
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Does Generative AI Generate Smells Related to Container
Orchestration?: An Exploratory Study with Kubernetes Manifests

Yue Zhang
Auburn University

Auburn, Alabama, USA

yzz0229@auburn.edu

Rachel Meredith
Auburn University

Auburn, Alabama, USA

rpm0033@auburn.edu

Wilson Reeves
Auburn University

Auburn, Alabama, USA

wgr0009@auburn.edu

Julia Coriolano
Federal University of Pernambuco

Recife, Brazil

julia.acoriolano@gmail.com

Ali Babar
University of Adelaide

Adelaide, Australia

ali.babar@adelaide.edu.au

Akond Rahman
Auburn University

Auburn, Alabama, USA

akond@auburn.edu

ABSTRACT
Generative artificial intelligence (AI) technologies, such as Chat-
GPT have shown promise in solving software engineering problems.
However, these technologies have also shown to be susceptible to
generating software artifacts that contain quality issues. A system-
atic characterization of quality issues, such as smells in ChatGPT-
generated artifacts can help in providing recommendations for
practitioners who use generative AI for container orchestration.

We conduct an empirical study with 98 Kubernetes manifests to
quantify smells in manifests generated by ChatGPT. Our empirical
study shows: (i) 35.8% of the 98 Kubernetes manifests generated
include at least one instance of smell; (ii) two types of objects Kuber-
netes namely, Deployment and Service are impacted by identified
smells; and (iii) the most frequently occurring smell is unset CPU
and memory requirements. Based on our findings, we recommend
practitioners to apply quality assurance activities for ChatGPT-
generated Kubernetes manifests prior to using these manifests for
container orchestration.

CCS CONCEPTS
• Software and its engineering → Software verification and vali-
dation; Software defect analysis.

KEYWORDS
container orchestration, empirical study, kubernetes, quality, smell

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’24, April 15-16, 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Yue Zhang, Rachel Meredith, Wilson Reeves, Julia Coriolano, Ali Babar,
and Akond Rahman. 2024. Does Generative AI Generate Smells Related to
Container Orchestration? : An Exploratory Study with Kubernetes Mani-
fests. In Proceedings of 21st International Conference on Mining Software
Repositories 2024 (MSR ’24). ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In order to rapidly deploy software applications to end-users, organi-
zations use containers, such as Docker containers. With the practice
of container orchestration, i.e., the practice of pragmatically manag-
ing the lifecycle of containers with tools, such as Kubernetes [11],
organizations have yielded benefits. For example, in the case of
Capital One, with Kubernetes the software deployment rate “in-
creased by several orders of magnitude” [9]. Documented evidence
of such benefits has helped Kubernetes to become the most popular
tool to implement the practice of container orchestration, with an
expected market size of 7.8 billion USD by 2030 [19].

While Kubernetes is growing in popularity, practitioners face chal-
lenges when using Kubernetes for tasks related to container or-
chestration [6, 10]. To overcome these challenges, practitioners rely
on generative artificial intelligence (AI) technologies [22], such as
ChatGPT [13] and GitHub Co-pilot [12]. The above-mentioned gen-
erative AI technologies show promise for Kubernetes, as practition-
ers perceive generative AI to be beneficial for Kubernetes-related
tasks [5, 14, 18].

Despite being perceived as beneficial, Kubernetes manifests, i.e.,
configurations files used for Kubernetes, which are generated by
ChatGPT are susceptible to quality issues. Let us consider List-
ing 1 in this regard. The Kubernetes manifest is generated by Chat-
GPT [1], and sets no requirement for CPU and memory usage using
the limits keyword [11]. Unset CPU and memory requirement is
detrimental to the security of Kubernetes-based container orches-
tration, and can facilitate denial-of-service attacks [17, 23]. Hence,
systematic investigation is required that will empirically determine
if quality issues, such as smells in ChatGPT-generated manifests

i

Pre-
prin

t

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MSR ’24, April 15-16, 2024, Lisbon, Portugal Zhang et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

is prevalent. Such investigation will be helpful in (i) empirically
quantifying the quality issues in ChatGPT-generated Kubernetes
manifests; and (ii) providing practitioners recommendations on
how to use ChatGPT-generated Kubernetes manifests.

1 kind: Pod
2 metadata:
3 name: my-container-pod
4 spec:
5 containers:
6 - name: my-container
7 image: my-container-image:latest
8 ports:
9 - containerPort: 80

Listing 1: An example of a ChatGPT-generated Kubernetes
manifest with one instance of unset CPU and one instance
of unset memory requirements.

Accordingly, we answer the following research questions:

• RQ1: How frequently do quality issues appear in Kubernetes man-
ifests that are generated by ChatGPT?

• RQ2:What Kubernetes objects map to quality issues that appear
for ChatGPT-generated Kubernetes manifests?

We conduct an empirical study where we use container orchestra-
tion smells, i.e., coding patterns that violate recommended security
and network best practices, as a surrogate measure for quality issues
in Kubernetes manifests. We use 98 Kubernetes manifests that are
generated by ChatGPT using the DevGPT dataset [24]. By applying
static analysis, we quantify the frequency of smells that occur in
the set of 98 manifests. We also identify what Kubernetes objects
map to the identified smell categories. Code and dataset used in
our paper is available online [15].

Contributions: Our contributions of the paper is an empirical
evaluation of how frequently smells appear in Kubernetes manifests
generated by ChatGPT.

2 BACKGROUND AND RELATED WORK
We discuss background and related work in this section.

Background: Kubernetes provides support for practitioners to
manage containerized applications at scale [8] [4]. Practitioners can
install Kubernetes on-premise, on cloud platforms, or a combination
of both. A Kubernetes installation is also colloquially referred to as
a Kubernetes cluster [8]. A pod is the most fundamental unit of a
Kubernetes cluster [8]. A pod groups one or more containers with
shared network and storage resources according to configurations
provided in manifests. Manifests are configuration files developed
in YAML, which are executed using the ‘kubectl’ utility. Listing 2
shows an example of a Kubernetes manifest where configurations
of a pod are specified.

Related Work: Our paper is related with prior research that have
investigated quality aspects of Kubernetes. Kubernetes security is
one topic that have gained a lot of interest. Researchers have quan-
tified vulnerability-related commits for Kubernetes manifests [3],

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: sample-site
5 labels:
6 app: web
7 spec:
8 containers:
9 - name: front-end
10 image: nginx
11 ports:
12 - containerPort: 80
13 - name: sample-reader
14 image: php-nginx
15 ports:
16 - containerPort: 88

Listing 2: An example of a Kubernetes manifest that specifies
a pod with two container instances.

and derived best practices [23]. Blaise et al. [2] evaluated secu-
rity model of a Kubernetes package manager by identifying the
riskiest attack paths. Rahman et al. [17] identified security miscon-
figurations in Kubernetes manifests. While the above-mentioned
publications provide valuable contribution in growing the science
of Kubernetes-related quality assurance, these publications have
not characterized quality issues in Kubernetes manifests generated
by ChatGPT. We address this research gap in our paper.

3 METHODOLOGY
We provide the methodology to our research questions as follows:

3.1 Methodology for RQ1
We answer RQ1 using the following steps:

3.1.1 Manifest Collection. For our empirical study, we use all smap-
shots included in the DevGPT dataset: ‘snapshot_20230727’, ‘snap-
shot_20230803’, ‘snapshot_20230810’, ‘snapshot_20230817’, ‘snap-
shot_20230824’, and ‘snapshot_20230831’. We use all snapshots in
order to investigate temporal trends. For each of these snapshots,
first, we identify entries for which the keyword ‘kubernetes’ appears
in the following fields: ‘Title’, and ‘Body’. Second, from the identi-
fied entries we separate linked code snippets that are developed in
YAML format. We use this step because Kubernetes configuration
files are developed in YAML. Third, we apply a syntax check to
determine which of the YAML files are in fact used for Kubernetes
by inspecting for the ‘Kind’ configuration.

3.1.2 Prompt Collection. From the collected manifests we identify
what prompts are used to generate the manifest. For each manifest,
we obtain a mapping with the generated prompt.

3.1.3 Qualitative Analysis with Open Coding. As part of RQ1, we
conduct a qualitative analysis technique called open coding, which
is used to derive high-level categories from unstructured text [21].
With open coding, we derive categories from the prompt text.

3.1.4 Static Analysis. For RQ2, we focus on identifying quality
issues in Kubernetes manifests generated by ChatGPT. We use a
static analysis tool called ‘KubeLinter’, which is a static analysis
tool that detects smells in Kubernetes manifests [7]. KubeLinter
detects two types of smells namely, security and network, which

ii

Pre-
prin

t

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Container Orchestration Smells in Kubernetes Manifests MSR ’24, April 15-16, 2024, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Attributes of Kubernetes Manifests

Attribute Value
Snapshots ‘snapshot_20230727’, ‘snapshot_20230803’, ‘snap-

shot_20230810’, ‘snapshot_20230817’, ‘snapshot_-
20230824’, and ‘snapshot_20230831

Manifest Count 95
Total Lines of Code 1,493
Duration 07/2023 - 08/2023

respectively detects violations of security and network-related best
practices for Kubernetes manifests. We apply static analysis on all
collected manifests. From the detected smells, we compute metrics
as described in Section 3.1.5.

As static analysis tools are susceptible to generating false posi-
tives [16], we perform rater verification with randomly-selected
50 smells generated from KubeLinter. Of the 50 smells, 27 and 23
smells are respectively, security and network-related. The first au-
thor performs manual inspection to identify if there are any false
positives for the generated smells. The first author do not find any
false positive instances for the collected 50 smells.

3.1.5 Metric Computation. From the collected smells we report
RQ2 using the following metrics: (i) Density: This metric computes
how many smells appear for every 1,000 lines of code. We compute
this metric for all smell categories using Equation 1; (ii) Proportion:
This metric computes the proportion of manifests for which at
least one instance of smell appears. We compute this metric for all
smell categories using Equation 2; and (iii) Temporal Proportion:
This metric computes the proportion of manifests for which at
least one instance of smell appears for every month. Unlike, the
proportion metric, this metric measures the frequency of smells
based on month-wise occurrence. We compute this metric for all
smell categories using Equation 3.

Density (𝑥) =
Total occurrences of smell 𝑥

Total line count for all manifests/1000
(1)

Proportion (𝑥) =
Total manifests with >= 1 instance of 𝑥

Total manifests
∗ 100%

(2)

Temporal Prop(𝑥, 𝑦)% =

of smells in month 𝑦 and marked as category 𝑥
total smells in month 𝑦

∗ 100% (3)

3.2 Methodology for RQ2
We answer RQ2 by first determining which smells appear for what
Kubernetes manifests. Second, we identify if the detected smell is
used to provision an object using kind.

4 RESULTS
In all, we mine 95 Kubernetes manifests collected from 6 snapshots.
Attributes of the mined Kubernetes manifests is available in Table 1.

4.1 Answer to RQ1: Frequency of Quality Issues
We answer RQ1 using Table 2. We observe proportion and density
to be respectively, 146.0 per KLOC and 46.3% for all categories

Run as Non−root Unset CPU Req. Unset Memory Req.

Absent Anti−affinity Absent Read−only FS Dangling Service

10
−A

ug

17
−A

ug

24
−A

ug

27
−J

ul

3−
Aug

31
−A

ug

10
−A

ug

17
−A

ug

24
−A

ug

27
−J

ul

3−
Aug

31
−A

ug

10
−A

ug

17
−A

ug

24
−A

ug

27
−J

ul

3−
Aug

31
−A

ug

0

2

4

0

2

4

DAY

P
R

O
P

O
R

T
IO

N

Figure 1: Temporal Proportion for Identified Smells.

of smells. The most frequently occurring smells are: unset CPU
requirements and unset memory requirements, both of which are
related to security. The least frequently occurring category is absent
anti-affinity, which is network-related.

We also provide the temporal proportion values in Figure 1. We
observe that the manifests collected from latter snapshots, such as
‘snapshot_20230831’ to have higher proportion of smells compared
to that of the earlier snapshots. The security-related smells are
higher in proportion compared to that of network-related smells.

4.2 Answer to RQ2: Object Categories
We identify two categories of Kubernetes objects. A mapping of
smell categories and identified categories is provided in Table 3.

Deployment: This object is used to provide declarative updates
for pods. With Deployment, a desired state is specified, which is
taken as input by the Kubernetes Controller to change the actual
state to the desired state.

Example: Listing 4 shows as an example of a Deployment object for
which an instance of unset CPU and unset memory requirements
appear in a Kubernetes manifest generated by ChatGPT.

Service: This object is used to expose a network application that is
running as one or multiple pods in a Kubernetes cluster.

Example: Listing 4 shows as a Service object called for which
dangling service appears in a manifest generated by ChatGPT.

5 DISCUSSION AND CONCLUSION
We discuss the implications of our findings from our empirical
study in Section 5.1, and then we conclude our paper in Section 5.2.

5.1 Implications
5.1.1 Implications for Practitioners. The implications of our empir-
ical study is listed as follows:

iii

Pre-
prin

t

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MSR ’24, April 15-16, 2024, Lisbon, Portugal Zhang et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Answer to RQ2: Frequency of Smells in ChatGPT-generated Manifests

Smell Type Definition Count Density Proportion
Dangling Service Network The issue of not assigning a service to a deployment. 10 6.7 10.5
Absent Anti-affinity Network The issue of violating anti-affinity. Anti-affinity ensures that Kubernetes is sched-

uling replicas on different node.
4 4.2 2.7

Absent Read-only Filesystem Security The issue of allowing containers to run without a read-only filesystem. 34 22.7 35.8
Run as Non-root Security The issue of not provisioning containers with a non root account. 34 22.8 35.7
Unset CPU Requirements Security The issue of not specifying containers with CPU requests and limits. 68 45.5 35.8
Unset Memory Requirements Security The issue of not specifying containers with memory requests and limits. 68 45.5 35.8
All Categories — — 218 146.0 46.3

1 kind: Deployment
2 metadata:
3 name: influxdb
4 spec:
5 replicas: 1
6 selector:
7 matchLabels:
8 app: influxdb
9 template:
10 metadata:
11 labels:
12 app: influxdb
13 spec:
14 containers:
15 - name: influxdb
16 image: influxdb:1.8
17 ports:
18 - containerPort: 8086

Listing 3: An example of unset CPU and unset memory re-
quirement appearing for a Deployment object.

1 kind: Service
2 metadata:
3 name: influxdb
4 spec:
5 selector:
6 app: influxdb

Listing 4: An example of dangling service appearing for a
Service object.

Table 3: Answer to RQ2: Mapping of Smells and Objects

Smell Object
Dangling Service Service
Absent Anti-affinity Deployment
Absent Read-only Filesystem Deployment
Run as Non-root Deployment
Unset CPU Requirements Deployment
Unset Memory Requirements Deployment

(1) Kubernetes manifests generated by ChatGPT are susceptible to
smells that violate security and network-related best practices.
Practitioners should apply quality assurance activities, such as
application of static analysis tools.

(2) Certain security smells seem to be more prevalent than that
of network-related concerns. Practitioners can leverage this
finding to prioritize their validation efforts, such as inspecting
for smells.

(3) While provisioning service with the Kubernetes object Service,
network-related smells, such as dangling service occur, and
hence while provisioning services practitioners should identify
instances of dangling services.

5.1.2 Implications for Researchers. Our empirical study is a prelim-
inary investigation of how frequently smells occur for Kubernetes
manifests that is generated by a generative AI technique namely,
ChatGPT. We advocate for researchers to conduct further investiga-
tion that will build on our research from the following perspectives:
(i) a comprehensive understanding of what other categories of
smells occur in Kubernetes manifests; (ii) a comparative evaluation
of generative API techniques with respect to generating smells; and
(iii) an extended mapping of Kubernetes objects to that with smells
unique to container orchestration.

5.1.3 Threats to Validity. We discuss the limitations as follows:

Conclusion Validity: Our empirical study is susceptible to conclusion
validity as we use manifests that are available from the DevGPT
dataset. The generated conclusions are therefore limited, and may
not hold for other datasets. Also, the generated smells are limited
to to one tool, namely KubeLinter. Furthermore, the analyzed Ku-
bernetes manifests may not be used in production.

External Validity: Our findings may not generalize to other datasets,
e.g., manifests that are generated using other generative AI tech-
nologies, such as Llama [20].

5.2 Conclusion
Generative AI technologies, such as ChatGPT have shown promise
in automating computational tasks, including tasks related to soft-
ware engineering. The domain of container orchestration is no
different. However, as described in our empirical study, we observe
Kubernetes manifests generated by ChatGPT to include smells that
violate network and security-related best practices. In all, we ob-
serve 35.8% of the 98 Kubernetes manifests in the DevGPT dataset
to include at least one instance of smell. Based on our findings we
conclude that ChatGPT-generated Kubernetes manifests include
smells, and developers using ChatGPT should apply quality as-
surance activities, such as application of static analysis tools to
pro-actively detect and mitigate smells in manifests use for con-
tainer orchestration.

ACKNOWLEDGMENTS
We thank the PASER group at Auburn University for their valuable
feedback. This research was partially funded by the U.S. National
Science Foundation (NSF) Award # 2247141 and Award # 2312321.

iv

Pre-
prin

t

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Container Orchestration Smells in Kubernetes Manifests MSR ’24, April 15-16, 2024, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Anonymous. 2024. K8s-Pod-Example-1. https://chat.openai.com/share/0cee78c4-

4290-4bc0-9f2a-a492859d6281. [Online; accessed 20-January-2024].
[2] Agathe Blaise and Filippo Rebecchi. 2022. Stay at the Helm: secure Kubernetes

deployments via graph generation and attack reconstruction. In 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD). 59–69. https://doi.org/
10.1109/CLOUD55607.2022.00022

[3] Dibyendu Brinto Bose, Akond Rahman, and Shazibul Islam Shamim. 2021. ‘Under-
reported’ Security Defects in Kubernetes Manifests. In 2021 IEEE/ACM 2nd Inter-
national Workshop on Engineering and Cybersecurity of Critical Systems (EnCy-
CriS). IEEE, 9–12.

[4] Canonical. 2021. Kubernetes and cloud native operations report 2021. https:
//juju.is/cloud-native-kubernetes-usage-report-2021

[5] Dev Nag. 2023. Overcoming the Kubernetes Skills Gap with ChatGPT As-
sistance. https://thenewstack.io/overcoming-the-kubernetes-skills-gap-with-
chatgpt-assistance/. [Online; accessed 18-November-2023].

[6] Jayne Groll. 2022. IT talent: 4 ways to address a Kubernetes skills short-
age. https://enterprisersproject.com/article/2022/3/address-kubernetes-skills-
shortage. [Online; accessed 19-June-2023].

[7] KubeLinter. 2024. Introduction - KubeLinter. https://docs.kubelinter.io/. [Online;
accessed 19-January-2024].

[8] Kubernetes. 2021. Production-Grade Container Orchestration. https://
kubernetes.io/

[9] Kubernetes. 2023. Case Study: Capital One. https://kubernetes.io/case-studies/
capital-one/. [Online; accessed 10-June-2023].

[10] Janae Lee. 2022. How to beat the Kubernetes skills shortage.
https://www.infoworld.com/article/3679749/how-to-beat-the-kubernetes-
skills-shortage.html. [Online; accessed 18-June-2023].

[11] S. Miles. 2020. Kubernetes: A Step-By-Step Guide For Beginners To Build,
Manage, Develop, and Intelligently Deploy Applications By Using Kubernetes
(2020 Edition). Independently Published. https://books.google.com/books?
id=M4VmzQEACAAJ

[12] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1–5.

[13] OpenAI. 2022. ChatGPT: Optimizing Language Models for Dialogue. https:
//openai.com/blog/chatgpt/. [Online; accessed 12-November-2023].

[14] OpsCruise. 2023. Exploiting ChatGPT for TroubleShooting Kubernetes
Problems. https://www.opscruise.com/newsroom-post/exploiting-chatgpt-for-
troubleshooting-kubernetes-problems#. [Online; accessed 17-November-2023].

[15] Akond Rahman. 2023. Verifiability Package for Paper. https://doi.org/10.6084/
m9.figshare.24786711.v1. [Online; accessed 10-December-2023].

[16] Akond Rahman and Chris Parnin. 2023. Detecting and Characterizing Propaga-
tion of Security Weaknesses in Puppet-based infrastructure Management. IEEE
Transactions on Software Engineering (2023), 1–18. https://doi.org/10.1109/TSE.
2023.3265962

[17] Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul
Pandita. 2023. Security Misconfigurations in Open Source Kubernetes Manifests:
An Empirical Study. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 99 (may
2023), 36 pages. https://doi.org/10.1145/3579639

[18] Renjith Ravindranathan. 2023. ChatGPT for your Kubernetes Cluster —
k8sgpt. https://medium.com/techbeatly/chatgpt-for-your-kubernetes-cluster-
k8sgpt-649f2cad1bd5. [Online; accessed 19-November-2023].

[19] Markets N Research. 2023. Case Study: OpenAI. https://www.globenewswire.
com/news-release/2023/03/06/2621358/0/en/Latest-Global-Kubernetes-
Market-Size-Share-Worth-USD-7-8-Billion-by-2030-at-an-23-40-CAGR-
Markets-N-Research-Share-Trends-Cap-Adoption-Forecast-Segmentation-
Growth-Value.html. [Online; accessed 12-June-2023].

[20] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing
Ellen, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan
Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023.
Code Llama: Open Foundation Models for Code. (2023).

[21] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.
[22] Daniel Schlagwein and Leslie Willcocks. 2023. ‘ChatGPT et al.’: The ethics of

using (generative) artificial intelligence in research and science. , 232–238 pages.
[23] M. Islam Shamim, F. Ahamed Bhuiyan, and A. Rahman. 2020. XI Commandments

of Kubernetes Security: A Systematization of Knowledge Related to Kubernetes
Security Practices. In 2020 IEEE Secure Development (SecDev). IEEE Computer
Society, Los Alamitos, CA, USA, 58–64. https://doi.org/10.1109/SecDev45635.
2020.00025

[24] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. De-
vGPT: Studying Developer-ChatGPT Conversations. In Proceedings of the Inter-
national Conference on Mining Software Repositories (MSR 2024).

v

Pre-
prin

t

https://chat.openai.com/share/0cee78c4-4290-4bc0-9f2a-a492859d6281
https://chat.openai.com/share/0cee78c4-4290-4bc0-9f2a-a492859d6281
https://doi.org/10.1109/CLOUD55607.2022.00022
https://doi.org/10.1109/CLOUD55607.2022.00022
https://juju.is/cloud-native-kubernetes-usage-report-2021
https://juju.is/cloud-native-kubernetes-usage-report-2021
https://thenewstack.io/overcoming-the-kubernetes-skills-gap-with-chatgpt-assistance/
https://thenewstack.io/overcoming-the-kubernetes-skills-gap-with-chatgpt-assistance/
https://enterprisersproject.com/article/2022/3/address-kubernetes-skills-shortage
https://enterprisersproject.com/article/2022/3/address-kubernetes-skills-shortage
https://docs.kubelinter.io/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/case-studies/capital-one/
https://kubernetes.io/case-studies/capital-one/
https://www.infoworld.com/article/3679749/how-to-beat-the-kubernetes-skills-shortage.html
https://www.infoworld.com/article/3679749/how-to-beat-the-kubernetes-skills-shortage.html
https://books.google.com/books?id=M4VmzQEACAAJ
https://books.google.com/books?id=M4VmzQEACAAJ
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://www.opscruise.com/newsroom-post/exploiting-chatgpt-for-troubleshooting-kubernetes-problems##
https://www.opscruise.com/newsroom-post/exploiting-chatgpt-for-troubleshooting-kubernetes-problems##
https://doi.org/10.6084/m9.figshare.24786711.v1
https://doi.org/10.6084/m9.figshare.24786711.v1
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1145/3579639
https://medium.com/techbeatly/chatgpt-for-your-kubernetes-cluster-k8sgpt-649f2cad1bd5
https://medium.com/techbeatly/chatgpt-for-your-kubernetes-cluster-k8sgpt-649f2cad1bd5
https://www.globenewswire.com/news-release/2023/03/06/2621358/0/en/Latest-Global-Kubernetes-Market-Size-Share-Worth-USD-7-8-Billion-by-2030-at-an-23-40-CAGR-Markets-N-Research-Share-Trends-Cap-Adoption-Forecast-Segmentation-Growth-Value.html
https://www.globenewswire.com/news-release/2023/03/06/2621358/0/en/Latest-Global-Kubernetes-Market-Size-Share-Worth-USD-7-8-Billion-by-2030-at-an-23-40-CAGR-Markets-N-Research-Share-Trends-Cap-Adoption-Forecast-Segmentation-Growth-Value.html
https://www.globenewswire.com/news-release/2023/03/06/2621358/0/en/Latest-Global-Kubernetes-Market-Size-Share-Worth-USD-7-8-Billion-by-2030-at-an-23-40-CAGR-Markets-N-Research-Share-Trends-Cap-Adoption-Forecast-Segmentation-Growth-Value.html
https://www.globenewswire.com/news-release/2023/03/06/2621358/0/en/Latest-Global-Kubernetes-Market-Size-Share-Worth-USD-7-8-Billion-by-2030-at-an-23-40-CAGR-Markets-N-Research-Share-Trends-Cap-Adoption-Forecast-Segmentation-Growth-Value.html
https://www.globenewswire.com/news-release/2023/03/06/2621358/0/en/Latest-Global-Kubernetes-Market-Size-Share-Worth-USD-7-8-Billion-by-2030-at-an-23-40-CAGR-Markets-N-Research-Share-Trends-Cap-Adoption-Forecast-Segmentation-Growth-Value.html
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.1109/SecDev45635.2020.00025

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Methodology for RQ1
	3.2 Methodology for RQ2

	4 Results
	4.1 Answer to RQ1: Frequency of Quality Issues
	4.2 Answer to RQ2: Object Categories

	5 Discussion and Conclusion
	5.1 Implications
	5.2 Conclusion

	Acknowledgments
	References

