
Share, But Be Aware: Security Smells in Python
Gists

Md Rayhanur Rahman
North Carolina State University

mrahman@ncsu.edu

Akond Rahman
Tennessee Tech. University

akond.rahman.buet@gmail.com

Laurie Williams
North Carolina State University

lawilli3@ncsu.edu

Abstract—Github Gist is a service provided by Github which
is used by developers to share code snippets. While sharing,
developers may inadvertently introduce security smells in code
snippets as well, such as hard-coded passwords. Security smells
are recurrent coding patterns that are indicative of security
weaknesses, which could potentially lead to security breaches.
The goal of this paper is to help software practitioners avoid
insecure coding practices through an empirical study of security
smells in publicly-available GitHub Gists. Through static analysis,
we found 13 types of security smells with 4,403 occurrences in
5,822 publicly-available Python Gists. 1,817 of those Gists, which
is around 31%, have at least one security smell including 689
instances of hard-coded secrets. We also found no significance
relation between the presence of these security smells and the
reputation of the Gist author. Based on our findings, we advocate
for increased awareness and rigorous code review efforts related
to software security for Github Gists so that propagation of
insecure coding practices are mitigated.

Index Terms—GitHub, Gist, Python, Security, Security Smell,
Static Analysis, Software Security

I. INTRODUCTION

GitHub Gist1 is an online platform that allows GitHub users
to store and share Gists with developers. Gists are code snip-
pets and related textual information prepared for explaining
and demonstrating a programming concept or task [1]. Similar
to GitHub repositories, Gists are also version controlled and
clone-able. GitHub Gists have gained in popularity including
more than 17.7 million Gists written in 260 programming lan-
guages. As these Gists are used and shared by the developers,
coding practices in these Gists are also likely to be spread
across software projects.

Gists can enable the propagation of insecure coding prac-
tices. Let us consider Figure 1 as an example showing a Python
Gist2 where, we observe a hard-coded password in line 6.
Hard-coded password in software artifacts is considered as a
software security weakness (‘CWE-798: Use of Hard-coded
Credentials’) by Common Weakness Enumeration (CWE) [2].
According to CWE [2], “If hard-coded passwords are used,
it is almost certain that malicious users will gain access
to the account in question”. Such recurrence of insecure
coding practices are called security smell which are indicative
of security weakness [3]. The existence and persistence of
these smells in GitHub Gists leaves the possibility of another

1https://gist.github.com/
2https://gist.github.com/legoktm/7781996

practitioner using these GitHub Gists with security smells,
potentially propagating the use of insecure coding practices.
Hence existence of the security smells in Gists along with its
relation with author should be investigated to raise awareness
among the software practitioners while using and sharing the
Gists.

Fig. 1. An example of hard-coded password in a publicly-available Python
Gist.

The goal of this paper is to help software practitioners
avoid insecure coding practices through an empirical study
of security smells in publicly-available GitHub Gists.

We answer the following research questions (RQs):
• RQ1: What type of security smells appear in GitHub

Gists?
• RQ2: How frequently do security smells appear in

GitHub Gists?
• RQ3: How does a Gist user’s reputation relates to the

presence of security smells in GitHub Gists?
We answer our research questions by collecting and analyz-

ing GitHub Gists written in Python. We select Python because
Python is ranked as the top-most programming language
by IEEE Spectrum [4] in 2018. We first apply qualitative
analysis [5] to find out what security smells exist in Python
Gists. Next, we apply static analysis using Bandit3 and our
developed static analysis tool to identify the existence and
frequency of the security smells for 5, 822 publicly-available
Python Gists. We also apply hypothesis testing to investigate
the relationship between Gist author reputation and presence
of security smells in Python Gists.

We list our contribution as following:
• A list of 13 security smell types found in Python Gists;
• An analysis on how frequently security smells appear in

Python Gists; and
• An analysis which quantifies the relationship between

Gist author reputation and presence of security smells
in Python Gists

3https://github.com/PyCQA/bandit

Prep
rin

t



II. RELATED WORK

Prior research has demonstrated the existence of insecure
coding practices in code snippets typically found in the Inter-
net. In [6], Rahman et al. analyzed insecure coding practices
in Stack Overflow answers of Python related questions and
found out that 7.1% of the answers have at least one insecure
coding practice. In [7], Unruh et al. found that vulnerabilities
exist in web application development tutorials propagating
across the projects through the lack of carefulness and at-
tention from developers. Moreover, Chen et al. [8] performed
the comparison of Stack Overflow answers containing both
secure and insecure coding examples and found that developer
community often does not differentiate between secure and
insecure practices. Meng et al. [9] concluded with similar
findings from their analysis of secure coding practice of
Java-related Stack Overflow answers. These aforementioned
findings raise the fact that insecure coding practices in code
snippets available online can be a major source of introducing
and spreading software security weakness throughout open
source and commercial projects. Inspired by these facts, we
investigate whether security smells exists in Github Gists and
to what extent.

III. SECURITY SMELLS

In this section, we describe how we derive security smells
from Python Gists followed by the definitions and examples
of the 13 derived security smells.

Fig. 2. Examples of all security smells

RQ1: What type of security smells appear in Python Gists?

A. Derivation of Security Smells through Qualitative Analysis:

We first obtain a list of insecure coding practices from these
six sources: (i) CWE [2]; (ii) Openstack Security Guidelines

for Python [10]; (iii) Bandit [11]; (iv) Sonar Source Python Se-
curity Hotspots [12]; (v) prior work on security smells [3]; and
prior work on insecure coding practices in Stack Overflow [6].
We select these sources as these sources already have an exist-
ing list of insecure coding practices for multiple programming
languages with examples of coding patterns. Next, the first two
authors of this paper individually map each of those identified
smells to a potential security weakness indexed in CWE [2].
We mapped CWE as it is a community-driven database for
software security weaknesses and vulnerabilities [2]. The goal
of creating this database is to understand security weaknesses
in software, create automated tools so that security weaknesses
in software can be automatically identified and repaired, and
create a common baseline standard for security weakness iden-
tification, mitigation, and prevention efforts [2]. The mapping
agreement score was associated with Cohen’s kappa score of 1
which indicates a perfect agreement [8]. We performed such
analysis to get a summarized overview of recurring coding
patterns and syntactic context for automatic identification of
those security smells. We have chosen CWE mapping of
security smells as CWE provides a list of common software
security weaknesses which are developed and maintained by
software security experts [2].

B. Answer to RQ1

In this section, we describe the 13 identified security smells
obtained from the aforementioned analysis. The smells are
listed in alphabetical order. Examples of the security smells
are provided in Figure 2.

Bad File Permission: This smell is the recurring pattern
of using chmod POSIX API to grant low levels of restrictions
with group executable and world writeable access. This smell
can lead to vulnerabilities such as information disclosure and
code execution. This smell is related with CWE-732: Incorrect
Permission Assignment for Critical Resource [2].

Command Injection: This smell refers to the occurrence
of calling a process using popen, subprocess, os.system and
taking arguments from variables or user inputs. Command
injection facilitates attackers invoking external executables and
injecting shell commands if sanitation of inputs is not per-
formed carefully. This smell is related to CWE-77: Command
Injection [2].

Constructing SQL Statement Upon User Input: This
smell is the recurring pattern of using SQL statements based
on user inputs in Python Gists. This will leave room for the
malicious users to insert malicious SQL queries. This smell is
related to CWE-89: SQL Injection [2].

Deployment with Debug Flag set to TRUE: This smell
is the occurrence of delivering production code with DEBUG
feature enabled. As this feature is used by the developers to
find bugs efficiently in the code through system and application
logs, error reports, faults and traces, it is possible for malicious
users to gain security critical information. This smell is
related with CWE-215: Information Exposure Through Debug
Information [2].

Prep
rin

t



Empty Password: This smell refers to the usage of pass-
word strings with zero lengths and thus indicates a default or
weak password. Although this smell does not lead to security
breaches, it makes guessing the password an easier task. The
smell is similar to the weakness CWE-258: Empty Password
in Configuration File [2].

Exec Statement: This smell occurs when the Python envi-
ronment dynamically executes arbitrary codes based on user
inputs using exec statement. Codes executing OS commands
dynamically might help an attacker to execute unexpected
or dangerous commands. This smell is related with CWE-
95: Improper Neutralization of Directives in Dynamically
Evaluated Code and CWE-77: Command Injection [2].

Hard-coded IP Address Bindings: This smell is the recur-
ring pattern of assigning the IP address 0.0.0.0 or other hard-
coded values for remote server address. Such practice might
allow connection from every possible sources and thus can be
a source of vulnerability. In addition, hard-coded binding of
IP address is another bad practice from secure coding point of
view because, malicious users can discover a security sensitive
IP address from decompiling the code and thus launch attacks.
This smell is related to CWE-200: Information Disclosure [2].

Hard-coded Secrets: This smell is the recurring pattern
of exposing sensitive information, such as user name and
passwords in Python Gists. We consider three types of hard-
coded secrets: hard-coded passwords/tokens, hard-coded user
names, and hard-coded private cryptography keys. This smell
is related with CWE-798: Use of Hard-coded Credentials [2].

Hard-coded tmp Directories: This smell is the recurring
use of hard-coded tmp directory to save data that can not be
stored in memory or to pass to external programs that must
read from a file. This smell leads to a number of security
problems, such as malicious users guessing the tmp directory
name and writing to that directory containing the temporary
file and thus enables them to effectively hijack the location
through a symbolic link. This smell is related to CWE-377:
Insecure Temporary File [2].

Ignoring Except Block: This smell refers to the practice of
catching an exception and ignoring it silently through either
pass or continue statements. It represents potential security
issues as errors raised by the application might be caused from
service disruption/interference attacks. This smell is related
to CWE-703: Improper Check or Handling of Exceptional
Conditions [2].

No Integrity Check: This smell refers to the practice of
downloading .iso, .tar, .tar.gz, .dmg, .deb, .bin, .rpm, and .zip
files from Internet and not checking the integrity (checksum
or sha) of those files. Thus, malicious users can easily attack
the system by providing corrupted file and injecting malicious
payloads. This smell is related to CWE-353: Missing Support
for Integrity Check and CWE-434: Unrestricted Upload of File
with Dangerous Type [2].

No Certificate Validation: This smell is the recurring
pattern of requesting content without any certificate (TLS)
verification. This smell facilitate attackers to use an invalid
and/or expired certificates to claim to be a trusted host. This

smell is related to CWE-599: Missing Validation of OpenSSL
Certificate [2].

Use of HTTP without TLS: This smell occurs when a
statement makes HTTP call without using TLS and thus leads
to a less secure connection. Without TLS, any connection
is vulnerable to man-in-the-middle attacks, eavesdropping
and guessing the credentials. This security smell is related
to CWE- 319: Cleartext Transmission of Sensitive Informa-
tion [2].

The presence of these smells indicates that Python Gists
are susceptible to having software security weakness which
can propagate through the sharing of Gists.

IV. EMPIRICAL STUDY AND FINDINGS

A. Datasets

We conduct our empirical study by building upon Horton
and Parnin’s research on Github Gists [1]. Horton and Parnin
constructed a curated dataset of 10, 259 publicly-available
Python Gists, of which 5, 822 Gists are executable. We use the
set of publicly-available 5, 822 Python Gists because (i) these
Gists are executable, which could be indicative of usability
amongst practitioners; and (ii) these Gists are curated based
on popularity [1].

B. Static Analysis

As discussed in Section III-A, we performed qualitative
analysis to derive security smells in the Python Gists and to
get the syntactic contexts to automatically identify the smell
occurrences in the Gists. For the purpose of identifying smell
occurrences, we have used two static analyzers. The first of
those is Bandit 4, a static analyzer for security smells in Python
scripts [11]. However, as Bandit does not cover all of the
smells mentioned in section III-B, we build another static
analysis tool to identify 6 smells that can not be captured
by Bandit. Similar to Bandit, our tool also uses the Python ast
module [13] and captures smell occurrences while traversing
the abstract syntax tree of the Python Gists. These following 6
smells are identified by the second analyzer: Use of Command
Line Arguments which is a part of Command Injection, Empty
Passwords, Debug Flag Set to True, Hard-coded Secret, No
Integrity Check and Use of HTTP without TLS; rest of the
smells are captured by the Bandit. In Table I, the rules are
described that are used for identification of these 6 smells. We
derive these rules from observing the coding patterns in the
Gists. The identification of these smells includes detecting and
analyzing variable/object-attribute/dictionary-key names, their
corresponding string values, presence of strings containing
HTTP URLs, use of python default method calls to request
HTTP call, to take input from command line arguments and
to apply checksum on downloaded files.

C. Oracle Dataset

The first author of this paper constructed an oracle dataset
to evaluate the performance of our tool(s) for security smell

4https://github.com/PyCQA/bandit

Prep
rin

t



TABLE I
RULES FOR THE CUSTOM SMELL DETECTOR TOOL

Smell Rules
Debug Flag Set to True (isV ariableName(x) ∨ isObjectAttributeName(x) ∨ isDictionaryKeyName(x)) ∧ (x = DEBUG ∨ x =

DEBUG_PROPAGATE_EXCEPTIONS) ∧ value(x) = True
Empty Password (isV ariableName(x) ∨ isObjectAttributeName(x) ∨ isDictionaryKeyName(x)) ∧

isCommonPasswordName(x) ∧ length(value(x)) = 0
Hard-coded Secret (isV ariableName(x) ∨ isObjectAttributeName(x) ∨ isDictionaryKeyName(x)) ∧

(isCommonPasswordName(x) ∨ isCommonUserName(x) ∨ isCommonIdName(x) ∨
isCommonTokenName(x) ∨ isCommonKeyName(x)) ∧ length(value(x)) > 0

No Integrity Check isHttpDownload(x) = True ∧ useOfChecksumLibrary(x) = False
Use of Command Line Argu-
ments

isFunctionCallName(x) = sys.argv ∨ isFunctionCallName(x) = ArgumentParser ∨
isFunctionCallName(x) = argparse

Use of HTTP without TLS isHttpCall(x) = True ∧ isTLSused(x) = False

detection. The first author checked 100 Gists manually for se-
curity smells and applied knowledge regarding Python syntax
and associated security issues and then determined whether a
smell in particular appears in the Gist. After completion of
the Oracle dataset, we evaluated the performance of the smell
detection through the measurement of precision and recall.
Precision refers to the fraction of correctly identified smells
among the total identified security smells and recall refers to
the fraction of correctly identified smells over the total number
of security smells. In Table II, the precision and recall scores
are given for the oracle dataset. Recall of all the smells are
greater than 0.75 and provides the confidence to identify all
the security smells with lower false alarm.

TABLE II
ACCURACY FOR THE ORACLE DATASET

Smell Name Occurrences Precision Recall
Bad File Permission 1 1.00 1.00
Debug Set to True 2 1.00 1.00
Empty Password 2 1.00 1.00
Exec Statement 4 1.00 1.00
Hard-coded IP Address Binding 3 1.00 1.00
Hard-coded Secret 31 0.94 0.91
Constructing SQL upon Input 3 1.00 1.00
Hard-coded tmp Directory 3 1.00 1.00
Ignoring Except Block 13 1.00 1.00
No Integrity Check 7 0.43 0.75
No Certificate Validation 1 1.00 1.00
Command Injection 86 1.00 1.00
Use of HTTP without TLS 71 1.00 1.00
Combined 227 0.97 0.98

D. Empirical Findings
RQ2: How frequently do security smells appear in Python

Gists? This question focuses on how frequently do security
smells appear in the Python Gists. First, we performed static
analysis using two aforementioned tools on the Gists and then
we applied these two following metrics on the results: (i) Smell
Density: This measure is used to quantify the frequency of
smells per 1000 lines of code [14] as shown in the equation
below.

smell density (x) =
1000× total occurrence of x

total line counts of all Gists
(1)

and (ii) Proportion of Gists: This measure is used to quantify
how many scripts have at least one security smells. This metric

refers to the percentage of scripts that contain at least one
occurrence of a particular smell.

TABLE III
SMELL OCCURRENCES, SMELL DENSITY, AND PROPORTION OF GISTS

Smell Name Occurrences
Density

per
KLOC

Proportion
of

Gists(%)
Bad File Permission 2 0.01 0.03
Debug Set to True 35 0.09 0.60
Empty Password 25 0.06 0.43
Exec Statement 11 0.03 0.17
Hard-coded IP Address Binding 47 0.12 0.74
Hard-coded Secret 689 1.77 5.84
Constructing SQL upon Input 43 0.11 0.50
Hard-coded tmp Directory 87 0.22 1.10
Ignoring Except Block 208 0.53 2.58
No Integrity Check 8 0.02 0.05
No Certificate Validation 11 0.03 0.09
Command Injection 2,372 6.10 17.71
Use of HTTP without TLS 865 2.22 8.64
Combined 4,403 11.32 31.21

These two metrics represent the occurrence of security
smells differently. The first one is more granular and focuses
on the content of a script as measured by how many smells
occur for every 1000 LOC. The second one is less granular
and focuses on the existence of at least one of the 13
security smells, similar to prior research [3]. In Table III,
we observe four types of smells to occur more frequently.
These four smells are: Command Injection, Use of HTTP
without TLS, Hard-coded Secret, and Ignoring Except Block.
On the other hand, smells such as No Certificate Validation,
Bad File Permission, Exec Statement and No Integrity Check
occurs rarely. Command Injection smell is associated with the
highest density and proportion meanwhile, bad file permission
is associated with the lowest density and proportion values.
In total, there are 4, 403 occurrences of smells, almost 12
smells per 1000 lines of code as well as around 31% of the
Gists having at least one smell. These findings indicate that
developers should be aware of security smells while they use
and share Github Gists otherwise these smell will propagate
to other software projects. Although Gists are used as toy
examples to demonstrate programming concepts [1], if these
Gists are copied and adapted into production code without
careful inspection, the production code would have security

Prep
rin

t



weakness. It is also noteworthy that, certain smells such as
hard-coded secret and command injection occur a lot more in
Gists due to the inherent nature of the demonstration of the
corresponding programming tasks and thus high occurrence
of these smells are not that alarming unless someone blindly
copying these Gists into their codes.

RQ3: How does a Gist user’s reputation relates to the
presence of security smells in GitHub Gists? Researchers
found from the prior work [15], [16] that there is a quantifiable
relationship between the author and the corresponding source
code quality. Similarly, we hypothesize whether the presence
of security smells in Gists is related to the reputation of the
Gist author. We collect the information regarding how many
days passed since the author joined Github and how many
users follow the particular author in the Github using the
Github Rest API v35. Then we calculate author reputation
score using equation below.

author reputation score =
number of followers author has

number of days author joined
(2)

We perform Mann-Whitney’s U Test to observe any sig-
nificance in the relation between the author reputation and
presence of security smells in Python Gists. To do that,
we categorize our Gists into two segments: Gists with no
smell; and Gists with at least one smell. After that, we
obtain author reputation scores of all of the Gist authors from
aforementioned two Gist categories using the Equation 2. Thus
we obtain two list of reputation scores: (i) of authors whose
written Gists have no smell and (ii) of authors whose written
Gists have at least one smell. Then we determine a relationship
to exist between author reputation and presence of a security
smell if level of significance, p < 0.05. To measure the
size of the relationship, we use Cliff’s Delta measurement
and find out that although there is a relationship between
the author reputation and occurrence of security smells in
the Gists, this significance is of negligible (0.041) effect
size. Thus we observe author reputation have no significant
relation with the presence of insecure coding practices in Gists.
Other factors, such as security knowledge could be related to
presence of security smells–an area, which could be of interest
to researchers.

V. LIMITATIONS

We list the limitations of our paper as following. The
mapping between CWE indexes and security smell is based
upon author’s judgment and subjective view. Selection of the
oracle dataset is also based upon the selection bias of the
authors. The number of Gists used in this work is relatively
small due to the unavailability of unrestricted Python Gists
collection API from Github. The Gists might have other
security smells as well, for example, certain Python methods
such as yaml.load() could have security weakness which
we ignore in this research scope. Moreover, we also ignore
context specific insecure coding practices, such as applying

5https://developer.github.com/v3/

regular expression to user inputs. Finally, any static analysis
tool is susceptible to invoke false positives and two static
analysis tools used in this work is no exception.

VI. CONCLUSION

Using Gists, developers can share the implementation of
programming concepts to help developers across the Internet.
However, security smells residing in the Gists can spread
across software projects through usage and share. We inves-
tigated the existence of security smells in Python Gists and
found 13 types of smells in publicly-available 5, 822 Gists. We
identified 4, 403 smell occurrences including 689 hard-coded
secrets. From the smell density analysis, we found out that
command injection is the most prevalent security smell and
bad file permission is the least one. We also found out that
author reputation is not significantly related to the presence of
smell in Gists. From our findings we emphasize on increased
awareness and rigorous code review efforts while using and
sharing Github Gists so that propagation of insecure coding
practices are mitigated.

REFERENCES

[1] E. Horton and C. Parnin, “Gistable: Evaluating the executability of
python code snippets on github,” in 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2018.

[2] “CWE-Common Weakness Enumeration,” https://cwe.mitre.org/, [ac-
cessed:1/6/19].

[3] A. Rahman, C. Parnin, and L. Williams, “The seven sins: Security smells
in infrastructure as code scripts,” in Proceedings of the 41st International
Conference on Software Engineering, 2019.

[4] “2018 Top Programming Languages,” https://spectrum.ieee.org/at-
work/innovation/the-2018-top-programming-languages, [ac-
cessed:1/6/19].

[5] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and
A. Wessln, Experimentation in Software Engineering, 2012.

[6] A. Rahman, E. Farhana, and N. Imtiaz, “Snakes in paradise?: Insecure
python-related coding practices in stack overflow,” in Proceedings of
the 16th International Conference on Mining Software Repositories, ser.
MSR ’19, 2019.

[7] T. Unruh, B. Shastry, M. Skoruppa, F. Maggi, K. Rieck, J.-P. Seifert,
and F. Yamaguchi, “Leveraging flawed tutorials for seeding large-scale
web vulnerability discovery,” in 11th {USENIX} Workshop on Offensive
Technologies ({WOOT} 17), 2017.

[8] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How
reliable is the crowdsourced knowledge of security implementation?”
arXiv preprint arXiv:1901.01327, 2019.

[9] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Se-
cure coding practices in java: Challenges and vulnerabilities,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), 2018.

[10] “Openstack Docs,” https://security.openstack.org/, [accessed:1/6/19].
[11] “Bandit,” https://github.com/PyCQA/bandit, [accessed:1/6/19].
[12] “Python Sonar Source,” https://rules.sonarsource.com, [accessed:1/6/19].
[13] “Abstract Syntax Trees,” https://docs.python.org/3/library/ast.html, [ac-

cessed:1/6/19].
[14] N. Nagappan and T. Ball, “Static analysis tools as early indicators of

pre-release defect density,” in Proceedings of the 27th international
conference on Software engineering, 2005.

[15] M. Greiler, K. Herzig, and J. Czerwonka, “Code ownership and soft-
ware quality: A replication study,” in 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, 2015.

[16] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch
my code!: Examining the effects of ownership on software quality,”
in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, 2011.

Prep
rin

t




