
As Code Testing: Characterizing Test Quality in
Open Source Ansible Development

Mohammad Mehedi Hassan∗ Akond Rahman†
∗Independent University, Dhaka, Bangladesh

†Department of Computer Science, Tennessee Tech University, Cookeville, TN, USA
Email: ∗mehedi.bueteee.23@gmail.com †akond.rahman.buet@gmail.com

Abstract—Infrastructure as code (IaC) scripts, such as Ansible
scripts, are used to provision computing infrastructure at scale.
Existence of bugs in IaC test scripts, such as, configuration
and security bugs, can be consequential for the provisioned
computing infrastructure. A characterization study of bugs in
IaC test scripts is the first step to understand the quality
concerns that arise during testing of IaC scripts, and also provide
recommendations for practitioners on quality assurance. We
conduct an empirical study with 4,831 Ansible test scripts mined
from 104 open source software (OSS) repositories where we
quantify bug frequency, and categorize bugs in test scripts. We
further categorize testing patterns, i.e., recurring coding patterns
in test scripts, which also correlate with appearance of bugs.
From our empirical study, we observe 1.8% of 4,831 Ansible test
scripts to include a bug, and 45.2% of the 104 repositories to
contain at least one test script that includes bugs. We identify 7
categories of bugs, which includes security bugs and performance
bugs that are related with metadata extraction. We also identify 3
testing patterns that correlate with appearance of bugs: ‘assertion
roulette’, ‘local only testing’, and ‘remote mystery guest’. Based
on our findings, we advocate for detection and mitigation of the
3 testing patterns as these patterns can have negative implica-
tions for troubleshooting failures, reproducible deployments of
software, and provisioning of computing infrastructure.

Index Terms—ansible, bug, configuration as code, empirical
study, infrastructure as code, quality, test

I. INTRODUCTION

Infrastructure as code (IaC) scripts, such as Ansible scripts,
are used to provision computing infrastructure at scale [33].
Practitioners perceive use of IaC languages, such as An-
sible [4] and Puppet [40] to be pivotal for provisioning
cloud computing resources [19]. IaC automates the process of
configuration management [33], which in turn yields benefits
for information technology (IT) organizations. For example,
the use of Ansible scripts helped the U.S. National Aeronautics
and Space Administration (NASA) to reduce its multi-day
patching process to 45 minutes [22]. Swisscom, a Switzerland-
based telecommunication provider, used Ansible to save 3,000
hours of IT administration work [6].

While IaC scripts, such as Ansible scripts are helpful for
automated provisioning, prior research has reported these
scripts to contain bugs [54], which can create large-scale
consequences. For example, a buggy IaC script was the root
cause of an outage that resulted in business losses worth of
150 million USD for Amazon Web Services (AWS) [30], [54].
Application of recommended software engineering practices,

such as testing, can help practitioners mitigate bugs in IaC
scripts [17]. Testing is beneficial for (i) gaining insights on
the impact of changes made in IaC scripts, and (ii) building
confidence in the IaC code base [61].

The ‘as code’ suffix in the phrase ‘infrastructure as code’
refers to the application of recommended software engineer-
ing practices, such as applying quality assurance activities
for both development and testing for IaC scripts [33], [44].
Gaining an understanding of bugs is the first step towards
adequately applying quality assurance activities for IaC test
scripts. Through a systematic characterization study we can
quantify the frequency of bugs, as well as determine the
categories of bugs that occur in Ansible test scripts. Such
characterization can be helpful for researchers and practi-
tioners in gaining an understanding of the nature of bugs in
Ansible test scripts. Furthermore, such characterization study
can also identify recurring coding patterns in test scripts, i.e.,
testing patterns, which also correlate with appearance of bugs.
Identification of these testing patterns can guide practitioners
on how to prioritize inspection efforts for bug identification,
and adequately conduct Ansible testing—a need emphasized
by industry practitioners, who reported a lack of guidelines on
how to conduct IaC testing [26].

Anecdotal evidence from open source software (OSS)
repositories further motivate us to characterize test qual-
ity in OSS Ansible development. Let us consider Fig-
ure 1, which presents code snippets downloaded from an
OSS repository 1. Figure 1a provides an example of a
bug where ‘/tmp/linchpin/bin/activate’ was pro-
vided as an incorrect configuration value [11]. The bug
was fixed by providing the correct configuration value,
which is ‘/tmp/tutorial-env/bin/activate’. Fur-
thermore, as shown in Figure 1b, the bug occurred in a test
script, which uses the coding pattern hosts: localhost
to specify testing only in the local development environment.
Conducting IaC testing only in the local development envi-
ronment is limiting as test failures that occur in a remote
cloud-based environment might not be manifested in a local
development environment [10]. Appearance of a bug in a test
script that contains the coding pattern hosts: localhost,
suggests a relationship between occurrences of certain testing

1https://github.com/CentOS-PaaS-SIG/linchpin

Preprin
t

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Characterizing Test Quality in Open Source Ansible Development ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1 ...
2 shell: |
3 - source /tmp/linchpin/bin/activate
4 + source /tmp/tutorial-env/bin/activate
5 python setup.py test
6 args:
7 chdir: ../../
8 ...

Listing 12. Example of a buggy Ansible test script

1 ---
2 - name: Unit tests for Linchpin
3 hosts: localhost #Testing in the local environment only
4 gather_facts: False
5 tasks:
6 - name: debug
7 debug:
8 msg: "Enabling contra-hdsl tests"
9 - name: shell for ansible version
10 ...

Listing 13. Example of an Ansible test script with localhost

v

a

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Characterizing Test Quality in Open Source Ansible Development ESEC/FSE 2021, 23 - 27 August, 2021, Athens, Greece

1 ...
2 shell: |
3 - source /tmp/linchpin/bin/activate
4 + source /tmp/tutorial-env/bin/activate
5 python setup.py test
6 args:
7 chdir: ../../
8 ...

Listing 12. Example of a buggy Ansible test script

1 ---
2 - name: Unit tests for Linchpin
3 hosts: localhost #Testing in the local environment only
4 gather_facts: False
5 tasks:
6 - name: debug
7 debug:
8 msg: "Enabling contra-hdsl tests"
9 - name: shell for ansible version
10 ...

Listing 13. Example of an Ansible test script with localhost

v

b

Fig. 1: Anecdotal evidence of bugs in OSS Ansible test scripts. Figure 1a shows code changes to fix a bug for an Ansible test
script. For the same test script, the coding pattern hosts: localhost appears indicating a relationship between bug and
testing pattern occurrences.

patterns and occurrences of bugs. This relationship, however,
is subject to empirical substantiation.

Accordingly, we answer the following research questions:

• RQ1: How frequently do bugs appear in Ansible test scripts?
What categories of bugs appear in Ansible test scripts?

• RQ2: What categories of testing patterns correlate with
appearance of bugs for Ansible test scripts?

We conduct an empirical study with Ansible test scripts
collected from 104 OSS repositories. We apply qualitative
analysis [60] with 2,606 commit messages to quantify the
frequency of bugs. By applying a qualitative analysis tech-
nique called open coding [60], we identify bug categories for
Ansible test scripts. Furthermore, we apply open coding and
statistical analysis to identify testing patterns in OSS Ansible
development that correlate with appearance of bugs. Source
code and datasets used in the paper are available online [2],
[28], [65].

Contributions: We list our contributions as the following:

• A list of bug categories that appear in Ansible test scripts
(Section IV-A);

• An empirical evaluation of how frequently bugs appear in
Ansible test scripts (Section IV-A);

• A list of testing patterns unique to Ansible that correlate
with appearance of bugs in test scripts (Section IV-B);

• An empirical evaluation of how frequently bug-related test-
ing patterns in Ansible test scripts (Section IV-A); and

• A tool called Test Pattern Miner for Ansible (TAMA)
that identified testing pattern instances that correlate with
appearance of bugs in Ansible test scripts (Section IV-B).

We organize the rest of the paper as follows: we discuss
background and related work in Section II. We provide the
methodology of our empirical study in Section III. We report
our findings in Section IV. We discuss our findings and

limitations respectively, in Section V and VI. Finally, we
conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

We provide background on testing in Ansible and discuss
related work in this section.

A. Background

IaC scripts are used to provision computing infrastructure
at scale [33]. Along with automation, the practice of IaC
also recommends treating scripts as ‘first class citizens’, i.e.,
applying recommended software engineering practices, such
as version control, testing, and linting. The practice of IaC is
implemented using tools, such as Ansible, Chef, and Puppet. In
recent years, compared to Chef and Puppet, the use of Ansible
amongst IT organizations has gained popularity to implement
IaC [3], [57].

We provide background on Ansible scripts as we use Ansible
scripts to conduct our empirical study. Practitioners develop
Ansible scripts using Yet Another Markup Language (YAML)
syntax. An Ansible script contains a set of tasks also referred
to as ‘plays’. Listing 1 provides an example Ansible script that
creates a file called ‘sample.txt’ in the ‘/tmp’ directory using a
play called ‘Create sample.txt’. As shown in Listing 1, Ansible
provides dedicated syntax, such as tags to execute provisioning
tasks. For example, name, file, path, state, owner, and
group are examples of tags.

1 #This is an example Ansible script
2 - name: Create sample.txt
3 hosts: localhost
4 file:
5 path: /tmp/sample.txt
6 state: touch
7 owner: test
8 group: test
9 register: temp_file

Listing 1: An example Ansible script used to create an empty
file called ‘sample.txt’.

Testing in Ansible is conducted using tags, such as assert
to validate if executed tasks made expected changes to the

Preprin
t

provisioned environment. Listing 2 shows an example where
the existence of the created file in Listing 1 can be tested using
the assert tag using a play called ‘test if /tmp/sample.txt
exists ’. Along with Ansible-provided tags, practitioners can
use their own modules to conduct Ansible-related testing. A
test script can include one or multiple test plays.

1 - name: test if /tmp/sample.txt exists
2 msg: "Sample file exists"
3 assert:
4 that:
5 - temp_file.stat.exists == True

Listing 2: Example test script that tests existence of a file.

B. Related Work

We organize this section by first discussing prior research that
have focused on quality assurance aspects of IaC. Second, we
discuss prior work related to test quality for GPL projects.
Finally, we conclude this section by discussing studies related
to bug categorization.
1) Prior Research on IaC: Our paper is closely related to prior
research on quality assurance aspects of IaC scripts. Rahman
et al. [54] constructed a defect taxonomy for IaC scripts
that included eight defect categories. In other works, Rahman
et al. in separate studies quantified security weaknesses that
appear in Ansible [57], Chef [57], and Puppet scripts [56].
In another work, Rahman et al. [53] discussed how secrets
can be managed during IaC script development. The closest
in spirit to our work is Rahman et al.’s paper [55] in which
they identified development anti-patterns for IaC scripts. The
difference between our paper and Rahman et al. [55]’s work
is that they [55] did not investigate quality issues in IaC test
scripts, whereas our paper solely focuses on characterizing test
quality for Ansible test scripts.
2) Prior Research on Test Quality for GPL-based Projects:
Our paper is related to prior research that have investigated
test quality for project developed in GPLs, such as Java. Van
Deursen et al. [67] identified 11 categories of test smells, i.e.,
testing patterns that can cause maintenance issues. Tufano et
al. [66] built on top of van Deursen et al. [67]’s work to
investigate how practitioners perceive 6 categories of JUnit
test smells. Bavota et al. [8] reported test smells proposed by
Duersen et al. [67] to negatively impact software maintenance.
While these studies have helped the community to establish
the science of test quality for GPL projects, these studies have
not investigated testing patterns for IaC scripts.
3) Research Related to Bug Categorization: Our paper is also
related to prior research that has investigated bug categories
for software systems. In 1992, Chillarege et al. [16] proposed
the Orthogonal Defect Classification (ODC) technique that in-
cluded eight bug categories. Categories proposed by Chillarege
et al. [16] were used by Cinque et al. [18] to categorize
bugs for air traffic control software. Later in 2008, Seaman et
al. [63] extended ODC to derive 7 categories of requirements
bugs, 10 categories of design and source code bugs, and 7
categories of test plan bugs.

Researchers have also constructed bug taxonomies in a
bottom-up fashion for domain-specific software systems. For
example, Humbatova et al. [32] mined GitHub issues to derive
a fault taxonomy for software projects that use deep learning.
Rahman et al. [54] used open coding with commits to derive
bug categories for Puppet scripts. Rahman and Farhana [58]
categorized bugs for software applications used for COVID-
19. In short, bug categorization has been an active research
area, where researchers have focused on deriving bug cat-
egories for domain-specific software systems, such as deep
learning, but remain under-explored for IaC test scripts.

III. METHODOLOGY

We describe our methodology in this section, which is sum-
marized in Figure 2.

A. Methodology for RQ1: How frequently do bugs appear in
Ansible test scripts? What categories of bugs appear in Ansible
test scripts?

We describe the methodology for answering RQ1 in the
following subsections:
1) Dataset Collection: We collect repositories by mining OSS
repositories hosted on GitHub. We use GitHub repositories as
IT organizations tend to host their OSS projects on GitHub [1].

OSS repositories are susceptible to quality concerns, for
example, repositories hosted on GitHub can be used for
personal purposes that do not adequately reflect professional
software development [45]. We apply the following criteria
to collect necessary repositories: Criterion-1: The repository
includes Ansible scripts. We apply this criterion by inspecting
if repositories include YAML files and also include directories
with the keyword ‘playbook’. Ansible scripts are organized
as playbooks and stored in directories that are labeled as
‘playbook’ [57]. Criterion-2: The repository is not a clone of
another repository. Criterion-3: Count of developers is at least
five. Using this criterion, we assume to filter out repositories
that are used for personal purposes, such as projects used
for coursework, simialr to prior work [32]. Criterion-4: The
repository has at least two commits per month. We use this
threshold as Munaiah et al. [45] used the threshold of at
least two commits per month to determine which repositories
have enough development activity. Criterion-5: The lifetime of
repository is at least one month. Using this criterion, we filter
repositories that have a short lifetime. We measure lifetime
of a repository by calculating the difference between the last
commit date and the creation date for the repository. Criterion-
6: Similar to prior work on IaC [54], [56], [57], the proportion
of Ansible scripts is at least 10%. IaC scripts can co-locate
with other types of files, such as source code files and build
files [37]. We assume that by using this threshold we can
exclude repositories that do not have sufficient Ansible scripts
for analysis. Criterion-7: The repository must include at least
one Ansible test script developed in YAML. With this criterion
we can include OSS repositories that contains Ansible scripts
used for testing as well. We manually inspect each sub-
directory within a repository to identify test scripts.

Preprin
t

GitHub GitHub Repositories

Ansible Test Scripts

Test Bug Categorization

Testing Patterns

Filter

Mining

Open Coding and
Statistical Analysis

Ansible Test Commits

Open Coding

Mining
Fig. 2: An overview of our research methodology.

We use Google BigQuery [31] to download OSS repositories.
Table I summarizes how many repositories are filtered using
our criteria. We download 104 repositories by cloning the
master branches on November 2020. The average count of An-
sible test script per repository is 46.4 (min=1.0, median=3.0,
max=921.0). The average count of test play is 4.9 per test
script (min=1.0, median=3.0, max=104.0). Other attributes of
the collected repositories are available in Table II.

TABLE I: Repository Filtering
GitHub

Initial Count 3,405,303
Criterion-1 (Ansible Usage) 6,633
Criterion-2 (Not a Clone) 4,147
Criterion-3 (Contributor Count>3) 856
Criterion-4 (Commits/Month >=2) 770
Criterion-5 (Lifetime>1 month) 675
Criterion-6 (10% Ansible Scripts) 324
Criterion-7 (Existence of Ansible Test Scripts) 104

TABLE II: Dataset Attributes
Attribute GitHub
Total Repositories 104
Avg. Repository Lifetime (Months) 43
Total Commits 700,696
Total Ansible Scripts 33,681
Total Ansible-related Commits 276,104
Total Ansible Test Scripts 4,831
Total Test Plays 23,841
Total Commits Modifying Ansible Test Scripts 2,606
Total Lines of Code (LOC) in Ansible Test Scripts 166,592

2) Ansible Test Bug Quantification and Categorization: We
answer RQ1 by reporting the count of bugs and the bug
categories for Ansible test scripts. The first author of the
paper with 7.5 years of professional software development
experience executes the following three steps:

Step#1-Bug Identification via Qualitative Analysis: The
first author manually inspects each commit message for each

of the 2,606 commits that are used to modify any of the
4,831 Ansible test scripts downloaded from Section III-A1.
While inspecting the commit messages the first author uses
the following definition to determine if a commit is used to
resolve a bug “an imperfection in a program that needs to
be corrected or replaced” [36]. Upon completion of this step,
the first author separates commit messages that are related to
a bug. These commit messages are labeled as ‘bug-related’,
and used in Step#2. Next, we manually analyzed the code
changes for each bug-related commit to determine if a test
script is modified in a bug-related commit. If we determine
a test script to be modified in a bug-related commit, then we
label that test script as ‘bug-related’. A test script that is not
modified in any bug-related commit is a ‘neutral’ test script.

We quantify the frequency of test bugs by using four metrics:
(i) count of bug-related commits, (ii) bug proportion using
Equation 1, (iii) bug density per 1,000 lines of code (LOC)
using Equation 2, and (iv) proportion of bug-related test scripts
using Equation 3.

Bug Proportion =
Total count of bug-related commits

Total count of commits
(1)

Bug Density (x) =
Total count of bug-related commits
Total LOC for all test scripts/1,000

(2)

Proportion of Bug-related Scripts (%) =
Count of bug-related test scripts

Total count of test scripts
∗100%

(3)

Step#2-Bug Categorization via Qualitative Analysis: For
identifying bug categories in test scripts the first author ap-

Preprin
t

plies open coding [60]. Open coding is a qualitative analysis
technique to identify themes from unstructured text based
on similarity analysis [60]. The first author applies open
coding to identify categories by inspecting each of the bug-
related commits identified from Step#1. In our categorization,
a commit message can map to multiple bug categories.

We do not use existing bug categorization frameworks, such
as ODC and Seaman et al. [63]’s work, as these categorization
frameworks could be inadequate for Ansible test scripts. Prior
research [9], [32] has reported pre-defined bug categorization
frameworks to be inadequate for emerging programming lan-
guages and ecosystems, such as IaC.

Step#3-Rater Verification for Bug Categorization: The bug
categories identified from Step#2 are susceptible to rater bias
as these categories are identified by the first author alone.
We mitigate this limitation by allocating another rater who
participate voluntarily. The rater is a PhD student and not an
author of the paper. We allocate 2,606 commit messages to
the rater to perform closed coding [60]. The rater reads each
commit message, and determines if the message maps to any
of the identified bug categories. Next, we record a Cohen’s
Kappa [20] of 0.87 between the first author and the PhD
student, indicating ‘almost perfect’ agreement [41].

B. Methodology for RQ2: What categories of testing patterns
correlate with appearance of bugs for Ansible test scripts?

We describe the methodology for RQ2 as follows:
1) Qualitative Analysis: We perform qualitative analysis by
first identifying a sample with a sampling procedure called
purposeful sampling [43], [51] similar to prior research [7].
The first author applies purposeful sampling to identify Ansi-
ble test scripts from which we will identify testing patterns, i.e,
recurring coding patterns in test scripts that may correlate with
bugs in test scripts. As part of conducting purposeful sampling,
the first author focuses on variation intensity as discussed by
Palinkas et al. [51], and conducts preliminary exploration to
understand the variation in the content of the 4,831 Ansible
test scripts. The first author identifies a purposeful sample of
500 randomly-selected test scripts, which we use. The first
author identifies the set of 500 scripts being representative of
the variation documented in the set of 4,831 test scripts.

Second, we apply open coding [60] where we manually inspect
test scripts to identify testing patterns that may correlate with
appearance of bugs. We use two raters, the first and last author
of the paper to conduct the open coding process. The first
and last author respectively, has an experience of 3 years
and 6 years in working with IaC. The first and last author
respectively, took 600 and 372 hours to individually complete
open coding for the 500 test scripts. Upon completion of
open coding, we record disagreements: the first author identify
4 categories, and the last author identify 3 categories. The
Cohen’s Kappa [20] is 0.43, indicating ‘moderate’ agreement,
according to Landis and Koch [41]. The first and second
rater reached qualitative code saturation [29], i.e., did not

identify any new categories respectively, after inspecting 132
and 201 test scripts. This shows the set of 500 randomly-
selected scripts to be adequate for identifying testing patterns.

Both raters discussed their disagreements and provided reasons
for their categorization. The first author identified ‘linter
strangler’, which was missed by the last author. The first
author provided examples of linter strangler, i.e., disabling
lint checking for test scripts, and discussed how disabling lint
checking can cause maintainability issues. The last author was
convinced by the arguments of the first author, and agreed
that linter strangler should be considered as a testing pattern.
After resolving disagreements the Cohen’s Kappa [20] is 1.0,
as both raters agreed on all testing patterns identified using
open coding.
2) Quantify Testing Pattern Frequency: We quantify testing
pattern frequency by using an automated tool called Test
Pattern Miner for Ansible (TAMA), which is available as
Docker image [65].

Parsing: TAMA parses test scripts collected from Sec-
tion III-A1 into key-value pairs.

Rule Matching: From the parsed content of the test scripts,
TAMA applies rule matching to identify testing patterns. The
rules needed to identify testing patterns are listed in Table IV.
These rules are identified by abstracting code snippets for
each pattern. The rules presented in Table IV leverage pattern
matching similar to prior research [52], [57]. The string
patterns used by each rule in Table IV is provided in Table V.

Rule Derivation Process: We leverage commonalities in cod-
ing patterns, and abstract such commonalities as rules to
detect pattern instances. We provide an example in Table III
to demonstrate our rule derivation process. In the ‘Coding
Pattern’ column, we observe two coding patterns that are
instances of linter strangler. In both coding patterns, tags are
used to specify the coding pattern skip_ansible_lint.
TAMA can parse both coding patterns as key value pairs,
where tags is the key and skip_ansible_lint is the
value. In both coding patterns we notice commonality in the
key value pairs, which can be abstracted to a rule isTag(k) ∧
isSkipLint(k.value). We repeat the same abstraction process
for other patterns identified in Section III-B1.

TABLE III: An Example to Demonstrate How Code Snippets
are Used to Determine the Rule for ‘Linter Strangler’

Coding Pattern Parsing Output of TAMA
tags:
-

skip_ansible_lint
<Key, ‘tags’,
skip_ansible_lint >

tags:
- swap-format
-

skip_ansible_lint
<Key, ‘tags’, swap-format
>, <Key, ‘tags’,
skip_ansible_lint >

Evaluation of TAMA: We evaluate TAMA by constructing
an oracle dataset. We construct the oracle dataset using a
rater who is not the author of the paper. The rater applies

Preprin
t

closed coding [60], where the rater manually examines each
test script and provides a label for the test script. We do not
impose any time limit for the rater to conduct closed coding.
We provide the rater a guidebook that includes the names,
definitions, and examples of each pattern. The guidebook is
available online [28].

We use 100 randomly-selected test scripts that are not used to
perform open coding in Section III-B1 to construct our oracle
dataset. We use precision and recall to measure TAMA’s detec-
tion accuracy. Precision is the fraction of correctly identified
pattern instances among the total identified pattern instances,
as determined by TAMA. Recall is the fraction of correctly
identified pattern instances that have been retrieved by TAMA.

The rater took 40 hours to conduct closed coding. After com-
pletion of closed coding we run TAMA on the oracle dataset.
The oracle dataset included 176 testing pattern instances in 96
test scripts. No testing pattern was identified in 4 test scripts.
The precision and recall of TAMA for each identified category
is listed in Table VI. The ‘Count’ column provides the count
of reported instances for each pattern. We observe TAMA’s
average precision and recall respectively, to be 0.93 and 0.98
across all four categories. From our evaluation using the oracle
dataset, we observe TAMA to have a recall of >= 0.95
across all four categories, which gives us the confidence that
TAMA will correctly identify testing pattern instances but can
generate false positives.

TABLE IV: Rules Used by TAMA

Category Rule
Assertion Roulette isAssert(k) ∧

length(k.value) > 1
Linter Strangler isTag(k) ∧

isSkipLint(k.value)
Local Only Testing isHost(k) ∧ isLocal(k.value)
Remote Mystery Guest isP lay(k) ∨ isInstall(k) ∨

isURL(k.value)

TABLE V: String Patterns Used to Execute Rules in Table IV.

Function String Pattern
isAssert() ‘assert’
isHost() ‘hosts’
isInstall() ‘install’
isLocal() ‘localhost’
isSkipLint() ‘skip_ansible_lint’
isTag() ‘tags’
isURL() ‘http://’, ‘https://’

TABLE VI: Evaluation of TAMA with Oracle Dataset

Pattern Name Count Precision Recall
Assertion roulette 22 0.91 0.95
Linter Strangler 15 0.93 1.00
Local Only Testing 32 0.91 1.00
Remote Mystery Guest 107 0.96 0.98
Average 0.93 0.98

3) Statistical Analysis: Upon identifying the testing patterns,
we apply statistical analysis to quantify if each of the identified
testing patterns correlate with bug-related test scripts identified
in Section III-A2. For correlation analysis we first, compute

the count of each identified testing pattern from Section III-B1
for both: bug-related test scripts and neutral test scripts. Sec-
ond, we apply statistical analysis. Through statistical analysis
if we determine the count of testing patterns to be significantly
larger for bug-related test scripts compared to that of neutral
test scripts, then we conclude that testing pattern to exhibit
a correlation with bugs in test scripts. We state the following
null and alternate hypothesis for each of the identified testing
pattern in Section III-B1 to perform statistical analysis:

• Null: count of testing pattern x is not higher for bug-related
test scripts than neutral test scripts.

• Alternate: count of testing pattern x is higher for bug-related
test scripts than neutral test scripts.

We use the Mann-Whitney U test [42] to accept or reject
the null hypothesis as the test makes no assumption on the
underlying distribution of the data. Following Cramer and
Howitt’s observations [21], for Mann-Whitney U test we
determine the difference to be significant if p < 0.01.
4) Compute Metrics: Our statistical analysis from Sec-
tion III-B3 will yield a set of testing patterns that correlate with
appearance of bugs in test scripts. Using TAMA described in
Section III-B2 we first, calculate the count of testing patterns
for each test script in our dataset. Second, we compute two
metrics: ‘Test Pattern Density’, and ‘Test Script Proportion’.
Test pattern density measures the frequency of testing pattern
instances, for every 1,000 LOC. Test script proportion refers to
the percentage of test scripts that include at least one instance
of testing pattern. We use Equations 4 and 5 respectively, to
quantify test pattern density and test script proportion.

Test Pattern Density (x) =
Total pattern instances for category x

Total LOC for test scripts/1, 000
(4)

Test Script Proportion (x) =
Test scripts with at least one instance of pattern x

Total test scripts in dataset
∗ 100%

(5)

IV. RESULTS

We provide answers to our research questions as follows:

A. Answer to RQ1: How frequently do bugs appear in
Ansible test scripts? What categories of bugs appear in
Ansible test scripts?

We answer RQ1 in this section.
1) Frequency of Bugs in Ansible Test Scripts: Altogether, we
identify 2,606 commits to be used to modify 4,831 Ansible
test scripts. Of the 2,606 commits, 147 commits (5.6%) are
bug-related. Out of 104 repositories, 47 repositories (45.2%)
included at least one bug-related test script. A breakdown of
bug frequency is available in Table VII where we report bug
density, bug proportion, and bug-related test script proportion.

Preprin
t

TABLE VII: Answer to RQ1: Bug Density, Bug Proportion,
and Bug-related Test Script Proportion

Category Count
Bug Density (per KLOC) 0.88
Bug Proportion 5.6%
Bug-related Test Script Proportion 1.8 %

Fig. 3: Bug Categories for Ansible Test Scripts.

2) Bug Categories for Ansible Test Scripts: We identify 7
categories of bugs in Ansible test scripts, as summarized in
Figure 3. We alphabetically describe each of these categories:

I. Configuration: Bugs that occur due to providing incorrect
configurations. We identify four sub-categories: (i) network-
related: bugs that are related with network devices and drivers;
(ii) operating system (OS)-related: bugs that are related with
configurations of operating systems; (iii) software-related:
bugs that are related to incorrect configurations of a software
package; and (iv) storage-related: bugs that are related with
allocating and reusing storage utilities.

Example: We provide an example for each sub-category of
configuration bugs: (i) network-related: a network miscon-
figuration in a test script occurred for using an unexpected
Ethernet interface name [50]. The practitioner incorrectly
assumed that only one public Ethernet interface name needs
to be handled by the test script. The bug was fixed by
adding a functionality to handle multiple public Ethernet
interface names; (ii) OS-related: for an OSS project called
‘os-ansible-deployment’, network bootstrapping code in an
Ansible test script was working correctly for Ubuntu, but not
for CentOS. The bug occurred for not accounting the fact
that the location of device and drivers varies from one OS
to another [47]; (iii) software-related: a configuration called
MYSQLD_STARTUP_TIMEOUT was not used in a test script,
which resulted in a bug [49]. MYSQLD_STARTUP_TIMEOUT
is a configuration related to the MySQL daemon mysqld;
and (iv) storage-related: for an OSS project called ‘ceph/ceph-
ansible’, an Ansible test was failing by allocating a 3 GB
volume for storage, which was fixed by allocating 10 GB [12].

II. Dependency: Bugs that occur due to unavailability of
a software artifact, which is necessary for a test script’s
execution.

Example: In the ‘ceph/ceph-ansible’ repository [13], execution

of a test script failed because of a missing ‘pyyaml’ 2 depen-
dency, which was not installed.

III. Idempotency: Bugs that occur when the idempotency
property is violated for Ansible test scripts. Idempotency
ensures a test script to yield the same results, when the same
test script is executed multiple times.

Example: Idempotency bug was documented for an OSS
repository called ‘openstack/openstack-ansible’, which lead to
test case failures [46].

IV. Logging: Bugs that lead to undesired amount of logs being
generated for Ansible test scripts. Examples include but are not
limited to duplicate logging, too little logging, and too much
logging.

Example: For the ‘ceph/ceph-installer’ project, we observe an
Ansible test script to include duplicate logging statements,
which was deemed unhelpful for debugging [15].

V. Performance: Bugs that incur additional program execu-
tion time. We identify two sub-categories: (i) artifact splurging:
bugs that occur due to not caching software artifacts, such
as software packages and Docker images; and (ii) metadata:
bugs that occur due to not using recommended Ansible code
elements for extracting metadata of computing environments.
One such code element is ansible_facts that provides
an efficient approach to collect metadata about the computing
environment, which is provisioned by the Ansible script [4].

Example: We provide examples of performance bugs by pro-
viding an example for each sub-category: (i) artifact splurg-
ing: For the ‘kubernetes-sigs/kubespray’ project, execution of
Ansible test scripts was slow because of not caching Docker
images [39]. Instead, the test script downloaded Docker images
for every build. Downloading a Docker image from a Docker
image repository, such as DockerHub [25] takes considerable
amount of time depending on the size of image. The recom-
mended approach is to cache Docker images in the environ-
ment where the test script is running, instead of downloading
it repeatedly [24]; (ii) metadata: in the ‘ceph/ceph-ansible’
project, metadata from the computing environment was being
extracted without using ansible_facts, which resulted in
slow execution for the test script [14].

VI. Security: Bugs that violate any of the following security
objectives: confidentiality, integrity, or availability [23].

Example: For an OSS project ‘kubernetes-sigs/kubespray’, the
following security bugs were documented for a test script: (i)
use of default token authentication, and (ii) transport layer
security (TLS) being disabled for authentication [38]. These
security bugs violate the security objective of integrity.

VII. Style: Bugs that occur for violating recommended coding
style practices of Ansible. An Ansible test script can execute

2https://pypi.org/project/PyYAML/

Preprin
t

correctly but still can have style bugs that can cause maintain-
ability issues.

Example: In an OSS project, a style-related bug was doc-
umented due to use of the shell module [48]. Use of
shell is perceived by the Ansible community to create
maintainability issues, and is discouraged for usage [4].

Frequency of Bug Categories in Ansible Test Scripts: Based
on bug proportion and test script proportion values, config-
uration bugs is the most frequent. Considering bug density
style-related bugs is the most frequent. We provide a complete
breakdown in Table VIII. Of the 55 configuration bugs, 20.0%,
23.6%, 43.7%, and 12.7% are respectively, network, operating
system, software, and storage bugs. Of the 17 performance
bugs, 76.5% and 23.5% are respectively, related to artifact
splurging and metadata extraction.

B. Answer to RQ2: What categories of testing patterns
correlate with appearance of bugs for Ansible test scripts?
From our qualitative analysis we identify 4 testing patterns.
As discussed in Section III-B, we use open coding as well
as Mann Whitney U test to determine which testing patterns
correlate with test-related bug scripts. While we identify
four testing patterns with open coding, three of them show
correlation with bug-related test scripts. As shown in Table IX,
we observe a p − value < 0.01 for three testing patterns:
assertion roulette, local only testing, and remote mystery.
1) Testing Patterns that Correlate with Appearance of Bugs in
Ansible Test Scripts: We alphabetically describe the 3 testing
patterns that correlate with appearance of bugs in test scripts
as follows:

I. Assertion Roulette: The recurring coding pattern of testing
more than one assertion using the assert tag. If one as-
sertion fails, a practitioner may not be able to identify for
which assertion the failure occurred. Instances of assertion
roulette make troubleshooting of test failures harder. We report
an instance of assertion roulette if more than one assertion is
tested in one assert tag.

Example: In Listing 3 we observe a test play that tests three
assertions using one assert tag: (i) if network interface
is active (line#4), (ii) if interface type is ‘bonding’ (line#5),
and (iii) and if maximum transmission unit (mtu) for the net-
work interface is 9000 (line#6). Ansible will report ‘fatal:
FAILED’ message if any of the three assertions fail, or a
combination of these three assertions fail. Troubleshooting
the assertion failure can be challenging because to identify
the location of the assertion failure, the practitioner has to
comment one assertion at a time and rerun the test play.

II. Local Only Testing: The recurring coding pattern of only
using the local environment to conduct Ansible testing. IaC
testing can be conducted in local environments as well as
remote environments [44]. However, while developing test
scripts, practitioners may only execute tests in the local
development environment, e.g., in their personal computer,

1 - name: Bond check
2 assert:
3 that:
4 - ansible_bond0['active'] == true
5 - ansible_bond0['type'] == 'bonding'
6 - ansible_bond0['mtu'] == 9000

Listing 3: An example of assertion roulette where three
assertions are tested.

and not in a remote environment, e.g., in an AWS instance.
Test execution in local environments may not be reflective
of remote cloud environments because system configurations,
package dependencies, etc. in a local environment can be
different to that of the remote cloud-based environments [33].
While testing in the local environment is better than doing
no testing at all, local only testing is limiting, potentially
leading to difficulty in debugging test failures. Hummer et
al. [34] emphasized IaC testing to be conducted in remote
environments because testing in remote environments can
adequately ensure changes in the system state. We report
an instance of local only testing when a test script uses the
hosts: localhost coding pattern.

Example: We provide an example of using local only testing in
Listing 4, where using the hosts: localhost coding pat-
tern the practitioner specifies that creation of a network driver
called ‘networkd’ will be tested in the local environment. If
the test play is executed correctly then an active network
bridge will be created. The test play can execute correctly
in the local environment but not in a remote environment,
which could have a different operating system and/or different
system configurations. Behavior of device drivers, such as
network device drivers are dependent on the type of operating
system [59].

1 - name: Test networkd
2 hosts: localhost
3 connection: local
4 - name: Bridge check
5 assert:
6 that:
7 - ansible_br_dummy['type'] ==

'bridge'↪→

Listing 4: An example of local only testing: test execution is
specified only for the local environment with the hosts tag.

III. Remote Mystery Guest: The recurring coding pattern of
using a remote artifact for test play execution, which needs
to be accessed via an HTTP/HTTPS-based URL. We count
URL usage in a test script to quantify remote mystery guest
instances.

Example: We use the code snippet presented in Listing 5 to
demonstrate an example of remote mystery. Listing 5 presents
a play titled ‘Download LibVirt CPU map configuration
script’, which is dependent on the availability of a Python
script called ‘cpu_map_update.py’. Another practitioner can

Preprin
t

TABLE VIII: Answer to RQ1: Frequency of Bug Categories in Ansible Test Scripts
Bug Category Count Bug Proportion (%) Bug Density (per KLOC) Script Proportion (%)
Configuration 55 2.11 0.33 0.72
Dependency 40 1.53 0.26 0.37
Idempotency 3 0.11 0.18 0.04
Performance 17 0.65 0.10 0.20
Logging 13 0.49 0.08 0.12
Security 11 0.42 0.07 0.16
Style 8 0.30 0.48 0.16

TABLE IX: P − values for the Four Testing Patterns

Pattern Name P − value
Assertion roulette 1.01× 10−27

Linter Strangler 0.20
Local Only Testing 4.08× 10−09

Remote Mystery Guest 7.24× 10−08

move the Python script of interest to another repository, which
will make the test play fail. Furthermore, dependency on
the remote Python script necessitates availability of network
connectivity between the computing infrastructures, e.g., the
infrastructure where the test script is executed, and the infras-
tructure where the Python script is hosted. The test play can
fail if there is limited or no internet connectivity.

1 - name: Download LibVirt CPU map
configuration script↪→

2 get_url:
3 url: "http://git.openstack.org/cgit/
4 openstack-dev/devstack/plain/tools/
5 cpu_map_update.py?h=a631abadde7346b49"
6 dest: /openstack/cpu_map_update.py
7 validate_certs: yes
8 mode: 755
9 register: libvirt_cpu_map_download

10 tags:
11 - libvirt-cpu-map-download
12 - name: Test execution of LibVirt CPU map

configuration script↪→

13 shell: /openstack/cpu_map_update.py
/usr/share/libvirt/cpu_map.xml↪→

14 when: libvirt_cpu_map_download | changed
15 tags:
16 - libvirt-cpu-map-updated

Listing 5: An example of remote mystery guest where a remote
Python file is imported using the url tag.

2) Frequency of Testing Patterns that Correlate with Ap-
pearance of Bugs: A breakdown of test pattern density and
test script proportion is provided in Table X. The least and
most frequent testing pattern that correlates with bugs is
respectively, local only testing and remote mystery guest. In
the case of assertion roulette, the median number of assertions
per assert tag for GitHub is 2.0 (min = 2.0, max = 25.0).
The count of unique Ansible test scripts in which at least one
testing pattern appears is 957 out of 4,831 test scripts (19.8%).

V. DISCUSSION

We discuss the implications of our findings in this section.

TABLE X: Answer to RQ2: Test Pattern Density and Test
Script Proportion (%) for the Three Testing Patterns

Pattern Name Count Test Pattern
Density (per
KLOC)

Test Script
Proportion
(%)

Assertion Roulette 527 3.16 7.15
Local Only Testing 245 1.47 4.71
Remote Mystery
Guest

765 4.59 9.07

Mitigation of Identified Bug Categories: IT organizations
can mitigate the occurrence of bugs in Ansible test scripts
by incorporating techniques and tools that target one or more
of the identified bug categories. For example, static analysis
tools such as SLAC [57] and ‘ansible-lint’ [5] can respectively,
be helpful in mitigating security and style bugs. Mitigation of
idempotency defects could be possible through early detection
of idempotency with Hummer et al. [35]’s approach. The tech-
nique of interactive configuration repair proposed by Weiss et
al. [68] can be used to repair configuration bugs.

Comparing Identified Bug Categories for Ansible Testing:
Our identified bug categories have already been documented
in existing research. For example, configuration bugs were also
documented to appear for tests in Apache OSS projects and
in OSS Puppet scripts. Dependency, idempotency, and security
bugs have been reported for OSS Puppet scripts [54]. As
documented in prior research, similar to Chef scripts [62] and
Puppet scripts [64], style-related bugs also appear for Ansible
test scripts.

Implications related to Prioritized Inspection: From Table VI
we observe TAMA to have a precision and recall of > 0.90 for
the 3 testing patterns: assertion roulette, local only testing, and
remote mystery guest. Also, from Section IV-B2 we report that
19.8% of the 4,831 test scripts to include at least one instance
of the 3 testing patterns. The implication of RQ2-related
findings is that practitioners can use TAMA to automatically
identify testing patterns that correlate with appearance of bugs.
First with TAMA, practitioners can identify test scripts in
which any of the 3 testing pattern appears. Second, they can
prioritize these test scripts for further inspection to identify
bugs, as Table IX shows a relationship to exist between
appearance of the 3 testing pattern categories and appearance
of bugs. In this manner, practitioners can save inspection
efforts for bug identification, as instead of inspecting all test
scripts for bugs, they can inspect a smaller subset of test
scripts.

Preprin
t

Testing Patterns that Correlate With Appearance of Bugs
- Similarities and Differences: From Section IV-B1 we
identify three testing patterns that correlate with appearance
of bugs. Of these three patterns assertion roulette and remote
mystery guest have been documented as test smells in existing
research [8], [66]. The implication of this finding is that the
testing patterns that have negative implications for GPLs can
also occur for non-GPLs, such as for Ansible test scripts.

We also notice one testing pattern to correlate with appearance
of bugs that is unique to Ansible: local only testing. An
IaC test script may execute correctly in a local environment,
but erroneously in a remote environment, potentially leading
to erroneous provisioning of computing infrastructure [27].
Practitioners consider the activity of conducting IaC testing on
remote environments as a good practice stating “by running
the tests on real systems, you can determine whether your ap-
plication responded correctly in a realistic configuration” [61].

Implications for Reproducible Deployments: One of the per-
ceived benefits of IaC is reproducible deployments of cloud-
based infrastructure, which enables practitioners to provision
cloud-based infrastructure with consistent environments [33].
However, as shown in Section IV-B, practitioners use local
only testing, which can undermine the value of IaC with
respect to reproducible deployments. The example presented
in Listing 4 tests functionality of network bridges only in
the local development environment. The network bridge func-
tionality may behave correctly for the local environment but
not for one or multiple remote cloud instances due to differ-
ences in system configurations, package dependencies, etc.,
potentially creating inconsistencies between local and cloud-
based environments. Local only testing is symptomatic of an
‘uncontrollable configuration management process’ [33], and
is considered as a deterrent for reproducible deployments [10].

Implications for Troubleshooting Test Failures: From Sec-
tion IV-B we observe test scripts can have as many as 25
assertions under a single assert tag. Existence of assertion
roulette instances can negatively impact comprehension of
test failures [8], which can make troubleshooting of test fail-
ures harder. Troubleshooting failures in cloud-based software
development is challenging [19], and instances of assertion
roulette can further aggravate the challenges that are related
with cloud-based infrastructure maintenance.

Future Directions: Researchers can develop techniques that
will investigate run-time behavior of test scripts and char-
acterize potential flakiness in test scripts. Researchers can
also investigate if other categories of testing patterns, which
correlate with appearance of bugs, exist for Ansible scripts as
well as for Chef, Puppet, and Terraform scripts.

VI. THREATS TO VALIDITY

We discuss the limitations of our paper as follows:

Conclusion Validity: Our identified bug categories and testing
patterns are limited to the commits within the dataset we

used in Section III-A1. Also, the set of 500 Ansible test
scripts used in Section III-B1 to determine testing patterns is
subject to the first author’s bias. The identified bug and testing
pattern categories are susceptible to rater bias, which we
mitigate by using two raters. We use commits to identify bug
categories and bug-related test scripts, which can be limiting.
Also, TAMA can generate false negatives and false positives
when applied on other datasets. We mitigate this limitation
by evaluating TAMA using an oracle dataset described in
Section III-B2. Furthermore, results presented in Section IV-B
show a correlation between testing patterns and appearance of
bugs, but such correlation will not always lead to causation.

External Validity: Our datasets are constructed by mining OSS
repositories. Our findings may not generalize for proprietary
datasets. Also, our findings are limited to IaC scripts devel-
oped using Ansible, which may not generalize to other IaC
languages, such as Chef and Puppet.

Internal Validity: While constructing the oracle dataset the
rater may have expectations on the outcomes that could
potentially impact the closed coding process. We mitigate the
limitation by using a rater who is not an author of the paper.
Furthermore, construction of the oracle dataset is susceptible
to raters’ experience in Ansible. We mitigate this limitation
by providing the rater a document that describes each pattern
with definitions and examples.

VII. CONCLUSION

The practice of IaC advocates for integrating quality into IaC
development and testing. A characterization study of bugs in
IaC test scripts, such as Ansible test scripts, is the first step
towards aiding practitioners on how to integrate quality into
IaC testing. Such characterization can also identify testing
patterns that correlate with appearance of bugs in test scripts.
We have conducted an empirical study with 4,831 Ansible
test scripts mined from 104 OSS repositories. We observe
bugs to appear in 1.8% of the 4,831 Ansible test scripts
in our dataset. We identify 7 bug categories: configuration,
dependency, idempotency, logging, performance, security, and
style. We also identify 3 testing patterns that correlate with
appearance of bugs of which local only testing is unique to
Ansible test scripts.

Based on our findings, we recommend application of tech-
niques and tools that target one or more of our identified bug
categories. We also recommend the use of TAMA to identify
instances of the 3 testing patterns, as detection of testing
patterns can help practitioners prioritize inspection efforts to
find bugs in Ansible test scripts. We hope our paper will
facilitate more research in the domain of IaC script quality.

ACKNOWLEDGMENTS

We thank the PASER group at Tennessee Tech University for
their valuable feedback. The research was partially funded by
the U.S. National Science Foundation (NSF) award # 2026869.

Preprin
t

REFERENCES

[1] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies,
“We don’t need another hero?: The impact of "heroes" on software
development,” in Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice, ser.
ICSE-SEIP ’18. New York, NY, USA: ACM, 2018, pp. 245–253.
[Online]. Available: http://doi.acm.org/10.1145/3183519.3183549

[2] akondrahman, “akondrahman/IaCTesting,”
https://github.com/akondrahman/IaCTesting, 2021, [Online; accessed
26-Dec-2021].

[3] Alison DeNisco Rayome, “Ansible overtakes Chef and
Puppet as the top cloud configuration management tool,”
https://www.techrepublic.com/article/ansible-overtakes-chef-and-
puppet-as-the-top-cloud-configuration-management-tool/, 2019, [Online;
accessed 25-Sep-2021].

[4] Ansible, “Ansible Documentation,” https://docs.ansible.com/, 2021, [On-
line; accessed 19-Sep-2021].

[5] ——, “Ansible Lint Documentation,” https://ansible-
lint.readthedocs.io/en/latest/, 2021, [Online; accessed 29-Sep-2021].

[6] ——, “Swisscom Automates IT Management WITH RedHat An-
sible Tower,” https://www.ansible.com/hubfs/pdfs/RH-Ansible-Tower-
swisscom-case-study.pdf?hsLang=en-us, 2021, [Online; accessed 13-
Sep-2021].

[7] T. Barik, D. Ford, E. Murphy-Hill, and C. Parnin, “How should
compilers explain problems to developers?” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
633–643.

[8] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), 2012, pp. 56–65.

[9] B. Beizer, Software system testing and quality assurance. Van Nostrand
Reinhold Co., 1984.

[10] Y. Brikman, “5 lessons learned from writing over 300,000 lines of infras-
tructure code,” https://blog.gruntwork.io/5-lessons-learned-from-writing-
over-300-000-lines-of-infrastructure-code-36ba7fadeac1, 2018, [Online;
accessed 14-Sep-2021].

[11] CentOS-PaaS-SIG/linchpin, “Update unit tests contra-hdsl,”
https://github.com/CentOS-PaaS-SIG/linchpin/commit/4905430ab36c,
2019, [Online; accessed 25-August-2021].

[12] ceph/ceph ansible, “tests: resize root partition when atomic host,”
https://github.com/ceph/ceph-ansible/commit/e1c1017e15, 2018, [On-
line; accessed 21-Jun-2021].

[13] ——, “ceph-ansible:Ansible playbooks to deploy Ceph, the distributed
filesystem.” https://github.com/ceph/ceph-ansible, 2021, [Online; ac-
cessed 23-Jun-2021].

[14] ——, “Use ansible_facts,” https://github.com/ceph/ceph-
ansible/commit/7ddbe747122, 2021, [Online; accessed 24-Jun-2021].

[15] ceph/ceph installer, “tests: remove duplicate logging statements,”
https://github.com/ceph/ceph-installer/commit/634cdc8b1f, 2017, [On-
line; accessed 24-Jun-2021].

[16] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and
M.-Y. Wong, “Orthogonal defect classification-a concept for in-process
measurements,” IEEE Transactions on Software Engineering, vol. 18,
no. 11, pp. 943–956, Nov 1992.

[17] Chris Meyers, “Five Questions: Testing Ansible Playbooks & Roles,”
https://www.ansible.com/blog/five-questions-testing-ansible-playbooks-
roles, 2017, [Online; accessed 22-Sep-2021].

[18] M. Cinque, D. Cotroneo, R. D. Corte, and A. Pecchia, “Assessing direct
monitoring techniques to analyze failures of critical industrial systems,”
in 2014 IEEE 25th International Symposium on Software Reliability
Engineering, Nov 2014, pp. 212–222.

[19] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud
applications: An empirical study on software development for the
cloud,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA:
Association for Computing Machinery, 2015, p. 393–403. [Online].
Available: https://doi.org/10.1145/2786805.2786826

[20] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.
[Online]. Available: http://dx.doi.org/10.1177/001316446002000104

[21] D. Cramer and D. L. Howitt, The Sage dictionary of statistics: a
practical resource for students in the social sciences. Sage, 2004.

[22] J. Davila, “Ansible/NASA Case Study,” http://szsb-
gl2x.accessdomain.com/fierce/wp-content/uploads/2016/01/NASA-
Case-Study-Ansible.pdf, 2016, [Online; accessed 20-Jun-2021].

[23] G. Dhillon and J. Backhouse, “Current directions in is security research:
towards socio-organizational perspectives,” Information systems journal,
vol. 11, no. 2, pp. 127–153, 2001.

[24] Docker, “Registry as a pull through cache,”
https://docs.docker.com/registry/recipes/mirror/, 2021, [Online; accessed
25-August-2021].

[25] DockerHub, “Build and Ship any Application Anywhere,”
https://hub.docker.com/, 2021, [Online; accessed 26-August-2021].

[26] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba, “Adoption,
support, and challenges of infrastructure-as-code: Insights from indus-
try,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2019, pp. 580–589.

[27] M. M. Hasan, F. A. Bhuiyan, and A. Rahman, “Testing practices
for infrastructure as code,” in Proceedings of the 1st ACM SIGSOFT
International Workshop on Languages and Tools for Next-Generation
Testing, 2020, pp. 7–12.

[28] M. M. Hassan and A. Rahman, “Verifiability package for paper,”
https://figshare.com/s/4aa50ec7c34c18c71223, 2021, [Online; accessed
01-Jan-2022].

[29] M. M. Hennink, B. N. Kaiser, and V. C. Marconi, “Code saturation ver-
sus meaning saturation: how many interviews are enough?” Qualitative
health research, vol. 27, no. 4, pp. 591–608, 2017.

[30] R. Hersher, “Incident documentation/20170118-
Labs,” https://www.npr.org/sections/thetwo-
way/2017/03/03/518322734/amazon-and-the-150-million-typo, 2017,
[Online; accessed 21-Sep-2021].

[31] F. Hoffa, “GitHub on BigQuery: Analyze all the open source
code,” https://cloud.google.com/blog/products/gcp/github-on-bigquery-
analyze-all-the-open-source-code, 2016, [Online; accessed 16-Dec-
2020].

[32] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning systems,”
in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1110–1121. [Online].
Available: https://doi.org/10.1145/3377811.3380395

[33] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[34] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Automated testing
of chef automation scripts,” in Proceedings Demo & Poster Track of
ACM/IFIP/USENIX International Middleware Conference, 2013, pp. 1–
2.

Preprin
t

[35] ——, “Testing idempotence for infrastructure as code,” in Middleware
2013, D. Eyers and K. Schwan, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 368–388.

[36] IEEE, “IEEE standard classification for software anomalies,” IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), pp. 1–23, Jan 2010.

[37] Y. Jiang and B. Adams, “Co-evolution of infrastructure and
source code: An empirical study,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 45–55. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820518.2820527

[38] kubernetes sigs/kubespray, “Security best practice fixes,”
https://github.com/kubernetes-sigs/kubespray/commit/d487b2f9279,
2017, [Online; accessed 24-Jun-2021].

[39] ——, “Refactor download role,” https://github.com/kubernetes-
sigs/kubespray/commit/66408a87ee, 2020, [Online; accessed 24-Jun-
2021].

[40] P. Labs, “Puppet Documentation,” https://docs.puppet.com/, 2021, [On-
line; accessed 08-Aug-2021].

[41] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

[42] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947. [Online].
Available: http://www.jstor.org/stable/2236101

[43] M. N. Marshall, “Sampling for qualitative research,” Family practice,
vol. 13, no. 6, pp. 522–526, 1996.

[44] K. Morris, Infrastructure as code: managing servers in the cloud. "
O’Reilly Media, Inc.", 2016.

[45] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” Empirical Software Engineering, pp.
1–35, 2017. [Online]. Available: http://dx.doi.org/10.1007/s10664-017-
9512-6

[46] openstack/openstack ansible, “Fix idempotency bug in AIO bootstrap,”
https://github.com/openstack/openstack-ansible/commit/a4dfb65169,
2016, [Online; accessed 24-Jun-2021].

[47] ——, “Use operating system specific IP utilities,”
https://github.com/openstack/openstack-ansible/commit/b697c55842,
2018, [Online; accessed 20-Jun-2021].

[48] openstack/openstack-ansible lxc_hosts, “Fix ansible-lint
errors,” https://github.com/openstack/openstack-ansible-
lxc_hosts/commit/0d28eeab560, 2021, [Online; accessed 26-August-
2021].

[49] os-cloud/openstack-ansible galera_server, “Updated repo
for new org,” https://github.com/os-cloud/openstack-ansible-
galera_server/commit/cd11c5a56e96c0, 2015, [Online; accessed
27-August-2021].

[50] os-cloud/os-ansible deployment, “Fix main public interface
name not always be eth0.” https://github.com/os-cloud/os-ansible-
deployment/commit/03d176d5a, 2016, [Online; accessed 22-Jun-2021].

[51] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan,
and K. Hoagwood, “Purposeful sampling for qualitative data collection
and analysis in mixed method implementation research,” Administration
and policy in mental health and mental health services research, vol. 42,
no. 5, pp. 533–544, 2015.

[52] A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni,
and F. Palomba, “Tsdetect: An open source test smells detection
tool,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1650–1654. [Online].
Available: https://doi.org/10.1145/3368089.3417921

[53] A. Rahman, F. L. Barsha, and P. Morrison, “Shhh!: 12 practices for
secret management in infrastructure as code,” in 2021 IEEE Secure
Development Conference (SecDev), 2021, pp. 56–62.

[54] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of
eight: A defect taxonomy for infrastructure as code scripts,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 752–764. [Online].
Available: https://doi.org/10.1145/3377811.3380409

[55] A. Rahman, E. Farhana, and L. Williams, “The ‘as code’activities:
development anti-patterns for infrastructure as code,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3430–3467, 2020.

[56] A. Rahman, C. Parnin, and L. Williams, “The seven sins: security smells
in infrastructure as code scripts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 164–175.

[57] A. Rahman, M. R. Rahman, C. Parnin, and L. Williams, “Security
smells in ansible and chef scripts: A replication study,” ACM Trans.
Softw. Eng. Methodol., vol. 30, no. 1, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3408897

[58] A. A. U. Rahman and E. Farhana, “An empirical study of bugs in
covid-19 software projects,” Journal of Software Engineering Research
and Development, vol. 9, no. 1, p. 3:1 – 3:19, Mar. 2021. [Online].
Available: https://sol.sbc.org.br/journals/index.php/jserd/article/view/827

[59] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser, “Dingo: Taming device
drivers,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 275–288.

[60] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.

[61] D. Schmitt, “Hitchhiker’s guide to testing infrastructure as/and code
— don’t panic!” https://puppet.com/blog/hitchhikers-guide-to-testing-
infrastructure-as-and-code/, 2016, [Online; accessed 20-Jun-2021].

[62] J. Schwarz, A. Steffens, and H. Lichter, “Code smells in infrastructure
as code,” in 2018 11th International Conference on the Quality of
Information and Communications Technology (QUATIC), 2018, pp. 220–
228.

[63] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann,
Y. Guo, and S. Godfrey, “Defect categorization: Making use of a
decade of widely varying historical data,” in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ser. ESEM ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 149–157. [Online].
Available: https://doi.org/10.1145/1414004.1414030

[64] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the 13th International Conference
on Mining Software Repositories, ser. MSR ’16. New York,
NY, USA: ACM, 2016, pp. 189–200. [Online]. Available:
http://doi.acm.org/10.1145/2901739.2901761

[65] talismanic, “akondrahman/IaCTesting,”
https://hub.docker.com/r/talismanic/tama, 2021, [Online; accessed
26-Jan-2022].

[66] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 4–15. [Online].
Available: https://doi.org/10.1145/2970276.2970340

[67] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok, “Refac-
toring test code,” in Proceedings of the 2nd international conference
on extreme programming and flexible processes in software engineering
(XP), 2001, pp. 92–95.

[68] A. Weiss, A. Guha, and Y. Brun, “Tortoise: Interactive system
configuration repair,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 625–636. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155641

Preprin
t

