ACM, 61(4):58–66, 2018.

[19] Synopsys Editorial Team. Coverity report on the ’goto
fail’ bug. https://www.synopsys.com/blogs/software-security/
apple-security-55471-aka-goto-fail/, February 2014.

[20] Synopsys Editorial Team. On detecting heartbleed with static
analysis. https://www.synopsys.com/blogs/software-security/
detecting-heartbleed-with-static-analysis/, April 2014.

[21] Open Web Application Security Project user group. Source code analysis
tools.

[22] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian
Proksch, Andy Zaidman, and Harald C Gall. Context is king: The
developer perspective on the usage of static analysis tools. In 2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 38–49. IEEE, 2018.

[23] John Viega, Gary McGraw, Tom Mutdosch, and Edward W Felten.
Statically scanning java code: Finding security vulnerabilities. IEEE
software, 17(5):68–74, 2000.

Prep
rin

t




