
On Prescription or Off Prescription? An Empirical
Study of Community-prescribed Security

Configurations for Kubernetes
Shazibul Islam Shamim

Dept of SWEGD
Kennesaw State University

Marietta, GA, USA
mshamim@kennesaw.edu

Hanyang Hu
Team Lead
Company-A
CA, USA

phenom.hu@gmail.com

Akond Rahman
Dept. of Computer Science and Software Engineering

Auburn University
Auburn, AL, USA
akond@auburn.edu

Abstract—Despite being beneficial for rapid delivery of software,
Kubernetes deployments can be susceptible to security attacks,
which can cause serious consequences. A systematic characteriza-
tion of how community-prescribed security configurations, i.e., se-
curity configurations that are recommended by security experts,
can aid practitioners to secure their Kubernetes deployments.
To that end, we conduct an empirical study with 53 security
configurations recommended by the Center for Internet Security
(CIS), 20 survey respondents, and 544 configuration files obtained
from the open source software (OSS) and proprietary domains.

From our empirical study, we observe: (i) practitioners can
be unaware of prescribed security configurations as 5%∼40%
of the survey respondents are unfamiliar with 16 prescribed
configurations; and (ii) for Company-A and OSS respectively,
18.0% and 17.9% of the configuration files include at least one
violation of prescribed configurations. From our evaluation with
5 static application security testing (SAST) tools we find (i) only
Kubescape to support all of the prescribed security configuration
categories; (ii) the highest observed precision to be 0.41 and 0.43
respectively, for the Company-A and OSS datasets; and (iii) the
highest observed recall to be respectively, 0.53 and 0.65 for the
Company-A and OSS datasets. Our findings show a disconnect
between what CIS experts recommend for Kubernetes-related
configurations and what happens in practice. We conclude
the paper by providing recommendations for practitioners and
researchers. Dataset used for the paper is publicly available
online.

Index Terms—configuration, container orchestration, devops, de-
vsecops, empirical study, Kubernetes, security, static analysis

I. INTRODUCTION

Practitioners use containers to rapidly deploy software changes
to end-users. In order to efficiently manage provisioned con-
tainers, practitioners use the practice of container orchestra-
tion, where popular tools, such as Kubernetes are used to
manage thousands of containers [11], [23]. Usage of Ku-
bernetes has yielded benefits for organizations. For example,
practitioners at OpenAI reported that using Kubernetes, the
deployment time reduced from ‘couple of months’ to ‘two or
three days’ for hundred of servers [12]. As another example,
in the case of Spotify, the time to run a new software service
in production reduced from ‘one hour’ to ‘seconds’ [13].

Despite reported benefits, practitioners face challenges in se-
curing their Kubernetes deployments. According to the ‘2024
State of Kubernetes Security Report’, security of Kubernetes
deployments is reported as one of the biggest concerns for
adoption by practitioners [47]. The survey also reports 67%
of 600 survey respondents, delayed or slowed down software
deployments because of Kubernetes-related security concerns.
Furthermore, 46% of the respondents in the same survey
reported to experience losses in revenue or customers because
of security concerns related to container orchestration [47].
Kubernetes-related security weaknesses can cause serious con-
sequences. For example, a Kubernetes-related configuration fa-
cilitated a security attack called cryptojacking. Cryptojacking
is the attack of using a computing resource to stealthily mine
cryptocurrency without the user’s awareness [67]. Cryptojack-
ing can be used to incur thousands of dollars in unwanted
expenditures, as it happened for the Telnet cyptojacking at-
tack 1.

The above-mentioned discussion showcases the importance
of using configurations that can enhance the security of
Kubernetes deployments. In order to aid practitioners, both
researchers and practitioners have provided guidelines on how
to integrity security into Kubernetes deployments in forms of
tools [26], [29], [44], [59] and prescribed security configura-
tions, i.e., security configurations that are recommended by
a group of cybersecurity experts [18], [51]. For example, the
‘Center for Internet Security (CIS)’ organization has recom-
mended multiple security configurations that practitioners can
follow [18].

Despite their availability, there is a lack of understanding
on how frequently prescribed configurations are followed
by practitioners. Let us consider the examples presented in
Figure 1 in this regard. Figures 1a and 1b presents an example
of violating a prescribed configuration, which resides in a
repository maintained by Company-A and an open-source

1https://thenewstack.io/cryptojacking-free-money-for-attackers-huge-cloud-
bill-for-you/#

Pre-
prin

t



containers:

- name: efs -plugin

securityContext:

! privileged: true

image: amazon/aws -efs -csi -driver:v1.5.1

imagePullPolicy: IfNotPresent

1

a

cni:

cniBinDir: /var/lib/cni/bin

cniConfDir: /etc/cni/multus/net.d

chained: false

cniConfFileName: "istio -cni.conf"

excludeNamespaces:

- istio -system

- kube -system

logLevel: info

! privileged: true

1

b

Fig. 1: Examples where CIS-prescribed configurations are violated in Company-A’s repository (Figure 1a) and in an OSS
repository (Figure 1b).

software (OSS) repository [35]. Both configuration files use
privileged: true, which violates the recommendation
of ‘minimize the admission of privileged containers’. One
Kubernetes expert colloquially referred to the configuration
privileged: true as the “the most dangerous flag in
the history of computing”, as this configuration gives the
illusion of containerization but in fact disables security fea-
tures provided by Kubernetes for a container or a group of
containers [28].

Examples presented in Figure 1 showcases that Kubernetes
configuration files maintained by OSS and proprietary orga-
nizations are susceptible to include configurations that violate
what is recommended by cybersecurity experts, namely from
CIS. We take motivation from the examples presented in
Figure 1 and conduct a systematic analysis of how frequently
prescribed security configurations are violated. As part of
our analysis, we also investigate what tools are capable of
detecting violations of CIS-prescribed security configurations.
Such an analysis, which currently remains under-explored, can
aid practitioners with recommendations on how to secure their
Kubernetes deployments.

We answer the following research questions:

• RQ1 [Support]: How frequently do static application se-
curity testing tools support community-prescribed security
configurations in Kubernetes deployments?

• RQ2 [Perception]: What are the practitioner perceptions
of community-prescribed security configurations for Kuber-
netes deployments?

• RQ3 [Frequency]: How frequently are community-
prescribed security configurations violated in Kubernetes
configuration files?

• RQ4 [Accuracy]: What is the detection accuracy of static
application security testing tools in detecting violations of
community-prescribed security configurations in Kubernetes
configuration files?

The goals of our paper are to help (i) practitioners secure

their Kubernetes deployments; and (ii) researchers identify
new research avenues. We accomplish our goals by conducting
a mixed-method empirical study [17] with 5 static application
security testing (SAST) tools and 53 CIS-prescribed configu-
rations. First, we compute how frequently does each of the 5
SAST tools support each of the 53 prescribed configurations.
Using 188 and 356 configuration files collected respectively,
from 33 OSS repositories and 2 repositories used by Company-
A, we compute the detection accuracy of five SAST tools.
We also conduct an online survey with practitioners from
Company-A and the OSS domain to evaluate the perceptions
of the 53 prescribed configurations. Datasets and scripts used
in our paper is available online as a replication package [52].

Dataset Availability: Dataset used for the paper is publicly
available online [52].

Contributions: We list our contributions as follows:

• An evaluation of how frequently prescribed security config-
urations are violated in Kubernetes configuration files;

• An evaluation of detection accuracy of five SAST tools
for configuration files used in the OSS and the proprietary
domain; and

• An evaluation of practitioner perceptions of CIS-prescribed
security configurations.

II. RQ1: SUPPORT FOR CIS-PRESCRIBED
CONFIGURATIONS

We first provide necessary background information in Sec-
tion II-A. Next, we provide the methodology and results
respectively, in Sections II-B and II-C.

A. Background

1) Kubernetes Configuration Files: Container orchestration
is the practice of automatically provisioning and managing
multiple containers [11]. Kubernetes is a tool to implement
the practice of container orchestration [11], [23], [44]. A Ku-
bernetes installation is colloquially referred to as a Kubernetes
cluster or a Kubernetes deployment [36], [44]. In order to

Pre-
prin

t



apiVersion: v1
kind: Pod
metadata:

name: nginx
spec:

containers:
− name: nginx

image: nginx:1.14.2
ports:
− containerPort: 80

kind pod name of the pod

container name

image name

1

Fig. 2: An example of a Kubernetes configuration file.

manage multiple containers, practitioners develop configura-
tion files similar to that of Figure 2. The example shows the
configurations of a Kubernetes entity called ‘pod’ [28], which
is the most fundamental deployment unit. These developed
configuration files are later executed by ‘kubectl’, which is
provided by Kubernetes. The configuration files are developed
in YAML.
2) CIS-prescribed Configurations for Kubernetes: Our empir-
ical study focuses on prescribed configurations, i.e., security
configurations that are recommended by a group of cyber-
security experts. CIS is a U.S-based non-profit organization
that provides security guidelines for a wide range of software
systems, such as database systems and operating systems [14].
Each guideline is derived using two steps: first, experts from
different backgrounds, such as academia, industry, and govern-
ment, prepare a working draft of recommendations. Second,
the experts discuss the draft and reach a consensus. A collec-
tion of recommendations is referred to as a guideline, where
one guideline includes multiple prescriptions. Each prescrip-
tion is a recommended activity to enhance software/system
security.

In the case of Kubernetes, CIS provides guidelines on which
configurations can secure Kubernetes-base deployments. We
use CIS-prescribed configurations as our empirical study fo-
cuses on security configurations that are prescribed by a com-
munity of cybersecurity experts who specialize in Kubernetes.
We use a guideline called the ‘CIS Amazon EKS benchmark
v1.2.0’ that prescribes 53 configurations for Kubernetes de-
ployments that use Amazon EKS. Amazon EKS is a service
that can be used to run Kubernetes in the AWS cloud and
on-premise data centers [50]. Each of the 53 configurations
map to a category that is listed in Table I. For example,
the prescribed configuration ‘enable audit logs’ belongs to
the category ‘logging’. Each of the prescribed configuration
includes a name, a description of the reasoning behind the
recommendation, and necessary remediation steps when the
configuration is violated.

These 53 CIS-prescribed configurations are (i) adopted by the
cloud-native community 2; (ii) demonstrated through webi-

2https://orca.security/resources/blog/kubernetes-hardening-guide/

nars 3; and (iii) recommended by AWS for its customers 4.

B. Methodology for RQ1

We use the following steps:
1) Identify the Source of Community-prescribed Security Con-
figurations: In our empirical study, we use the ‘CIS Amazon
Elastic Kubernetes Service (EKS) Benchmark’ [18] that lists
a total 53 security configurations. We use this set of recom-
mendations because of Company-A’s Kubernetes deployment
pipeline uses AWS EKS. Each recommendation is mapped to
a category. For example, the recommendation ‘enable audit
logs’ is mapped to a category called ‘logging’. In all, the
guidebook includes 53 recommendations that are mapped to
15 categories.
2) Selection of SAST Tools: In order to answer RQ1, we
identify a set of SAST tools that is capable of detecting
violations of the 53 recommendations listed in the AWS EKS
guide book. We start the selection process by conducting
a search using the Google search engine with the search
string ‘security tools for kubernetes’. From the collected top
25 search results we identify 22 program analysis tools for
Kubernetes. From the list of 22 tools, we further apply the
following criteria to identify the tools that we plan to use.

• Criterion-1: The tool must be publicly available online.

• Criterion-2: The tool must be able to detect violations of
prescribed configurations by applying static analysis with
configuration files. The first author of the paper read the doc-
umentation of each tool related to Kubernetes to determine if
the tool detect violations of security-related configurations.

• Criterion-3: The tool must be executable automatically
using the command line interface. We exclude tools, such
as Snyk as it requires manually uploading of Kubernetes
configuration files for security-related analysis.

• Criterion-4: The tool must detect violations of at least five
security configurations. Our assumption is that by using
this criterion we will be able to exclude tools that are
specialized to detect a specific type of security weakness in
Kubernetes-based deployments. This criterion is consistent
with prior research on security tool evaluation that has used
the count of five security weakness types to determine how
generalizable a tool is [32].

We use the source code and documentation of each tool to
apply the filtering criteria. Upon application of the following
criteria we identify five tools of which Checkov, Kubescape,
and Trivy are internally used at Company-A. Attributes of
these five tools are available in Table I.

Checkov is an OSS SAST tool that scans Kubernetes con-
figuration files for security weaknesses [8]. Checkov can be
installed as a package and executed from the command line
interface. Checkov provides output results in SARIF format.

3https://www.youtube.com/watch?v=HNL6Nx48xZI
4https://aws.amazon.com/blogs/containers/introducing-cis-amazon-eks-

benchmark/

Pre-
prin

t



TABLE I: Attributes of Selected SAST Tools

Tool Size
(KLOC)

Source Output Format

Checkov 786.22 GitHub [8] SARIF, JSON, XML, CSV
KubeLinter 31.03 GitHub [27] SARIF, JSON
Kubescape 257.61 GitHub [29] SARIF, JSON, XML,

HTML, PDF
SLI-
KUBE

13.86 TOSEM’23 [44] SARIF, CSV

Trivy 514.05 GitHub [59] SARIF, JSON, XML,
HTML

0

0

100

0

0

0

0

100

0

100

0

0

81.8

0

0

0

0

100

0

0

12.5

37.5

87.5

0

37.5

62.5

62.5

100

50

87.5

0

0

0

100

0

50

50

100

0

0

66.7

66.7

100

33.3

33.3

0

0

75

0

0

0

0

100

0

0

0

0

100

0

0

0

0

100

0

0

0

0

100

0

0

0

0

100

0

0

Che
ck

ov
Kub

eL
int

erKub
eS

ca
pe

SLI
−K

UBE

Tr
ivy

Aut
h.

Clus
te

r−
Net

CNI−
Plug

in

Con
ta

ine
r−

OS

EKS−K
ey

Gen
er

ic

IA
M

Im
ag

e

Kub
ele

t

Lo
gg

ing

Pod
−P

oli
cie

s

RBAC

Sec
re

t−
M

gm
t

Unt
ru

ste
d−

Lo
ad

W
or

ke
r−

File
s

Category

To
ol

Fig. 3: Answer to RQ1: Support for CIS-prescribed configu-
rations.

Kubescape is an OSS SAST tool developed by ARMO that
supports misconfiguration scanning, risk analysis, and security
compliance inside a Kubernetes deployment [29]. Kubescape
can work as a SAST tool to scan source code in a local
directory with a command line interface.

KubeLinter is an OSS SAST tool developed by Stackrox
that identifies security misconfigurations and deviations from
security best practices in Kubernetes configuration files [27].
According to the Red Hat survey 2023, KubeLinter is the most
popular static security analysis tool among Kubernetes practi-
tioners [46]. KubeLinter can analyze Kubernetes configuration
files from the command line interface in the local directory.

SLI-KUBE [1] is an OSS SAST tool developed by researchers
that identifies 11 categories of security misconfigurations in
Kubernetes manifests [1] [44]. SLI-KUBE can be executed
from the command line.

Trivy is an OSS SAST tool developed by Aqua Security that
can detect security weaknesses in operating systems, language-
specific packages, and Kubernetes configuration files [59].
Trivy identifies security weaknesses for known vulnerabili-
ties(CVE), misconfigurations, and runtime security issues.
3) Map Prescribed Configurations to Rules Implemented in
the Tools: Answer to RQ1 requires a systematic analysis to
identify which of the recommendations are supported by which
tool. We use a qualitative technique called closed coding [49]
to perform a mapping between each of the 53 recommen-
dations and a rule implemented within the tool. As part of
applying the closed coding technique, the first author and the
second author of the paper read each of the recommendations

in the guidebook and identify if the recommendation security
configuration is detected by inspecting the source code or
documentation of the tool. Upon completion of the closed
coding process we record a Cohen’s Kappa of 0.94 between
the first and second authors, which indicates ‘almost perfect’
agreement [30]. The disagreement occurred for rules of the
tools for 6 recommendations that are resolved by the last
author of the paper. The last author’s decision is final in this
regard. Upon completion of the closed coding process, we
derive a mapping between each prescribed configuration and
one or multiple rules for each tool.
4) Metric to Answer RQ1: We use the derived mapping
from Section II-B3 to answer RQ1. We report which of the
prescribed security configurations are detected by each tool.
We also report the support by computing the proportion of
supported configurations for each category using Equation 1.

Support/Category (c) =
Total # of configurations detected by tool ∗ 100

Total # of configurations in the category
(1)

C. Answer to RQ1

We find one recommendation to be supported by at least two
of our five selected tools. A complete breakdown is available
in Table II. The ‘Category’ column presents the category
name to which each recommendation belongs to. For example,
violations of ‘enable audit logs’ is detected by Kubescape.
We also report the support of each tool based on categories in
Figure 3. We observe Kubescape to have support of >= 75.0%
for all 11 categories of prescribed configurations.

Answer to RQ1: Amongst the five SAST tools,
Kubescape provides the most support with respect to
detecting violations of CIS-prescribed configurations.

III. RQ2: PRACTITIONER PERCEPTIONS

We provide the methodology and results respectively, in Sec-
tions III-A and III-B.

A. Methodology for RQ2

We conduct a quantitative survey by recruiting practitioners
from Company-A and from the OSS domain. We initially
start with a 5-item Likert survey similar to that of prior
research [43]. Following Kitchenham and Pfleeger’s guide-
lines [24], we conduct a pilot survey that revealed practitioners
may not be familiar with some of the prescribed configura-
tions. Accordingly, we added another item called ‘Unfamiliar’
Inclusion of Likert items that express unfamiliarity is com-
monplace and useful in opinion-based studies [61]. A 6-item
Likert survey similar to ours is also reported to have higher
validity [57].

We deploy the constructed survey to practitioners working in
Company-A and contributing to OSS projects. The second
author of the paper provided the email addresses of 14 practi-
tioners who are working in Company-A. In the case of OSS,

Pre-
prin

t



we emailed 36 practitioners. The email addresses are collected
by the first author who contacted the same set of practitioners
who they interviewed in prior work. All selected practitioners
are confirmed to be knowledgeable about Kubernetes by the
first and second author. The survey is conducted from October
2023 to July 2024.

The online survey consists of 53 questions in total. Each
of the 53 remaining questions is a question asked using a
six-item Likert scale. The six items are ‘Unfamiliar’, ‘Not
important’, ‘Little important’, ‘Somewhat important’, ‘Impor-
tant’, and ‘Extremely important’. Each of these questions
focus on assessing the practitioners’ perceptions about the
importance of the 53 prescribed security configurations. Fol-
lowing guidelines from Kitchenham and Pfleeger [24], we use
a five-item Likert scale to assess importance. We also add
one item called ‘Unfamiliar’ as from our pilot deployment,
we found a voluntary participant to not be familiar with 35
of the 53 prescribed configurations. We do not collect any
personal information, such as name, email, industry experience
as we did not get permission from Company-A. The survey
questionnaire is available as part of replication package [52].

B. Answer to RQ2

We receive responses from 20 practitioners. Of the 20 re-
spondents, 10 work in Company-A and 10 contribute to OSS
projects. Mean and maximum years of professional experience
for participants from the OSS domain is respectively, 6.0 and
13.0 years. Our OSS participants reported their job titles to
be ‘vice-president’, ‘senior software engineer’, ‘CTO’, and
‘solution architects’.

Our answers to RQ2 is available in Table III. In the ‘Survey
Response’ column, the numbers on the left hand side present
the proportion of participants who are not familiar with a
prescribed configuration. For example, 5% of the surveyed
practitioners are not familiar with ‘enabling audit logs’. The
data presented on the right hand side, showcases the proportion
of participants who find a configuration to be ‘extremely
important’. For example, 40% of the surveyed practitioners
find ‘enabling audit logs’ as extremely important. Surveyed
practitioners are not familiar with all 53 configurations. For
example, for 16 configurations we found at least one respon-
dent to be unfamiliar.

Answer to RQ2: All 20 survey respondents are famil-
iar with 37 out of 53 CIS-prescribed configurations.
For the remaining 16 configurations, 5%∼40% survey
respondents are unfamiliar.

IV. RQ3: FREQUENCY OF VIOLATED CONFIGURATIONS

We provide the methodology and results respectively, in Sec-
tions IV-A and IV-B.

A. Methodology for RQ3

We use the following steps:

1) Construction of Evaluation Dataset: We use two datasets
to evaluate the detection accuracy: (i) the ‘Company-A’
dataset, i.e., the dataset with configuration files that are pro-
vided by our partner at Company-A and (ii) OSS configuration
files mined from repositories on GitHub. All configuration files
provided by Company-A is obtained from two repositories for
which we apply no filtering criteria. The two repositories in
total includes 364 Kubernetes configuration files.

We use the GHTorrent data dump [19] hosted on Google
BigQuery to mine OSS repositories. Initially, we start with
14,747,836 repositories. We apply a filtering criteria to identify
repositories with Kubernetes configuration files. The criteria
are: (i) at least 10% of the files in the repository must be
Kubernetes manifests; (ii) the repository must be available for
download; (iii) the repository is not a clone to avoid duplicates;
(iv) the repository must have ≥ 2 commits per month. Munaiah
et al. [38] previously used the threshold of ≥ 2 commits per
month to determine which repositories have enough software
development activity; (v) the repository has ≥ 5 contributors;
(vi) the repository is not used for a ‘toy’ project. We consider
a project as ‘toy’ project if description and content of the
README file for each projects indicates that the project is
used to demonstrate examples, conduct course work, and used
as book chapters; and (vii) the repository is deployed using
Amazon EKS. We use this criterion as the repositories used
by Company-A also uses Amazon EKS. This criterion allows
us to identify repositories that are consistent with Company-
A’s repositories that are deployed using Amazon EKS. We
apply this criterion by reading each of the README files
and descriptions for the 185 repositories that we identified by
applying criteria (i) - (vi).

Upon application of this filtering criteria we identify 33 OSS
repositories that contains 4,800 configuration files. We apply a
95% confidence interval to select a random sample from both
datasets namely, Company-A and OSS. Using our selected
random sample we identify 188 and 356 configuration files in
the ‘Company-A’ and OSS dataset. Attributes of both datasets
is available in Table IV.
2) Qualitative Analysis: Each of the configuration files in the
Company-A and OSS datasets is inspected for presence of
violations by two raters: the first and second authors of the
paper. Each rater individually inspects each file in order to
determine which file violates what security configuration. The
raters apply closed coding [49] while inspecting, where they
first identify coding patterns in the file that are indications of
violating a prescribed configurations. Next, they map the iden-
tified coding pattern to any of the 53 prescribed configurations.
If the mapping is found then that coding pattern is identified as
a true positive, i.e., an instance of a valid violation. The same
process is repeated for all 188 and 356 files respectively, in
the Company-A and the OSS dataset. For example, the coding
pattern Audit: Disabled is a violation of “ensure audit
logs”, whereas the coding pattern Audit: Enabled is in
compliance for the recommendation.

Pre-
prin

t



TABLE II: Answer to RQ1: Support for Detecting Violations of Configurations Prescribed by CIS

Category ID: Prescribed Configuration Checkov SLI-
KUBE

KubeLinter Kubescape Trivy

Logging 2.1.1: Enable audit Logs × × × ✓ ×
3.1.1: Ensure that the kubeconfig file permissions are set to 644 or
more restrictive

× × × ✓ ✓

Worker Node Configuration Files 3.1.2: Ensure that the kubelet kubeconfig file ownership is set to
root:root

× × × ✓ ✓

3.1.3: Ensure that the kubelet configuration file has permissions set
to 644 or more restrictive

× × × ✓ ✓

3.1.4: Ensure that the kubelet configuration file ownership is set to
root:root

× × × ✓ ✓

3.2.1: Ensure that the Anonymous Auth is Not Enabled × × × ✓ ✓
3.2.2: Ensure that the –authorization-mode argument is not set to
AlwaysAllow

× × × ✓ ✓

3.2.3: Ensure that a Client CA File is Configured × × × ✓ ✓
3.2.4: Ensure that the –read-only-port is disabled × × × ✓ ✓
3.2.5: Ensure that the –streaming-connection-idle-timeout argument
is not set to 0

× × × ✓ ✓

Kubelet 3.2.6: Ensure that the –protect-kernel-defaults argument is set to true × × × ✓ ✓
3.2.7: Ensure that the –make-iptables-util-chains argument is set to
true

× × × ✓ ✓

3.2.8: Ensure that the –hostname-override argument is not set × × × ✓ ✓
3.2.9: Ensure that the –eventRecordQPS argument is set to 0 or a
level which ensures appropriate event capture

× × × ✓ ✓

3.2.10: Ensure that the –rotate-certificates argument is not present or
is set to true

× × × ✓ ✓

3.2.11: Ensure that the RotateKubeletServerCertificate argument is
set to true

× × × ✓ ✓

Container Optimized OS 3.3.1: Prefer using a container-optimized OS when possible × × × ✓ ×
4.1.1: Ensure that the cluster-admin role is only used where required × × × ✓ ✓
4.1.2: Minimize the access to secrets ✓ × ✓ ✓ ✓
4.1.3: Minimize the wildcard use in Roles and ClusterRoles ✓ × ✓ ✓ ✓

RBAC and Service Accounts 4.1.4: Minimize access to create pods × × ✓ ✓ ×
4.1.5: Ensure that default service accounts are not actively used ✓ × ✓ ✓ ×
4.1.6: Ensure that the Service Account Tokens are only mounted
where necessary

✓ × × ✓ ✓

4.1.7: Avoid use of system:masters group × × × ✓ ×
4.1.8: Limit use of the Bind, Impersonate and Escalate permissions
in the Kubernetes cluster

✓ × × ✓ ✓

4.2.1: Minimize the admission of privileged containers ✓ ✓ ✓ ✓ ✓
4.2.2: Minimize the admission of containers wishing to share host
process ID namespace

✓ ✓ ✓ ✓ ✓

4.2.3: Minimize the admission of containers wishing to share host
network namespace

✓ ✓ ✓ ✓ ✓

Pod Security Policies 4.2.4: Minimize the admission of containers wishing to share host
IPC namespace

✓ ✓ ✓ ✓ ✓

4.2.5: Minimize the admission of containers with allowPrivilegeEsca-
lation

✓ ✓ ✓ ✓ ✓

4.2.6: Minimize the admission of root containers ✓ × ✓ ✓ ✓
4.2.7: Minimize the admission of containers with added capabilities ✓ × × ✓ ✓
4.2.8: Minimize the admission of containers with capabilities assigned ✓ ✓ × ✓ ✓

CNI Plugin 4.3.1: Ensure CNI supports network policies × × × ✓ ×
4.3.2: Ensure that all Namespaces have Network Policies × ✓ ✓ ✓ ✓

Secrets Management 4.4.1: Prefer using secrets as files over secrets as environment
variables

✓ × ✓ ✓ ×

4.4.2: Consider external secret storage × × × ✓ ×
4.6.1: Create administrative boundaries between reources using
namespaces

✓ ✓ ✓ ✓ ×

Generic 4.6.2: Apply Security Context to Your Pods and Containers ✓ ✓ × ✓ ✓
4.6.3: The default namespace should not be used ✓ ✓ ✓ ✓ ✓
5.1.1: Ensure Image Vulnerability Scanning using Amazon ECR
image scanning or a third party provider

× × × ✓ ×

Image 5.1.2: Minimize user access to Amzon ECR × × × ✓ ×
5.1.3: Minimize cluster access to read-only for Amzon ECR × × × ✓ ×
5.1.4: Minimize Container Registries to only those approved × × × ✓ ×

Identity and Access Management
(IAM)

5.2.1: Prefer using dedicated EKS Service Accounts × × × ✓ ×

AWS EKS Key Management Ser-
vice

5.3.1: Ensure Kubernetes are encrypted using Custom Master Keys
(CMKs) managed in AWS KMS

✓ × × ✓ ×

5.4.1: Restrict Access to the Control Plane Endpoint ✓ × × ✓ ×
5.4.2: Ensure clusters are created with Private Endpoint Enabled and
Public Access Disabled

✓ × × ✓ ×

Cluster Networking 5.4.3: Ensure clusters are created with Private Nodes × × × ✓ ×
5.4.4: Ensure Network Policy is Enabled and set as appropriate ✓ × × ✓ ×
5.4.5: Encrypt traffic to HTTPS load balancers with TLS certificates × × × ✓ ×

Authentication & Authorization 5.5.1: Manage Kubernetes RBAC users with AWS IAM Authenticator
for Kubernetes

× × × ✓ ×

Untrusted Workload 5.6.1: Consider Fargate for running untrusted workloads × × × ✓ ×

Pre-
prin

t



TABLE III: Answer to RQ2: the ‘Survey Response’ column presents perceptions of practitioners related to the importance for
each of the 53 recommendations.

ID: Prescribed Configuration Survey Response
2.1.1: Enable audit logs 5% 40%
3.1.1: Ensure that the kubeconfig file permissions are set to 644 or more restrictive 0% 50%
3.1.2: Ensure that the kubelet kubeconfig file ownership is set to root:root 0% 35%
3.1.3: Ensure that the kubelet configuration file has permissions set to 644 or more restrictive 0% 40%
3.1.4: Ensure that the kubelet configuration file ownership is set to root:root 0% 40%
3.2.1: Ensure that the Anonymous Auth is Not Enabled 10% 60%
3.2.2: Ensure that the –authorization-mode argument is not set to AlwaysAllow 15% 50%
3.2.3: Ensure that a Client CA File is Configured 10% 40%
3.2.4: Ensure that the –read-only-port is disabled 20% 15%
3.2.5: Ensure that the –streaming-connection-idle-timeout argument is not set to 0 35% 5%
3.2.6: Ensure that the –protect-kernel-defaults argument is set to true 35% 30%
3.2.7: Ensure that the –make-iptables-util-chains argument is set to true 35% 20%
3.2.8: Ensure that the –hostname-override argument is not set 20% 25%
3.2.9: Ensure that the –eventRecordQPS argument is set to 0 or a level which ensures appropriate
event capture

40% 10%

3.2.10: Ensure that the –rotate-certificates argument is not present or is set to true 15% 25%
3.2.11: Ensure that the RotateKubeletServerCertificate argument is set to true 15% 15%
3.3.1: Prefer using a container-optimized OS when possible 0% 20%
4.1.1: Ensure that the cluster-admin role is only used where required 0% 60%
4.1.2: Minimize the access to secrets 0% 65%
4.1.3: Minimize the wildcard use in Roles and ClusterRoles 0% 30%
4.1.4: Minimize access to create pods 0% 20%
4.1.5: Ensure that default service accounts are not actively used 0% 10%
4.1.6: Ensure that the Service Account Tokens are only mounted where necessary 5% 25%
4.1.7: Avoid use of system:masters group 5% 25%
4.1.8: Limit use of the Bind, Impersonate and Escalate permissions in the Kubernetes cluster 5% 10%
4.2.1: Minimize the admission of privileged containers 10% 35%
4.2.2: Minimize the admission of containers wishing to share host process ID namespace 20% 35%
4.2.3: Minimize the admission of containers wishing to share host network namespace 20% 35%
4.2.4: Minimize the admission of containers wishing to share host IPC namespace 20% 30%
4.2.5: Minimize the admission of containers with allowPrivilegeEscalation 10% 40%
4.2.6: Minimize the admission of root containers 5% 35%
4.2.7: Minimize the admission of containers with added capabilities 15% 25%
4.2.8: Minimize the admission of containers with capabilities assigned 15% 25%
4.3.1 Ensure CNI supports network policies 15% 30%
4.3.2: Ensure that all Namespaces have Network Policies 15% 25%
4.4.1: Prefer using secrets as files over secrets as environment variables 0% 25%
4.4.2: Consider external secret storage 5% 25%
4.6.1: Create administrative boundaries between resources using namespaces 10% 30%
4.6.2: Apply Security Context to Your Pods and Containers 10% 25%
4.6.3: The default namespace should not be used 5% 20%
5.1.1: Ensure Image Vulnerability Scanning using Amazon ECR image scanning or a third party
provider

0% 35%

5.1.2: Minimize user access to Amzon ECR 5% 20%
5.1.3: Minimize cluster access to read-only for Amzon ECR 5% 20%
5.1.4: Minimize Container Registries to only those approved 0% 45%
5.2.1: Prefer using dedicated EKS Service Accounts 5% 35%
5.3.1: Ensure Kubernetes are encrypted using Custom Master Keys (CMKs) managed in AWS
KMS

5% 15%

5.4.1: Restrict Access to the Control Plane Endpoint 0% 35%
5.4.2: Ensure clusters are created with Private Endpoint Enabled and Public Access Disabled 5% 35%
5.4.3: Ensure clusters are created with Private Nodes 5% 20%
5.4.4: Ensure Network Policy is Enabled and set as appropriate 0% 20%
5.4.5: Encrypt traffic to HTTPS load balancers with TLS certificates 0% 60%
5.5.1: Manage Kubernetes RBAC users with AWS IAM Authenticator for Kubernetes 10% 25%
5.6.1: Consider Fargate for running untrusted workloads 15% 5%

Unfamiliar Not important Little important Somewhat important Important Extremely Important

Once done, we compute the Cohen’s Kappa [16] between the
two raters is respectively, 0.96 and 0.89 for the Company-
A and the proprietary dataset. In the case of disagreements,
the raters discussed on why an identified coding pattern is
a valid or invalid violation. The second author’s decision is
final during disagreement resolution as the they are actively
working for Company-A and has more practical perspectives

than the first author. Upon completion of this process we
obtain two datasets where each file is labeled with a violation.
3) Metrics: We use two metrics to answer RQ3: (i) the
count of configuration files that violates a certain prescribed
configuration; and (ii) the proportion of configuration files that
include at least one violation of a prescribed configuration. We
use these three metrics as they can help us contextualize the

Pre-
prin

t



TABLE IV: Attributes of Datasets

Dataset Attribute Value
Company-A Configuration files 188

Total Size (LOC) 12,423
Total Repositories 2

OSS Configuration files 356
Total Size (LOC) 55,699
Total Repositories 33

frequency of violations from multiple perspectives.

B. Answer to RQ3

We report our findings in Tables V and VI using the ‘Answer
to RQ3’ column. In this column we report the ‘Count’ and
‘Proportion’ data for each CIS-prescribed configurations that
are mapped to their CIS IDs. Here, ‘Count’ reports the count of
configuration files for which >= 1 violations occur, whereas
‘Proportion’ reports the proportion of configuration files that
include >= 1 violation of any of the 53 prescribed configura-
tions. We observe the most frequently violated configuration to
be “ensure that the Service Account Tokens are only mounted
where necessary” for the OSS dataset and “create administra-
tive boundaries between resources using namespaces” for the
Company-A dataset. In all, we observe a total of 178 and 85
configuration files for which violations occur respectively, for
the Company-A and OSS dataset.

Answer to RQ3: For the Company-A dataset, 18.0%
of 188 configuration files include at least one violation
of CIS-prescribed configurations. For the OSS dataset,
17.9% of 356 configuration files include at least one
violation of CIS-prescribed configurations.

V. RQ4: DETECTION ACCURACY OF SAST TOOLS

We provide the methodology and results respectively, in Sec-
tions V-A and V-B.

A. Methodology for RQ4

We use the evaluation dataset that we construct in Section IV-A
to answer RQ4. The dataset contains a mapping of which
Kubernetes configuration file violates one or multiple of the
53 prescribed configurations for Company-A’s repositories and
OSS repositories. Similar to prior research on security tool
evaluation [32], [45], we use precision and recall to determine
the accuracy of the five tools for two datasets. We use the
following formulas to calculate precision and recall:

Precision =
TruePositive(TP )

TruePositive(TP ) + FalsePositive(FP )

Recall =
TruePositive(TP )

TruePositive(TP ) + FalseNegative(FN)

For OSS and Company-A datasets we calculate precision and
recall for two scenarios: (i) individual: here, we compute the

precision and recall for each SAST tool individually. Here,
we report the precision and recall for each of the violated pre-
scribed configurations; and (ii) combined: here, we compute
the precision and recall for multiple combinations of SAST
tools. We report the precision and recall across all prescribed
configurations for both datasets. We use combinations of two,
three, four and five SAST tools in this case.

B. Answer to RQ4

We report the precision and recall for the five SAST tools
using Tables V and VI. The highest average precision and
recall for the Company-A dataset is observed respectively, for
KubeLinter and Trivy. The highest average precision for the
OSS dataset is observed both for Checkov and Trivy. The
highest recall for the OSS dataset is observed for Checkov.
For both datasets, the average precision is < 0.50, which is
lower than that of ‘acceptable precision’ for static analysis
tools according to practitioners [48]. One possible explanation
for this low precision and recall could be the use of patterns
that they use to detect violations. Another possible explanation
is related to the differences between the taxonomy of CIS
that we used and the taxonomy of the tools. For example,
categories used by SLI-KUBE and categories prescribed by
CIS are different.

Precision and recall for each combination are available in
Table VII. When combinations of tools are used we ob-
serve an increase in precision and recall. For example, for
the Company-A dataset, the precision of KubeLinter in-
creases from 0.41 to 0.48 when combined with Checkov and
Kubescape. The recall of Trivy increases from 0.35 to 0.53 for
the same dataset when combined with Checkov, SLI-KUBE,
KubeLinter, and Kubescape.

For the OSS dataset, the recall of Checkov is 0.65 for two com-
binations: (i) Checkov, Trivy, KubeLinter and (ii) Checkov,
Trivy, KubeLinter, and Kubescape. The highest precision is
0.42 that is lower than that of the average precision of Checkov
and Trivy. Despite improvements in recall, for both datasets the
precision is < 0.50, which is still lower than that of ‘acceptable
precision’. According to prior work [48], practitioners expect
a precision of >= 0.90 for usage of static analysis tools.

Answer to RQ4: When SAST tools are evaluated
individually, the highest observed precision is 0.41
and 0.43 respectively, for the Company-A and OSS
datasets. The highest observed recall is 0.38 and 0.35
respectively, for the Company-A and OSS datasets.
When all the five SAST tools are combined, the re-
call increases to 0.53 and 0.65 respectively, for the
Company-A and OSS datasets.

VI. DISCUSSION

We discuss the implications of our findings and threats to
validity respectively, in Sections VI-A and VI-B.

Pre-
prin

t



TABLE V: Frequency of Violated Prescriptions and Detection Accuracy of Kubernetes SAST for the Company-A Dataset

CIS ID Answer to RQ3 (Freq.) Answer to RQ4 (Detection Accuracy)
Count Proportion SLI-KUBE Checkov Kubescape KubeLinter Trivy

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
4.1.2 14 7.87 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.14 1.0 0.75
4.1.3 2 1.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
4.1.4 6 3.37 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.17 0.0 0.0
4.1.5 54 30.34 0.0 0.0 0.0 0.0 0.0 0.0 0.93 0.74 0.0 0.0
4.1.6 100 56.18 0.0 0.0 0.93 0.56 0.91 0.30 0.0 0.0 0.0 0.0
4.2.1 1 0.56 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4.2.2 1 0.56 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0
4.2.3 3 1.69 1.0 1.0 1.0 0.67 1.0 0.67 1.0 0.67 1.0 0.67
4.2.5 2 1.12 1.0 0.5 0.02 0.5 0.0 0.0 0.5 0.5 0.02 0.5
4.2.6 3 1.69 0.0 0.0 0.0 0.0 0.03 0.67 0.04 0.67 0.03 0.67
4.2.7 1 0.56 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.2.8 2 1.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.4.1 37 20.79 0.0 0.0 1.0 0.30 0.0 0.0 1.0 0.35 0.0 0.0
4.6.1 156 87.64 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.6.2 45 25.28 1.0 0.24 0.70 0.42 0.62 0.93 0.0 0.0 0.23 0.96
4.6.3 112 62.92 0.95 0.48 0.93 0.79 0.58 0.34 0.96 0.59 0.0 0.0
5.4.5 7 3.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
All CIS ID 178 18.04 0.35 0.25 0.39 0.31 0.24 0.23 0.41 0.34 0.31 0.38

TABLE VI: Frequency of Violated Prescriptions and Detection Accuracy of Kubernetes SAST for the OSS Dataset

CIS ID Answer to RQ3 (Freq.) Answer to RQ4 (Detection Accuracy)
Count Proportion SLI-KUBE Checkov Kubescape KubeLinter Trivy

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
4.1.2 4 4.71 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.1.3 7 8.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.43
4.1.5 28 32.94 0.0 0.0 0.0 0.0 0.0 0.0 0.65 0.93 0.0 0.0
4.1.6 48 56.47 0.0 0.0 0.83 0.90 0.44 0.08 0.0 0.0 0.0 0.0
4.2.1 8 9.41 0.0 0.0 1.0 0.63 1.0 0.38 1.0 0.5 1.0 0.63
4.2.2 4 4.71 1.0 0.75 1.0 0.75 0.0 0.0 1.0 0.75 1.0 0.75
4.2.3 16 18.82 1.0 0.25 1.0 0.58 1.0 0.42 1.0 0.5 1.0 0.58
4.2.6 10 11.76 0.0 0.0 0.0 0.0 0.04 0.2 0.05 0.2 0.42 0.2
4.2.7 1 1.18 0.0 0.0 0.5 1.0 0.0 0.0 0.0 0.0 0.5 1.0
4.2.8 11 12.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.33
4.4.1 4 4.71 0.0 0.0 0.5 0.25 0.0 0.0 0.5 0.25 0.0 0.0
4.6.1 18 21.18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.6.2 41 48.24 0.9 0.22 0.94 0.76 0.79 0.90 0.0 0.0 0.74 0.9
4.6.3 27 31.76 0.94 0.41 0.75 0.64 0.54 0.52 0.71 0.52 1.0 0.4
5.4.5 2 2.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
All CIS ID 85 17.96 0.26 0.11 0.43 0.37 0.25 0.17 0.33 0.18 0.43 0.35

A. Implications

1) Implications for SAST Tool Usage in Kubernetes Config-
uration Management: Reported detection accuracy in Sec-
tion V-B showcases the limitation of SAST tools’ with re-
spect to precision. While we acknowledge this limitation,
we advocate for combining SAST tools in order to detect
violations of prescribed configurations. According to recent
research practitioners have expressed that even if SAST tools
have low precision they still provide value in secure software
development as “finding something would be better than
nothing” [4]. Based on data precision and recall data presented
in Table VII, we advocate for the following combinations: (i)
KubeLinter and Checkov; (ii) KubeLinter and Kubescape; and
(iii) the combination of Checkov, KubeLinter, Kubescape, SLI-
KUBE, and Trivy.

Findings reported in Section III-B provide a nuanced per-
spective for the 53 CIS-prescribed configurations. We observe
>= 15% of survey respondents to be unfamiliar with 17 of the
53 configurations, which shows how practitioners experienced
in Kubernetes can be unaware of potential security threats
due to Kubernetes-related configurations. While alarming, this
finding is not surprising as it aligns with prior research that

has shown practitioners to be unaware of all configurations
in software systems [63]. This lack of awareness is also
applicable for a software system, such as Kubernetes, which is
complex, relatively novel, and evolving [9], [66]. We advocate
for the usage of security testing techniques, such as SAST
tools so that practitioners are informed on the configurations
that can have security-related consequences.
2) Implications on Improving SAST Tools: Data reported in
Table II also shows 5% of the survey respondents to find 32 of
the 53 prescribed configurations to be ‘not important’ or ‘little
important’. This finding showcases that certain prescriptions
can be perceived as irrelevant to practitioners. This finding is
counter-intuitive as the 53 prescriptions are derived by industry
experts, i.e., CIS contributors. While this finding in counter-
intuitive, the finding can enhance the configuration process in
the following manner:

• Localization of identified configurations: In the case of
security tools, practitioners seek information on how a
detected alert is used in the software project, which in turn
leads to taking an action [55]. Accordingly, for Kubernetes-
related SASTs we advocate for accurate reporting of the
violations and the locations where the violations occur.

Pre-
prin

t



TABLE VII: Detection Accuracy of SAST Tools When Used
as Combinations

Combination Company-A OSS
Precision Recall Precision Recall

SLI-KUBE ∪ KubeLinter 0.38 0.31 0.20 0.31
SLI-KUBE ∪ Checkov 0.35 0.34 0.29 0.48
SLI-KUBE ∪ Trivy 0.21 0.24 0.19 0.34
SLI-KUBE ∪ Kubescape 0.36 0.31 0.19 0.33
KubeLinter ∪ Checkov 0.43 0.40 0.42 0.59
KubeLinter ∪ Trivy 0.29 0.30 0.30 0.44
KubeLinter ∪ Kubescape 0.48 0.34 0.33 0.42
Checkov ∪ Trivy 0.33 0.37 0.41 0.53
Checkov ∪ Kubescape 0.42 0.40 0.39 0.50
Trivy ∪ Kubescape 0.24 0.23 0.27 0.34
SLI-KUBE ∪ KubeLinter ∪
Checkov

0.37 0.43 0.29 0.60

SLI-KUBE ∪ KubeLinter ∪
Trivy

0.28 0.38 0.22 0.47

SLI-KUBE ∪ KubeLinter ∪
Kubescape

0.33 0.42 0.23 0.45

SLI-KUBE ∪ Checkov ∪ Trivy 0.27 0.40 0.25 0.54
SLI-KUBE ∪ Checkov ∪
Kubescape

0.36 0.43 0.26 0.52

SLI-KUBE ∪ Trivy ∪
Kubescape

0.26 0.33 0.19 0.37

KubeLinter ∪ Checkov ∪ Trivy 0.34 0.46 0.37 0.64
KubeLinter ∪ Checkov ∪
Kubescape

0.45 0.48 0.40 0.62

KubeLinter ∪ Trivy ∪
Kubescape

0.32 0.36 0.30 0.46

Checkov ∪ Trivy ∪ Kubescape 0.32 0.42 0.34 0.53
SLI-KUBE ∪ KubeLinter ∪
Checkov ∪ Trivy

0.31 0.49 0.27 0.65

SLI-KUBE ∪ KubeLinter ∪
Checkov ∪ Kubescape

0.39 0.51 0.29 0.63

SLI-KUBE ∪ KubeLinter ∪
Trivy ∪ Kubescape

0.31 0.43 0.22 0.49

SLI-KUBE ∪ Checkov ∪ Trivy
∪ Kubescape

0.29 0.45 0.25 0.54

KubeLinter ∪ Checkov ∪ Trivy
∪ Kubescape

0.35 0.50 0.36 0.64

SLI-KUBE ∪ KubeLinter ∪
Checkov ∪ Trivy ∪ Kubescape

0.32 0.53 0.27 0.65

• Incorporate attack-related information: A lack of mean-
ingful alerts is a pain-point in using SAST tools [4], which
we postulate can be mitigated through incorporation of
attack-related information. While reporting violated configu-
rations tools should also discuss if a single or a combination
of configurations can lead to a security attack.

• Improve Detection Accuracy: The detection accuracy of
the studied tools can be improved by (i) enhancing the
rules with examples that are available in our dataset; (ii)
incorporating the configurations that are not covered by
tools but are present in CIS guidelines; (iii) incorporating
practitioner feedback; and (iv) deriving control and data flow
analysis techniques unique to Kubernetes entities.

3) On the Value of Dynamic Analysis for Securing Kubernetes
Deployments: According to Table II, a SAST tool alone can
only detect 20 out 53 prescribed configurations. Furthermore,
the precision and recall for SAST tools is underwhelming as
discussed in Section V-B. These shortcomings of SAST tools
highlight the potential of using dynamic application security
testing (DAST) tools, such as KubeBench [26]. Practitioners
can use DAST tools to identify violations of prescribed secu-
rity configurations in Kubernetes deployments.
4) Future Work: Our findings provide the groundwork for
further research in the following directions:

• derive human and socio-technical factors that explain why
practitioners do not implement prescribed configurations;

• derive methodologies to increase usage of CIS-prescribed
configurations;

• conduct evaluation of CIS-prescribed security guidelines for
other software systems;

• evaluate studied tools for non-security and security defects;
and

• derive defect and vulnerability detection techniques by un-
derstanding the unique properties of Kubernetes entities.

B. Threats to Validity

We describe the limitations of our paper as follows:

External Validity: Our survey participants include 10 practi-
tioners from Company-A, which may not reflect the opinion of
other practitioners who use Kubernetes. We mitigate this lim-
itation by including 10 additional practitioners in our survey
who are contribute to OSS projects. Also, reported findings
for RQ3 and RQ4 may not generalize for all repositories
that contain Kubernetes configuration files. We mitigate this
limitation by using OSS repositories mined from GitHub.

Our static analysis tools evaluation results are limited to two
proprietary repositories used by Company-A, which may not
generalize to other repositories. We mitigate this challenge by
evaluating the static analysis tools on 33 OSS repositories.
Answers to RQ3 are dependent on the scripts that we select
and their sources. A different dataset may result in different
precision and recall values for the studied tools.

Conclusion Validity: The mapping between the rules of secu-
rity analysis tools and prescribed configurations are susceptible
to rater bias. We mitigate this limitation by using two raters, of
which one is an industry practitioner with industry experience
in cybersecurity. Construction of our evaluation dataset is
also susceptible to rater bias. We mitigate this limitation by
using two raters. The survey respondent count is 20, which
may influence the results. We acknowledge that the survey
response rate is on the lower end, but low survey response
rare is common in software engineering where one publication
reports the survey response rate to be as lows as 6% [54].

Internal Validity: One of the raters who performs the mapping
is a practitioner working at Company-A. This affiliation may
affect intuitively affect the mapping process. We mitigate this
limitation by using another rater who has no affiliation with
Company-A. Usage of precision and recall may also bias the
evaluation process of the SAST tools that we studied.

VII. RELATED WORK

Our paper is related with prior research that have addressed
defects in Dockerfiles, Docker Swarm, Kubernetes security,
and security tool evaluation.

Pre-
prin

t



a) Prior Research on Dockerfiles: Defects in configuration
scripts used to set up Docker containers have garnered a lot of
interest amongst researchers. Azuma et al. [5] and Ksontini et
al. [25] in separate research studies systematically investigated
defects in Dockerfiles. Other researchers, such as Haque et
al. [20], Wist et al. [62], Jain et al. [22], Pinnamaneni et
al. [42], Liu et al. [34], Shu et al. [53], Zerouali et al. [64], [65],
and Lin et al. [33] have focused on characterizing security
defects in container images.
b) Prior Research on Docker Swarm: Similar to Kubernetes,
Docker Swarm is also a tool used for container orchestration.
While it is not as popular as Kubernetes, researchers [15],
[39] have conducted multiple research studies on the schedul-
ing mechanism of systems managed by Docker Swarm. Re-
searchers have conducted performance-related evaluation [40].
Also, through systematic comparative evaluations researchers
find Kubernetes to be better than that of Docker Swarm with
respect to scalability features [56] and security [37].
c) Prior Research on Kubernetes Security: Prior research has
used graph and anomaly-based approaches for Kubernetes
security. For securing Kubernetes clusters, researchers adopted
anomaly-based approaches [3], [58]. Tien et al developed an
anomaly detection tool to monitor and detect attacks in the
Kubernetes cluster [58]. Cao et al. developed an anomaly
detection tool using a state machine model for Kubernetes
deployment [10]. Hariri et al. proposed an anomaly detection
tool for scientific applications in Kubernetes [21]. Researchers
also have adopted graph-based approaches to secure Kuber-
netes clusters. Blaise et al. used a graph-based approach to
extract the attack path for Kubernetes deployment [6].

Empirical analysis is another topic for Kubernetes security
research. Bose et al. performed qualitative analysis and con-
structed a dataset with security related commits [7]. The
research that is closest in spirit to our paper is the paper
authored by Rahman et al. [44]. They [44] developed a security
analysis tool for detection of misconfiguration [44]. Our paper
is different from their paper in the following manner: (i)
we analyze the practitioner perceptions of CIS-prescribed
recommendations for Kubernetes; (ii) we analyze the support
and detection accuracy for 5 SAST tools while detecting vio-
lations of CIS-prescribed configurations; and (iii) we quantify
the frequency of 17 and 15 CIS-prescribed configurations
respectively, for the Company-A and OSS dataset.
d) Prior Research on Evaluation of Security Analysis Tools:
Our paper is related to prior research on SAST tool eval-
uation. Li et al. [32] evaluated 8 SAST tools and found
the precision of these tools to be < 10%. Valentina et al.
performed a comparison using 6 static analysis tools on 47
Java-related projects [31] and found little to no agreement
between the tools. Hamda et al. evaluated the effectiveness
of non-commercial security analysis tools based on OWASP
Top 10 security vulnerabilities, and reported that SAST tools
are inadequate to uncover all common weaknesses [2]. Re-
searchers also have investigated the impact of combining
SAST tools. Paulo et al. combined 5 security analysis tools to

detect web-based vulnerabilities [41]. Fransesc et al. combined
static, dynamic, and interactive analysis tools and reported the
n-tools combination’s average effectiveness in reducing false
positives [60]. Ranganath et al. evaluated 14 Android security
analysis tools and found a combination of these tools to detect
30 out 42 known vulnerabilities [45].

The above-mentioned discussion showcases a lack of research
in SAST tool evaluation for Kubernetes configuration files. We
address this gap in our paper. Our paper shows CIS-prescribed
configurations are violated in practice and existing SAST tools
are inadequate in detecting these violations. In the context of
Kubernetes-related studies, these findings are novel as none
of the above-mentioned papers have reported these findings.
Furthermore, our paper shows a disconnect between what CIS
experts recommend and what happens in practice.

VIII. CONCLUSION

Despite the existence of community-prescribed guidelines for
securing Kubernetes deployments, there is a lack of under-
standing of how practitioners perceive these guidelines and
to what extent existing SAST tools detect violations of these
guidelines. We have conducted an empirical study with 53
configurations prescribed by CIS. For Company-A and OSS
respectively, we find 18.0% and 17.9% of the configuration
files to include at least one violation of prescribed con-
figuration. We also observe 5%∼40% of the surveyed 20
practitioners be unaware about the 16 configurations. When
SAST tools are evaluated individually, the highest observed
precision is 0.41 and 0.43 respectively, for the Company-A
and OSS dataset. The highest observed recall is 0.38 and 0.35
respectively, for the Company-A and OSS dataset. When all
the five SAST tools are combined, the recall increases to 0.53
and 0.65 respectively, for Company-A and OSS. Based on our
findings, we recommend practitioners to use a combination
of SAST tools as combinations of SAST tools can identify
violations of prescribed configurations with more accuracy.

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their
valuable feedback. This research was partially funded by the
U.S. National Science Foundation (NSF) Award # 2247141
and Award # 2312321. This work has benefitted from Dagstuhl
Seminar 23082 “Resilient Software Configuration and Infras-
tructure Code Analysis.”

REFERENCES

[1] akondrahman, “akondrahman/sli-kube,” 2022. [Online]. Available:
https://hub.docker.com/repository/docker/akondrahman/sli-kube

[2] H. H. AlBreiki and Q. H. Mahmoud, “Evaluation of static analysis
tools for software security,” in 2014 10th International Conference on
Innovations in Information Technology (IIT), 2014, pp. 93–98.

[3] J. G. Almaraz-Rivera, “An anomaly-based detection system for mon-
itoring kubernetes infrastructures,” IEEE Latin America Transactions,
vol. 21, no. 3, pp. 457–465, 2023.

Pre-
prin

t



[4] A. Ami, K. Moran, D. Poshyvanyk, and A. Nadkarni, “quot;false
negative - that one is going to kill you.quot; - understanding industry
perspectives of static analysis based security testing,” in 2024 IEEE
Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2024, pp. 23–23. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00019

[5] H. Azuma, S. Matsumoto, Y. Kamei, and S. Kusumoto, “An empirical
study on self-admitted technical debt in dockerfiles,” Empirical Software
Engineering, vol. 27, no. 2, pp. 1–26, 2022.

[6] A. Blaise and F. Rebecchi, “Stay at the helm: secure kubernetes
deployments via graph generation and attack reconstruction,” in 2022
IEEE 15th International Conference on Cloud Computing (CLOUD).
IEEE, 2022, pp. 59–69.

[7] D. B. Bose, A. Rahman, and S. I. Shamim, “‘under-reported’ security
defects in kubernetes manifests,” in 2021 IEEE/ACM 2nd International
Workshop on Engineering and Cybersecurity of Critical Systems (En-
CyCriS). IEEE, 2021, pp. 9–12.

[8] bridgecrew, “checkov,” https://www.checkov.io/4.Integrations/Kubernetes.html,
2022, [Online; accessed 12-May-2022].

[9] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and
running. " O’Reilly Media, Inc.", 2022.

[10] C. Cao, A. Blaise, S. Verwer, and F. Rebecchi, “Learning state machines
to monitor and detect anomalies on a kubernetes cluster,” in Proceedings
of the 17th International Conference on Availability, Reliability and
Security, 2022, pp. 1–9.

[11] C. Carrión, “Kubernetes scheduling: Taxonomy, ongoing issues and
challenges,” ACM Comput. Surv., vol. 55, no. 7, dec 2022. [Online].
Available: https://doi.org/10.1145/3539606

[12] Case Study: OpenAI, “Kubernetes,” https://kubernetes.io/case-
studies/openai/, 2024, [Online; accessed 28-July-2024].

[13] Case Study: Spotify, “Kubernetes,” https://kubernetes.io/case-
studies/spotify/, 2024, [Online; accessed 27-July-2024].

[14] Center for Internet Security(CIS), https://www.cisecurity.org/, 2024,
[Online; accessed 12-march-2024].

[15] C. Cerin, T. Menouer, W. Saad, and W. B. Abdallah, “A new docker
swarm scheduling strategy,” in 2017 IEEE 7th International Symposium
on Cloud and Service Computing (SC2), 2017, pp. 112–117.

[16] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.
[Online]. Available: http://dx.doi.org/10.1177/001316446002000104

[17] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Selecting
Empirical Methods for Software Engineering Research. London:
Springer London, 2008, pp. 285–311.

[18] C. for Information Security (CIS), “CIS Kubernetes Benchmarks,” 2024.
[Online]. Available: https://www.cisecurity.org/benchmark/kubernetes

[19] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 2012, pp. 12–21.

[20] M. U. Haque and M. A. Babar, “Well begun is half done: An empirical
study of exploitability & impact of base-image vulnerabilities,” in 2022
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2022, pp. 1066–1077.

[21] S. Hariri and M. C. Kind, “Batch and online anomaly detection for
scientific applications in a kubernetes environment,” in Proceedings of
the 9th Workshop on Scientific Cloud Computing, ser. ScienceCloud’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3217880.3217883

[22] V. Jain, B. Singh, M. Khenwar, and M. Sharma, “Static vulnerability
analysis of docker images,” in IOP Conference Series: Materials Science
and Engineering, vol. 1131, no. 1. IOP Publishing, 2021, p. 012018.

[23] K. Kamieniarz and W. Mazurczyk, “A comparative study on the security
of kubernetes deployments,” in 2024 International Wireless Communi-
cations and Mobile Computing (IWCMC), 2024, pp. 0718–0723.

[24] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys.
London: Springer London, 2008, pp. 63–92. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5_3

[25] E. Ksontini, M. Kessentini, T. d. N. Ferreira, and F. Hassan, “Refac-
torings and technical debt in docker projects: An empirical study,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 781–791.

[26] Kubebench, “Kubebench,” https://aquasecurity.github.io/kube-
bench/v0.6.15/, 2024, [Online; accessed 15-March-2024].

[27] kubelinter, “kubelinter,” https://docs.kubelinter.io/#/generated/checks,
2022, [Online; accessed 13-May-2022].

[28] Kubernetes, “Production-grade container orchestration,” 2021. [Online].
Available: https://kubernetes.io/

[29] Kubescape, “Kubescape,” https://hub.armosec.io/docs/controls, 2024,
[Online; accessed 15-March-2024].

[30] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

[31] V. Lenarduzzi, F. Pecorelli, N. Saarimaki, S. Lujan, and F. Palomba, “A
critical comparison on six static analysis tools: Detection, agreement,
and precision,” Journal of Systems and Software, vol. 198, p. 111575,
2023.

[32] K. Li, Y. Xue, S. Chen, H. Liu, K. Sun, M. Hu, H. Wang, Y. Liu,
and Y. Chen, “Static application security testing (sast) tools for smart
contracts: How far are we?” arXiv preprint arXiv:2404.18186, 2024.

[33] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on linux container security: Attacks and countermeasures,” in Pro-
ceedings of the 34th Annual Computer Security Applications Conference,
2018, pp. 418–429.

[34] P. Liu, S. Ji, L. Fu, K. Lu, X. Zhang, W. Lee, T. Lu, W. Chen, and
R. Beyah, “Understanding the security risks of docker hub,” in Computer
Security – ESORICS 2020 - 25th European Symposium on Research
in Computer Security, Proceedings, ser. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), L. Chen, S. Schneider, N. Li,
and K. Liang, Eds. Germany: Springer Science and Business Media
Deutschland GmbH, 2020, pp. 257–276, funding Information: Acknowl-
edgements. This work was partly supported by the Zhejiang Provincial
Natural Science Foundation for Distinguished Young Scholars under No.
LR19F020003, the National Key Research and Development Program
of China under No. 2018YFB0804102, NSFC under No. 61772466,
U1936215, and U1836202, the Zhe-jiang Provincial Key RD Program
under No. 2019C01055, and the Ant Financial Research Funding.; 25th
European Symposium on Research in Computer Security, ESORICS
2020 ; Conference date: 14-09-2020 Through 18-09-2020.

[35] ManagedKube, “kubernetes-ops,” https://github.com/ManagedKube/kubernetes-
ops/tree/main, 2019, [Online; accessed 02-August-2024].

[36] S. Miles, Kubernetes: A Step-By-Step Guide For Beginners To Build,
Manage, Develop, and Intelligently Deploy Applications By Using
Kubernetes (2020 Edition). Independently Published, 2020. [Online].
Available: https://books.google.com/books?id=M4VmzQEACAAJ

[37] A. Modak, S. D. Chaudhary, P. S. Paygude, and S. R. Ldate, “Techniques
to secure data on cloud: Docker swarm or kubernetes?” in 2018 Second
International Conference on Inventive Communication and Computa-
tional Technologies (ICICCT), 2018, pp. 7–12.

[38] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating GitHub
for engineered software projects,” Empirical Software Engineering, pp.
1–35, 2017. [Online]. Available: http://dx.doi.org/10.1007/s10664-017-
9512-6

Pre-
prin

t



[39] N. Naik, “Building a virtual system of systems using docker swarm in
multiple clouds,” in 2016 IEEE International Symposium on Systems
Engineering (ISSE), 2016, pp. 1–3.

[40] ——, “Performance evaluation of distributed systems in multiple clouds
using docker swarm,” in 2021 IEEE International Systems Conference
(SysCon), 2021, pp. 1–6.

[41] P. Nunes, I. Medeiros, J. C. Fonseca, N. Neves, M. Correia, and
M. Vieira, “Benchmarking static analysis tools for web security,” IEEE
Transactions on Reliability, vol. 67, no. 3, pp. 1159–1175, 2018.

[42] J. Pinnamaneni, S. Nagasundari, and P. Honnavalli, “Identifying vulner-
abilities in docker image code using ml techniques,” in 2022 2nd Asian
Conference on Innovation in Technology (ASIANCON). IEEE, 2022,
pp. 1–5.

[43] A. Rahman, D. B. Bose, Y. Zhang, and R. Pandita, “An empirical study
of task infections in ansible scripts,” Empirical Software Engineering,
vol. 29, no. 1, p. 34, 2024.

[44] A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita, “Security
misconfigurations in open source kubernetes manifests: An empirical
study,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 4, may 2023.
[Online]. Available: https://doi.org/10.1145/3579639

[45] V.-P. Ranganath and J. Mitra, “Are free android app security analysis
tools effective in detecting known vulnerabilities?” Empirical Software
Engineering, vol. 25, no. 1, pp. 178–219, 2020.

[46] RedHat, “State of Kubernetes Security Report 2023,” 2023. [On-
line]. Available: https://www.redhat.com/en/resources/state-kubernetes-
security-report-2023

[47] ——, “The state of Kubernetes security report: 2024 edition,” 2024.
[Online]. Available: https://www.redhat.com/en/engage/state-kubernetes-
security-report-2024

[48] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan,
“Lessons from building static analysis tools at google,” Commun.
ACM, vol. 61, no. 4, p. 58–66, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3188720

[49] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.

[50] A. W. Services, “Amazon Elastic Kubernetes Service,”
https://aws.amazon.com/eks/, 2024, [Online; accessed 01-August-
2024].

[51] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi commandments
of kubernetes security: A systematization of knowledge related to kuber-
netes security practices,” in 2020 IEEE Secure Development (SecDev).
IEEE, 2020, pp. 58–64.

[52] S. I. Shamim, H. Hu, and A. Rahman, “Replication package for paper,”
https://figshare.com/s/8c1b7c0cb5e2915d974c, 2024, [Online; accessed
12-Dec-2024].

[53] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
docker hub,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017, pp. 269–280.

[54] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in 2013 6th In-
ternational Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), May 2013, pp. 89–92.

[55] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R.
Lipford, “Questions developers ask while diagnosing potential security
vulnerabilities with static analysis,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015. New York, NY, USA: Association for
Computing Machinery, 2015, p. 248–259. [Online]. Available:
https://doi.org/10.1145/2786805.2786812

[56] P. Stromberg, “Automatically scaling a system across multiple servers:
A comparison of docker swarm and kubernetes,” B.S. thesis, Tampere
University, 2021.

[57] H. Taherdoost, “What is the best response scale for survey and ques-
tionnaire design; review of different lengths of rating scale/attitude
scale/likert scale,” Hamed Taherdoost, pp. 1–10, 2019.

[58] C.-W. Tien, T.-Y. Huang, C.-W. Tien, T.-C. Huang, and S.-Y. Kuo,
“Kubanomaly: anomaly detection for the docker orchestration platform
with neural network approaches,” Engineering reports, vol. 1, no. 5, p.
e12080, 2019.

[59] Trivy, “Trivy,” https://aquasecurity.github.io/trivy/, 2024, [Online; ac-
cessed 15-March-2024].

[60] F. Tudela, J.-R. Higuera, J. Bermejo, J. A. Montalvo, and M. Argyros,
“On combining static, dynamic and interactive analysis security testing
tools to improve owasp top ten security vulnerability detection in web
applications,” Applied Sciences, vol. 10, 12 2020.

[61] F. K. Willits, G. L. Theodori, and A. Luloff, “Another look at likert
scales,” Journal of Rural Social Sciences, vol. 31, no. 3, p. 6, 2016.

[62] K. Wist, M. Helsem, and D. Gligoroski, “Vulnerability analysis of 2500
docker hub images,” in Advances in Security, Networks, and Internet of
Things. Springer, 2021, pp. 307–327.

[63] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker,
“Hey, you have given me too many knobs!: understanding and
dealing with over-designed configuration in system software,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 307–319. [Online]. Available:
https://doi.org/10.1145/2786805.2786852

[64] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the impact of outdated and vulnerable javascript pack-
ages in docker images,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2019, pp. 619–623.

[65] A. Zerouali, T. Mens, and C. De Roover, “On the usage of javascript,
python and ruby packages in docker hub images,” Science of Computer
Programming, vol. 207, p. 102653, 2021.

[66] Y. Zhang, R. Meredith, W. Reeves, J. Coriolano, M. Ali Babar, and
A. Rahman, “Does generative ai generate smells related to container
orchestration?: An exploratory study with kubernetes manifests,” in
2024 IEEE/ACM 21st International Conference on Mining Software
Repositories (MSR), 2024.

[67] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto mining
attacks in information systems: An emerging threat to cyber security,”
Journal of Computer Information Systems, 2018.

Pre-
prin

t




