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ABSTRACT
Defects in infrastructure as code (IaC) scripts can have serious
consequences, for example, creating large-scale system outages. A
taxonomy of IaC defects can be useful for understanding the na-
ture of defects, and identifying activities needed to fix and prevent
defects in IaC scripts. The goal of this paper is to help practitioners
improve the quality of infrastructure as code (IaC) scripts by devel-
oping a defect taxonomy for IaC scripts through qualitative analysis.
We develop a taxonomy of IaC defects by applying qualitative anal-
ysis on 1,448 defect-related commits collected from open source
software (OSS) repositories of the Openstack organization. We con-
duct a survey with 66 practitioners to assess if they agree with the
identified defect categories included in our taxonomy. We quantify
the frequency of identified defect categories by analyzing 80,425
commits collected from 291 OSS repositories spanning across 2005
to 2019.

Our defect taxonomy for IaC consists of eight categories, includ-
ing a category specific to IaC called idempotency (i.e., defects that
lead to incorrect system provisioning when the same IaC script is
executed multiple times). We observe the surveyed 66 practitioners
to agree most with idempotency. The most frequent defect category
is configuration data i.e., providing erroneous configuration data
in IaC scripts. Our taxonomy and the quantified frequency of the
defect categories may help in advancing the science of IaC script
quality.
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1 INTRODUCTION
Infrastructure as code (IaC) is the practice of automatically main-
taining system configurations and provisioning deployment envi-
ronments using source code [26]. IaC scripts are also known as
configuration as code scripts [59], or configuration scripts [68]. In-
formation technology (IT) organizations use tools, such as Chef 1
and Puppet 2 to implement the practice of IaC. The use of IaC has
yielded benefits for IT organizations, such as General Motors (GM)
and the European Organization for Nuclear Research (CERN). Using
Chef, GM increased software deployment frequency by a factor of
21 [20]. CERN uses Puppet to manage 15,000 servers and to process
2,000 terabytes of data everyday [7]. Puppet has helped CERN to
minimize service disruptions and reduce deployment time [2].

Despite the above-mentioned benefits, defects with serious con-
sequences can appear in IaC scripts. For example, a defect in an IaC
script created an outage resulting in business losses worth of 150
million USD for Amazon Web Services [23]. Other example con-
sequences of defects in IaC scripts include outage for GitHub [19]
and deletion of user directories for ∼270 users in cloud instances
maintained by Wikimedia Commons [12].

A defect taxonomy for IaC scripts can help practitioners un-
derstand the nature of defects, and identify possible development
activities for defect mitigation. Figure 1 presents an example of
a security defect, which exposes users’ passwords in logs 3. The
defect is mitigated by adding ‘secret=>true’, which prevents the
password getting exposed in logs 3. Identification of certain defect
categories, such as security defects similar to Figure 1, can help
practitioners to make informed decisions on what development
activities could be adopted to improve the quality of IaC scripts.

The importance of defect categorization has been recognized
by the research community [6, 39, 83, 86]. For example, Linraes-
Vásquez et al. [39] stated categorizing vulnerabilities can help An-
droid developers “in focusing their verification & validation (V&V)
activities”. According to Catolino et al. [6], “understanding the bug
type represents the first and most time-consuming step to perform
in the process of bug triage, since it requires an in-depth analysis”.
A defect taxonomy for IaC, an area that remains unexplored, can
help practitioners in understanding the nature of defects, and help
in improving IaC script quality through activities such as triaging
defects, prioritizing V&V efforts, and measuring IaC script quality.

We observe practitioners asking about defect categories for IaC
scripts in online forums such as Reddit:“I want to adopt Puppet in my
organization. Before adoption I want to be aware of the quality issues
that may arise in Puppet scripts. Can someone give me some pointers

1https://www.chef.io/
2https://puppet.com/
3https://bugs.launchpad.net/puppet-ceilometer/+bug/1328448
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glance_cache_config{

‘DEFAULT/auth_url ’ :value=>$auth_url;

‘DEFAULT/admin_tenant_name ’ :value=>$keystone_tenant;

‘DEFAULT/admin_user ’ :value=>$keystone_user;

-‘DEFAULT/admin_password ’ :value=>$keystone_password;

+’DEFAULT/admin_password ’ :value=>$keystone_password , secret=>true;

}

1

Figure 1: Example of a security-related defect where a pass-
word is exposed in logs. The defect is mitigated by adding
‘secret=>true’.

on what type of bugs/defects appear for Puppet scripts? ” [16]. While
the forum members offered suggestions on possible categories of
defects, e.g., syntax-related defects, these suggestions lack substan-
tiation. We hypothesize that through systematic empirical analysis
we can develop a taxonomy, and derive defect categories for IaC
using open source software (OSS) repositories.

The goal of this paper is to help practitioners improve the quality of
infrastructure as code (IaC) scripts by developing a defect taxonomy
for IaC scripts through qualitative analysis.

We answer the following research questions:

• [Categorization] RQ1:What categories of defects appear in in-
frastructure as code scripts?

• [Perception] RQ2: How do practitioners perceive the identified
defect categories for infrastructure as code scripts?

• [Frequency] RQ3: How frequently do the identified defect cate-
gories appear in infrastructure as code scripts?

We derive a defect taxonomy for IaC by applying descriptive
coding [65] on 1,448 defect-related commit messages collected from
OSS repositories maintained by the Openstack organization [44].
We survey 66 practitioners to assess how practitioners perceive the
identified defect categories. To automatically identify IaC defect
categories, we develop a tool called Automated Categorizer of
Infrastructure as code Defects (ACID), and apply ACID on 80,415
commits collected from 291 OSS repositories hosted by GitHub,
Mozilla [42], Openstack [45], and Wikimedia Commons [13].

We list our contributions as following:

• A taxonomy that includes eight defect categories for IaC scripts
(Section 3.2);

• An evaluation of how practitioners perceive the identified defect
categories (Section 3.3.2);

• An analysis of how frequently the identified defect categories
occur (Section 5.3.2); and

• A tool called ACID that automatically identifies instances of
defect categories from repositories with IaC scripts (Section 4).

We organize rest of the paper as following: we discuss back-
ground and related work in Section 2. We describe the defect cate-
gories and survey results in Section 3. We describe the construction
and evaluation of ACID in Section 4. We describe our empirical
study in Section 5. We discuss our findings and limitations respec-
tively, in Sections 6 and 7. We conclude the paper in Section 8.

2 BACKGROUND AND RELATEDWORK
Here, we provide necessary background and discuss related work.

1 #An example Puppet script
2 include server
3 class sample($service_flag)
4 {
5 $service_flag = true
6
7 if $service_flag {
8 $path_var = '/var/www/html/'
9 } else {
10 $path_var = '/var/www/html/pages/'
11 }
12 service {‘apache2’:
13 ensure => running,
14 enable => true,
15 path => $path_var
16 }
17 } �

Comment
Refer dependent
class ‘server’ Variable

‘service_flag’

If-else block

Specifying ‘apache2’
service

Attribute ’enable’
of ‘apache2’
service

1

Figure 2: Annotation of an example Puppet script.

2.1 Background
Puppet scripts are analyzed in our research study. Typical entities
of Puppet include manifests [36]. Manifests are written as scripts
that use a .pp extension. In a single manifest script, configuration
data can be specified using variables and attributes. Programming
constructs, such as the ‘service’ resource, are also available to spec-
ify services. We provide a sample Puppet script with annotations in
Figure 2. In Figure 2, a service with the title ‘apache2’ is specified.
Configuration data are specified using ‘=>’ and ‘=’ respectively, for
attributes and variables.

2.2 Related Work
Our paper is closely related to prior research on software defect
categories. Chillarege et al. [9] proposed eight defect categories:
algorithm, assignment, build, checking, documentation, function,
interface, and timing. Categories proposed by Chillarege et al. [9]
were used by Cinque et al. [10] to categorize defects for air traffic
control software. Wan et al. [80] investigated defects in blockchain
systems and observed that semantic defects are the most dominant
runtime defect categories. Linares-Vasquez et al. [39] provided a
taxonomy to categorize vulnerabilities for Android-based systems.
Zheng et al. [84] studied 579 defects collected from the Openstack
cloud management system, and observed that 66.1% of the studied
defects involve incorrect output. Islam et al. [30] studied 2,716 Stack
Overflow posts related to deep learning libraries and observed
configuration data to be the most frequent category.

The above-mentioned discussion shows that defect categoriza-
tion of specialized software such as Android and deep learning pro-
vide value to the research community. However, similar research
efforts are absent for IaC. Sharma et al. [68] and Bent et al. [78] in-
vestigated code maintainability aspects of Chef and Puppet scripts.
Jiang and Adams [31] investigated the co-evolution of IaC scripts
and other software artifacts, such as build files and source code.
Rahman and Williams in separate studies characterized defective
IaC scripts using text mining [60], and by identifying source code
properties [61]. Hanappi et al. [21] proposed a model-based test
framework to automatically test convergence of IaC scripts. Rah-
man et al. [58] identified 21,201 occurrences of security smells i.e.,
coding patterns indicative of security weaknesses that also included
1,326 occurrences of hard-coded passwords. The above-mentioned
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discussion highlights the lack of studies that investigate defect
categories for IaC and motivate us further to investigate defect
categories of IaC.

3 DEFECT TAXONOMY FOR
INFRASTRUCTURE AS CODE SCRIPTS

In this section, we answer RQ1: What categories of defects ap-
pear in infrastructure as code scripts?. First, we describe our
methodology, then we present the identified defect categories.

3.1 Methodology to Develop Defect Taxonomy
Qualitative Analysis: We use descriptive coding [65] on 1,448
defect-related commits. Defect-related commits have commit mes-
sages that indicate an action was taken related to a defect [60]. We
derive defect-related commits by manually inspecting 7,808 com-
mits that map to 1,386 Puppet scripts. While determining defect-
related commits a rater inspected if the commit message expressed
an action that was taken to remove or repair an error while devel-
oping an IaC script.

We collect the set of 7,808 commits from 61 OSS repositories
maintained by the Openstack organization [45], as Openstack pro-
vides cloud-based infrastructure services, and our assumption is
that an analysis of commits collected from Openstack could give
us insights on defect categories. We use commits because commits
summarize changes that are made to a script and could identify
the types of changes that are being performed on a script. Descrip-
tive coding is a qualitative analysis technique that summarizes the
underlying theme from unstructured text [65]. We select descrip-
tive coding because we can obtain (i) a summarized overview of
the defect categories that occur for IaC scripts; and (ii) context on
how the identified defect categories can be automatically identified.
We use Puppet scripts to construct our dataset because Puppet is
considered as one of the most popular tools for configuration man-
agement [31] [67], and has been used by companies since 2005 [40].

We extract commit message text from the 1,448 defect-related
commits, as well as any existing identifier to a bug report in the
commit message. We combine the commit message with any exist-
ing bug report description and refer to the combination as enhanced
commit message (ECM). If no bug identifier is present in the com-
mit message, then the commit message becomes the ECM. We use
ECMs to derive defect categories as following: first we identify text
patterns that describe a reason and/or a symptom of a defect, where
defect is defined as—an imperfection that needs to be replaced or
repaired [28]. Figure 3 provides an example of our qualitative anal-
ysis process. We first analyze the ECM for each commit where an
IaC script is modified, and extract snippets that correspond to a
reason or symptom of a defect. From the snippet provided in the
bottom left corner, we extract raw text: ‘fix config options’. Next,
we generate the initial category e.g., we generate ‘fixing config. op-
tions’ from this raw text. Finally, we determine the defect category
‘Configuration Data’ by combining initial categories. We combine
these two initial categories, as both correspond to a common pat-
tern of fixing configuration data defects. Multiple defect categories
can be identified in an ECM.

The first and second author, individually, conduct a descriptive
coding process on 1,448 defect-related ECMs. Upon completion of

this process, we record the agreements and disagreements for the
identified defect categories. The first and second author, respec-
tively, identified eight and ten categories. The Cohen’s Kappa [11]
is 0.8, which according to Landis and Koch [37] is ‘substantial
agreement’. The second author identified two additional categories:
hard-coded values and network setting. Upon discussion, the first
and second authors agreed that both hard-coded values and net-
work setting can be merged with the category ‘configuration data’,
as defects related to configuration data include both.

3.2 Answer to RQ1: Defect Taxonomy for IaC
Our developed taxonomy includes eight defect categories. We ob-
serve one category, idempotency, to be unique to IaC, whereas,
the other defect categories have been observed for other software
systems as reported in prior literature [6, 30, 80, 84]. We report each
defect category in an alphabetical order, with examples below:

Conditional: This category represents defects that occur due
to erroneous logic and/or conditional values used to execute one
or multiple branches of an IaC script. Conditional logic defects also
appear for other types of software systems such as, machine learn-
ing [76], relational databases [15], [51], text editor software [15],
and deep learning software [30].

Example: Conditional logic defects can lead to erroneous status
output. For example, for a Wikimedia Commons project ‘cdh’ [82],
when checking the status of mysqladmin, a conditional logic defect
caused the output to be ‘0 (zero)’, both in the case of success and
failure of mysqladmin’s ‘ping’ command.

Configuration Data: This category represents defects that hap-
pen due to erroneous configuration data that reside in IaC scripts.
An example configuration data defect downloaded from an OSS
repository [46] is ‘$config_dir=“/etc/$service_name”’, where wrong
configuration data is provided. The fix is ‘$config_dir=“/etc/hekad”’.
Practitioners have reported configuration data defects in IaC scripts
to cause deployment problems for the Google App Engine [52], and
inavailability of StackExchange [72], an online question and answer
platform [71]. ‘Configuration data’ includes five sub-categories: (i)
data for storage system such as MySQL, MongoDB, and SQLite;
(ii) data for file system such as specifying file permissions and file
names; (iii) data for network setup such as TCP/DHCP ports and
addresses, MAC addresses, and IP table rules; (iv) data for user
credentials such as usernames; and (v) data for caching systems
such as Memcached.

Prior research has observed configuration data defects to appear
for machine learning software [76], build systems [83], blockchain
software [80], Eclipse software projects [6], and Mozilla projects [6].

Example: Configuration data-related defects cause deployment
failures: in the case of Openstack Bug#1592842 4, value of an at-
tribute ‘host_ip’ was not set to the correct IP address, which lead to
a deployment task to fail. Other example consequences of configu-
ration data defects include provisioning errors for object storage
systems such as Openstack Swift 5.

Dependency: This category represents defects that occur when
execution of an IaC script is dependent upon an artifact, which is
either missing or incorrectly specified. The artifact can be a file,

4https://bugs.launchpad.net/fuel/+bug/1592842
5https://bugs.launchpad.net/tripleo/+bug/1532352
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Enhanced Commit Message Raw Text Initial Category Defect Category

fix configuring Cinder Multiback-

end; fix configuration of Cinder

Multibackend: set every backend

to his own section.

fix configuration of listen ad-

dresses Heat’s services

fix config options deprecated in

Juno

fix configuring

fix configuration of Cinder Multi-

backend

fix configuration of listen ad-

dresses

fix config options

Fixing configuration

data

Fixing configuration

options provided as

configuration data

Configuration
Data

Figure 3: An example to demonstrate the process of deriving IaC defect categories using descriptive coding.

class, package, Puppet manifest, or a module. Previously, practi-
tioners have reported that managing dependencies in IaC scripts
leads to complexity, stating dependency management as a ‘night-
mare’ [22], because incorrectly specified dependencies could lead
to execution of IaC scripts in the wrong order. Dependency-related
defects have been reported for machine learning [76], and audio
processing software [15].

Example: Dependency defects cause deployment errors 6. Ac-
cording to the bug report6, a user faces an error when installing an
Openstack project called ‘Neutron’ [49], which provides network-
ing as a service in Debian and Ubuntu. The error occurred because
of specifying an incorrect package as a dependency. Dependency
defects can also cause installation errors [56].

Documentation: This category represents defects that occur
when incorrect information about IaC scripts are specified in source
code comments, in maintenance notes, and in documentation files
such as README files. Documentation-related defects have been
reported in prior studies: Chillarege et al. [9] identified documenta-
tion as one of the eight defect categories for ODC. Storey et al. [73]
and Tan et al. [75] have reported that erroneous information ex-
pressed in source comments can lead to defects in source code.

Example: According to a bug report 7, the format of specifying
policies for the Openstack Nova project is incorrectly specified in
the comments of an IaC script, which can lead to Puppet runtime
errors. Other examples of documentation-related defects are pro-
viding incompatible license information in comments, and missing
license headers [56], which can have negative implications on the
distribution of software [79].

Idempotency: This category represents defects that violate the
idempotency property for IaC scripts. For IaC, idempotency is the
property which ensures that even after n executions, where n > 1,
the provisioned system’s environment is exactly the same as it was
after the first execution of the relevant IaC scripts. We use a Reddit
post 8 to explain further. In the post, the user mentions that a new
string is appended every time the IaC script is executed. Such exe-
cution becomes problematic when the script is run multiple times,
because the desired behavior is that the new string will only be
6https://bugs.launchpad.net/puppet-neutron/+bug/1288741
7https://bugs.launchpad.net/puppet-nova/+bug/1409897
8https://www.reddit.com/r/Puppet/comments/679dze/

added once at the first execution of the script. Idempotency-related
defects have not been reported in prior research related to defect
categorization for non-IaC software. However, in IaC-related pub-
lications, researchers have reported the existence of idempotency
defects for Chef scripts [27] and for CFEngine scripts [4].

Example: An idempotency defect caused unwanted changes to
artifacts that should not be modified 9. Idempotency-related de-
fects can cause file backup problems, package update problems,
database setup problems, logging problems, and network setup
problems [56].

Security: This category represents defects that violate confiden-
tiality, integrity or availability for the provisioned system. Example
security-related defects include exposing secrets in logs; specifying
SSL certificates that lead to authentication problems; and hard-
coding secrets, such as passwords [56]. Prior research on defect
categorization has also observed security-related defects to appear
in other types of software systems e.g., in blockchain projects [80],
video game software [50], cloud management software [84], and
OSS Apache, Linux, and Mozilla projects [6] [74].

Example: Setting up user accounts is common in IaC scripts [60],
but in the process user confidentiality may be breached. For ex-
ample, the security defect from Section 1 is listed in a bug report [85].
The defect leaks passwords using variables such as rabbit_password
in Puppet logs. The defect impacts seven Openstack projects and is
fixed by adding the ‘secret’ attribute 10. Another example is keeping
a token alive indefinitely, which provides access to anyone without
authentication and lasts indefinitely if not disabled 11.

Service: This category represents defects related to improper
provisioning and inadequate availability of computing services,
such as load balancing services and monitoring services. Service-
related defects can be caused by improper specification of attributes
while using the ‘service’ resource for Puppet [36], or Chef [8], or the
‘service’ module for Ansible [3]. Service-related defects have previ-
ously reported for cloud management software [84]. Rahman and
Williams [60] reported provisioning of web service and database
services to appear in defective IaC scripts.

9https://bugs.launchpad.net/fuel/+bug/1572789
10https://review.opendev.org/#/c/106529/3/manifests/init.pp
11https://bugs.launchpad.net/fuel/+bug/1582893
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Example: Service related-defects can cause provisioned services
to stop unexpectedly, as it happened for a provisioned MySQL
service 12. The defect occurred as the provisioned service was not
working with a title provided as input. Other examples of service-
related defects include not being able to start monitoring services,
such as Nagios, and load balancing services, such as HAProxy [56].

Syntax: This category represents defects related to syntax in IaC
scripts. Syntax-defects have also been reported in prior research
studies: Ray et al. [63] and Pascarella et al. [50] in separate studies
identified generic programming defects for OSS GitHub projects,
which included programming syntax errors. Islam et al. [30] also
identified syntax-related defects for deep learning projects.

Example: The Openstack Fuel plugin development workflow [47]
uses a continuous integration pipeline, which generates errors if IaC
scripts fail style checks. Other examples of syntax-related defects
include specifying wrong types for variables [56].

Answer to RQ1: Defect taxonomies can shape tool develop-
ment, testing and verification efforts, and education about software
development. As discussed in Section 2.2, the domain of IaC lacks a
defect taxonomy, and thus the ability to prioritize tool development,
testing and verification efforts, and disseminate software develop-
ment knowledge in the classroom could be limited. Answer to RQ1
contributes to the above-mentioned needs by providing (i) a defect
taxonomy, and (ii) a discussion related to consequences for each
defect category.

3.3 RQ2: Practitioner Perception
We present the methodology and findings for RQ2: How do practi-
tioners perceive the identified defect categories for infrastruc-
ture as code scripts?

3.3.1 Methodology for RQ2. Practitioner agreement with the
identified defect categories in Section 3.2 can indicate the relevance
of the eight categories. We answer RQ2 by deploying an online
survey to practitioners. In the survey, we ask practitioners how
many years they worked with IaC scripts. Then, we provide def-
initions and examples for each category. We wanted to assess if
practitioners agree that our categories are in fact IaC-related defect
categories. We asked “We have identified eight defect categories for
IaC (Puppet) scripts. Each of these categories are listed below. To
which extent do you agree with our list?”. We construct the survey
following Kitchenham and Pfleeger’s guidelines [34]: (i) use Likert
scale to measure agreement levels: strongly disagree, disagree, neu-
tral, agree, and strongly agree; (ii) add explanations related to the
purpose of the study, how to conduct the survey, preservation of
confidentiality, and an estimate of completion time; and (iii) conduct
a pilot survey to get initial feedback. From the feedback of the pilot
survey, we added an open-ended text box so that surveyed practi-
tioners can further respond. The survey questionnaire is available
and included in our verifiability package [57].

We offered a drawing of two 50 USD Amazon gift cards as an
incentive for participation following Smith et al. [69]’s recommen-
dations on incentivizing surveys. We deploy the survey to 750

12https://bugs.launchpad.net/fuel/+bug/1550929
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Figure 4: Findings from survey. Practitioners mostly agree
with idempotency.

practitioners from April 19, 2019 to August 15, 2019. We distributed
the survey to practitioners via e-mail following the Internal Re-
view Board (IRB) protocol#16813. We collect practitioner e-mail
addresses from the OSS repositories used in our empirical analysis.

3.3.2 Answer to RQ2. Of the 750 practitioners, 66 responded.
We observe the eight categories to have relevance amongst practi-
tioners: 50%∼79% of the 66 survey respondents agree with one of
the eight categories. Respondents agree most with idempotency,
with an agreement rate of 79%. The least agreed upon category is
service. Details of our survey results is listed in Figure 4, where the
defect categories are sorted from top to bottom based on agreement
rate. The percentage of respondents who agreed or strongly agreed
with each category is listed on the right.

We acknowledge the survey response rate to be low (8.8%). How-
ever, low survey response rates are not uncommon in software en-
gineering research: Smith et al. [69] reported software engineering
survey response rate to vary from 6% to 36%. From email responses
we observe the following reasons for low response: inactive or
undeliverable email addresses of practitioners, practitioners ask-
ing for full confirmation on receiving monetary incentives, and
practitioners not using Puppet in recent years.

Practitioners provide reasoning on why they agree, disagree, or
remain neutral. For example, one practitioner considered syntax-
related defects to be less important, as syntax-related defects should
be found “during initial testing”. The practitioner identified idempo-
tency and conditional defects as “two key ones”. Another practitioner
highlighted the importance of idempotency, stating idempotency
defects “may not produce functional issues, but can cause product
indirect issues”. We notice contrary views related to idempotency
as well. One practitioner stated “I have never run into defects in
Puppet’s idempotency mechanisms”, instead the practitioner claimed
dependency-related defects to be prevalent stating “Debugging de-
pendency loops is tricky and happens often”. Another practitioner
indicated limitations of IaC tools as a possible explanation on why
dependency defects could be frequent “the problem [is] with these
[IaC] tools it is not clear how to do it [dependency management]”.
For practitioners who provided neutral responses, the presence of
defects is more relevant than the category “I am more concerned
about the defect itself rather than its category. If I have that info, it
will be good, but it is not mandatory”.

Practitioners also reported defect categories not included in our
taxonomy: ‘learning curve’, ‘maintainability’, ‘parallelism’, ‘scala-
bility’, ‘support’, and ‘usability’. ‘Parallelism’ and ‘scalability’ are



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea A. Rahman et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

performance-related features of IaC tools. ‘Learning curve’, ‘main-
tainability’, ‘support’, and ‘usability’ are related to user experience
of IaC tools.

Answer to RQ2: We observe our identified defect categories to
have relevance amongst practitioners. Surveyed practitioners have
varying opinions on what defect categories are more frequent in IaC
development, which are possibly formed by their own experiences.
Furthermore, practitioners have reported what additional IaC defect
categories may exist that is not included in our taxonomy.

4 AUTOMATED CATEGORIZER FOR
INFRASTRUCTURE AS CODE DEFECTS

Catgegorization of IaC defects using raters is resource-consuming.
In prior research, Huang et al. [25] emphasized the importance
of determining defect categories using an automated technique
stating the process of manual software defect categorization as
“at best a mundane, mind numbing activity”. An automated tool to
detect IaC defect categories can be useful to (i) analyze reposito-
ries with IaC scripts at scale, (ii) mitigate recall bias common in
incident reviews [14, 17] e.g., practitioner bias in recalling defects
in IaC scripts 13, and (iii) provide groundwork for future defect-
related tools for IaC. Researchers can use such automated tool to
automatically identify which script includes what defect category.

We construct an automated tool called Automated Categorizer
for Infrastructure as CodeDefects (ACID) to automatically identify
IaC defect categories at scale. ACID analyzes each ECM and deter-
mines whether or not any of the eight identified defect categories
can be identified from the ECM. ACID takes one or multiple reposi-
tories as input, and as output reports the defect category for each
ECM. If none of the eight categories are identified, ACID reports
‘NO DEFECT’, indicating no defect is identified. ACID can report
an ECM to belong to multiple defect categories. ACID’s design is
language-independent. ACID uses rules, which uses dependency
parsing [32] and pattern matching to detect defect categories with
ECMs.

We first describe how we construct the rules used by ACID
to detect defect categories. Next, we use a running example to
illustrate the components of ACID, and how ACID determines a
defect category. Finally, we evaluate the accuracy of ACID by using
an oracle dataset.

Rules used by ACID: We construct rules needed for ACID by
abstracting patterns that appear in the 1,448 ECMs and their corre-
sponding diffs, obtained from the 61 Openstack OSS repositories.
Our hypothesis is that we can abstract patterns from the 1,448
ECMs and their corresponding diffs to automatically detect defect
categories for other datasets.

We use Table 1 to demonstrate our approach. The ‘ECM’ col-
umn presents a set of ECMs that include ‘fix’, a string pattern that
represents a defect-related action. The ‘Dependent’ column shows
the string patterns upon which the defect-related action is applied.
For example, for ‘fix catalog compilation when not configuring

13https://community.pagerduty.com/t/incidents-as-we-imagine-them-versus-how-
they-actually-are-with-john-allspaw/2708

Table 1: An Example of Identifying Dependents in ECMs for
Rule Construction

ECM Dependent
fix catalog compilation when not configuring endpoint compilation
fix spurious warning in pipeline check warning
fix puppet lint 140 characters lint
typo fix typo

endpoint’, ‘fix’ is applied upon ‘compilation’. We can abstract pat-
terns using ‘fix’ and tokens in the ‘Dependent’ column to construct
a rule to identify a defect category. For example, in Table 1, the
keywords ‘compilation’, ‘warning’, ‘lint’ and, ‘typo’ is linked with
‘fix’. The first author looked into the set of 1,448 ECMs to determine
what string patterns need to be captured as dependents to construct
rules.

Some ECMs such as ‘Various small fixes’, which is downloaded
from an OSS repository called ‘fuel-plugin-contrail’ 14, indicate that
a defect-related action occurred but do not clearly express what
defect category could be identified. We address this challenge by
inspecting diffs of ECMs, in addition to dependency parsing. From
the diffs of ECMs we can identify code elements and use them in
rules for any of the eight categories. As an example, in Figure 5
we present the changeset for the ECM ‘Various small fixes’. We
observe that configuration data are changed using three variables
‘network_scheme’, ‘cidr ’, and ‘netmask’.

An ECM can include a sentence that expresses defect-related
actions for multiple defect categories. For example, for ‘Fix depen-
dencies and various typos’, which is downloaded from an OSS repos-
itory [48], we observe actions taken to resolve two defect categories:
dependency defect and syntax defect. For ECMs with one or multi-
ple sentences, ACID maps an ECM to multiple defect categories if
multiple rules are satisfied. The rules ACID uses to detect each of the
eight defect categories is listed in Table 2. In Table 2, the ‘Category’
and ‘Rule’ column respectively presents the defect categories, and
corresponding rules to detect the category. The presented rules use
functions. The functions use string pattern matching to check if sen-
tences and/or diffs of an ECM satisfy a certain condition. Amapping
of the functions and stemmed string patterns are provided in Table 3.
For example, the hasDe f ect(x .sen) function returns true if any of
the provided string patterns listed in Table 3, appear for a sentence
in an ECM x .sen. In Table 2, functions chanдedInclude(x .di f f ),
chanдedComment(x .di f f ), and chanдedService(x .di f f ), identify
if the diff of ECM x consists of changes in include statements, com-
ments, and service resources, respectively. dataChanдed(x .di f f )
identifies if the diff includes a change in configuration data. Except
for function hasDe f ect(), string patterns for all other functions
are derived from our qualitative analysis process. We derive string
patterns forhasDe f ect() from prior work [63] [62], listed in Table 3.
For four categories (conditional, idempotency, security, and syntax)
ACID does not use diff content because our qualitative analysis
did not identify any Puppet-specific code element in the diffs that
express the defect category of interest.

Execution of ACID: We construct ECMs using Git, Mercurial,
and bug report APIs, and feed the ECMs as input to ACID. ACID

14https://opendev.org/x/fuel-plugin-contrail
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- $network_scheme = hiera(‘network_scheme’)

- $cidr = $settings[‘contrail_private_cidr’]

- $netmask=cidr_to_netmask($cidr)

- $netmask_short=netmask_to_cidr($netmask)

+ $network_scheme = hiera_hash(‘network_scheme’,{})

+ $cidr = pick(get_network_role_property(‘neutron/mesh’,‘cidr’),

↪→ get_network_role_property(‘contrail/vhost0’,‘cidr’))

+ $netmask = pick(get_network_role_property(‘neutron/mesh’,‘

↪→ netmask’),get_network_role_property(‘contrail/vhost0’,‘

↪→ netmask’))

+ $netmask_short = netmask_to_cidr($netmask)

1

Figure 5: Diff of ECM ‘Various small fixes’. Configuration
data are changed in the diff indicating the ECM to be related
with category ‘configuration data’.

Table 2: Rules to Detect Defect Categories

Category Rule
Conditional hasDef ect (x .sen) ∧ hasCond (x .sen .dep)
Configuration
Data

hasDef ect (x .sen) ∧ ((hasStorConf (x .sen .dep)
∨ hasF ileConf (x .sen .dep)
∨ hasNetConf (x .sen .dep) ∨

hasU serConf (x .sen .dep) ∨

hasCachConf (x .sen .dep)) ∨

dataChanдed (x .dif f ))
Dependency hasDef ect (x .sen) ∧ (hasDepe(x .sen .dep) ∨

chanдedInclude(x .dif f ))
Documentation hasDef ect (x .sen) ∧ (hasDoc(x .sen .dep) ∨

chanдedComment (x .dif f ))
Idempotency hasDef ect (x .sen) ∧ hasIdem(x .sen .dep)
Security hasDef ect (x .sen) ∧ hasSecu(x .sen .dep)
Service hasDef ect (x .sen) ∧ (hasServ(x .sen .dep) ∨

chanдedService(x .dif f ))
Syntax hasDef ect (x .sen) ∧ hasSynt (x .sen .dep)

Table 3: String Patterns Used for Functions in Rules

Function String Pattern
hasDef ect () ‘error’, ‘bug’, ‘fix’, ‘issu’, ‘mistake’, ‘incorrect’, ‘fault’, ‘defect’,

‘flaw’
hasCond () ‘logic’, ‘condit’, ‘boolean’
hasStorConf () ‘sql’, ‘db’, ‘databas’
hasF ileConf () ‘file’, ‘permiss’
hasNetConf () ‘network’, ‘ip’, ‘address’, ‘port’, ‘tcp’, ‘dhcp’
hasU serConf () ‘user’, ‘usernam’, ‘password’
hasCachConf () ‘cach’
hasDepe() ‘requir’, ‘depend’, ‘relat’, ‘order’, ‘sync’, ‘compat’, ‘ensur’, ‘in-

herit’
hasDoc() ‘doc’, ‘comment’, ‘spec’, ‘licens’, ‘copyright’, ‘notic’, ‘header’,

‘readm’
hasIdem() ‘idempot’
hasSecu() ‘vulner’, ‘ssl’, ‘secr’, ‘authent’, ‘password’, ‘secur’, ‘cve’
hasServ() ‘servic’, ‘server’
hasSynt () ‘compil’, ‘lint’, ‘warn’, ‘typo’, ‘spell’, ‘indent’, ‘regex’, ‘variabl’,

‘whitespac’

uses four steps to identify a defect category: sentence tokenization,
text pre-processing, dependency parsing, and rule matching. We
use Table 4 to describe how ACID processes an example ECM
“Update incorrect comment about nova-network status. The network
manifest contained a comment that said that nova-network was no
longer receiving any patches. That’s not actually the case; so replace
the comment with a new description that describes the current state”,
which is downloaded from the ‘puppet-nova’ repository 15. The
ECM also includes a change in comment, as shown in Figure 6.
15https://opendev.org/openstack/puppet-nova

# [* enabled *]

# (optional) Whether the network service should be enabled.

-# Defaults to false

+# Defaults to true

1

Figure 6: Diff of ECMused as running examplewhere source
code comments are changed.

Table 4: Example to Demonstrate ACID’s Execution
Step #1 Step #2 Step #3 Step #4
Update incorrect
comment about
nova-network
status

updat incorrect
comment about
nova network
statu

HEAD:[updat],
DEPE:[comment]

Rule matched
for documenta-
tion defect as
per Table 2

The network man-
ifest contained a
comment that said
that nova-network
was no longer
receiving any
patches.

network man-
ifest contain
comment that
said that nova
network was no
longer receiv ani
patch

HEAD:[contain],
DEPE:[comment]

No match

That’s not actually
the case; so replace
the comment with
a new description
that describes the
current state.

that not actual
case so replac
comment with
new descript that
describ current
state

HEAD:[replac],
DEPE:[comment]

No match

Step #1-Sentence tokenization:We apply sentence tokenization [33]
on each ECM to split an ECM into multiple sentences. In the case of
Table 4, the ECM includes three sentences, and upon application of
Step #1, we obtain three individual sentences: (i) ‘Update incorrect
comment about nova-network status’, (ii) ‘The network manifest
contained a comment that said that nova-network was no longer
receiving any patches’, and (iii) ‘That’s not actually the case; so
replace the comment with a new description that describes the
current state’.

Step#2-Text Pre-processing: From each ECM, we remove English
stop words, such as ‘a’, ‘the’ and ‘by’. Next, we remove special char-
acters and numeric literals. Then, we apply porter stemming [53]
on each word for each ECM. ACID will apply text pre-processing
for each of the individual sentences for the ECM provided in Ta-
ble 4. The output of text pre-processing is provided in the ‘Step #2’
column.

Step#3-Dependency parsing: Using dependency parsing [32] we
identify heads and dependents for output obtained from Step#2.
Dependency parsing identifies a ‘head’, an action item, and ‘depen-
dents’ i.e. the words in the sentence which are dependent upon
the action item. For example, in Table 4 we observe the keyword
‘updat’ to be a head. The dependent for ‘updat’ is ‘comment’. To
identify dependents and heads, we use the Spacy API [70], which
leverages datasets, where heads and dependents are annotated by
human raters for the English language [32]. Using this annotation,
dependency parsing identifies what tokens in a sentence are heads
and dependents. We use the identified heads and dependents in the
next step. Output after Step #3 for our example ECM is listed in
‘Step #3’ of Table 4.

Step#4-RuleMatching: From dependency parsing output of Step#3,
we apply rule matching to determine a defect category. The rules
are listed in Table 2. If a sentence for an ECM satisfies any of the
rules, the corresponding defect category is assigned to that ECM.
For our running example, we observe the rule ‘hasDe f ect(x .sen)
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Table 5: ACID’s Accuracy for Oracle Dataset

Category Occurr. Precision Recall
Conditional 6 0.75 1.00
Configuration Data 29 0.91 1.00
Dependency 3 0.75 1.00
Documentation 6 0.75 1.00
Idempotency 3 0.75 1.00
Security 1 1.00 1.00
Service 13 0.85 0.85
Syntax 6 0.86 1.00
No defect 65 0.96 0.82
Average 0.84 0.96

∧ (hasDoc(x .sen.dep) ∨ chanдedComment(x .di f f ))’ is satisfied as
(i) the ECM satisfies ‘hasDe f ect(x .sen)’, as the keyword ‘incorrect’
appears in ‘updat incorrect comment about nova network statu’, (ii)
the sentence ‘updat incorrect comment about nova network statu’
includes a dependent ‘comment’, which satisfies ‘hasDoc(x .sen.dep)’,
and (iii) as shown in Figure 6, comments are changed in the diff for
the ECM, so ‘chanдedComments(x .di f f )’ is satisfied. For the other
sentences no rules are matched (‘No match’ in column ‘Step#4’).
Therefore, the ECM belongs to ‘documentation’.

Evaluation of ACID: We use raters who are not authors of
the paper to construct an oracle dataset to evaluate ACID. To con-
struct the oracle dataset, raters perform closed coding [65], where
they map each assigned ECM to any of the categories identified
in Section 3.2. The mapping task was made available using a web-
site 16. Each rater was provided the IEEE Standard Classification
for Software Anomalies [28] and a handbook on Puppet [36] for
reference.

We recruit raters from a graduate-level class of 60 students,
where 22 students volunteered to participate in constructing the
oracle dataset. The graduate class is focused on DevOps principles.
We used balanced incomplete block design [18] to select and dis-
tribute the 132 ECMs amongst the 22 raters, so that each ECM is
reviewed by at least two raters. Upon completion of the mapping
task, we observe the agreement rate to be 71.9%, and Cohen’s Kappa
to be 0.61, which is ‘substantial agreement’ according to Landis and
Koch [37]. The first author resolved disagreements.

Upon completion of constructing the oracle dataset, we evaluate
ACID by computing the precision and recall of ACID for the oracle
dataset. Precision refers to the fraction of correctly-identified cate-
gories among the total identified defect categories, as determined
by ACID. Recall refers to the fraction of correctly-identified defect
categories that have been retrieved by ACID over the total amount
of defect categories. We report the precision and recall values for
each defect category in Table 5. We observe the average precision
and recall to be respectively 0.84 and 0.96 across all categories.

We notice that false negatives occur when the dependency pars-
ing technique incorrectly identify tokens in the ECM that have no
relationship to a defect category or identifies tokens that are related
to an incorrect category. For example, for the ECM ‘fix following
warnings’, instead of ‘warnings’ dependency parsing incorrectly
identifies ‘following’ as the dependent. We observe keyword match-
ing to contribute to false positives, for example ACID incorrectly
identifies the ECM ‘Bug 1085520 - Support instance-store backed

16http://13.59.115.46/joybangla/login.php

Table 6: OSS Repositories Satisfying Curation Criteria
GHB MOZ OST WIK

Initial Repo. Count 14,856,957 1,858 2,120 2,031

Criteria-1 (11% IaC Scripts) 6,088 2 67 11
Criteria-2 (Not a Clone) 4,040 2 61 11
Criteria-3 (Commits/Month ≥ 2) 2,710 2 61 10
Criteria-4 (Contributors ≥ 10) 218 2 61 10

Final Repo. Count 218 2 61 10

AMIs for builders. Add new secrets.’ as a security-related defect,
even though the ECM corresponds to adding a new feature.

Verifiability: All constructed datasets and ACID’s source code
are available online [57]. ACID is also available as a Docker image
for use 17.

5 EMPIRICAL ANALYSIS
In this section, we provide the methodology and findings for the
research question: RQ3: How frequently do the identified defect
categories appear for infrastructure as code scripts?

Table 7: Attributes of the Four Datasets
Attribute GHB MOZ OST WIK
Repo. Type Git Mercurial Git Git
Tot. Repos 218 2 61 10
Tot. Commits 434,234 14,449 44,469 71,795
Tot. Puppet Scripts 10,025 1,596 2,845 3,143
Tot. Puppet-related Commits 40,286 6,836 12,227 21,066
Time Period 01/2005-

04/2019
05/2011-
04/2019

09/2011-
04/2019

01/2006-
04/2019

5.1 Datasets
We conduct our empirical analysis with four datasets of Puppet
scripts. We construct three datasets from the OSS repositories main-
tained by three organizations: Mozilla [42], Openstack [45], and
Wikimedia Commons [13]. We select repositories from these three
organizations because these organizations create or use cloud-based
services. We construct the other dataset from OSS repositories
hosted on GitHub, as companies tend to host their popular OSS
projects on GitHub [35] [1]. In our collected repositories IaC-related
ECMs correspond to defects that have been previously reported by
respective practitioners.

Munaiah et al. [43] advocated for curation of OSS repositories
before conducting empirical analysis. We apply the following crite-
ria to curate the collected repositories: Criteria-1: At least 11% of
the files belonging to the repository must be IaC scripts. Jiang and
Adams [31] reported that in OSS repositories IaC scripts co-exist
with other types of files, such as source code files. They observed
a median of 11% of the files to be IaC scripts. By using a cutoff
of 11% we assume to collect repositories that contain sufficient
amount of IaC scripts. Criteria-2: The repository is not a copy of
another repository. Criteria-3: The repository must have at least
two commits per month. Munaiah et al. [43] used the threshold of
at least two commits per month to determine which repositories
have enough software development activity. We use this threshold
to filter repositories with limited activity. Criteria-4: The repository
has at least 10 contributors. Our assumption is that the criteria of
17https://hub.docker.com/r/akondrahman/acid-puppet
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Table 8: Sanity Checking ACID’s Accuracy

Category Occurr. Precision Recall
Conditional 15 0.88 0.93
Configuration Data 99 0.90 0.96
Dependency 59 0.86 0.93
Documentation 32 0.91 0.94
Security 23 0.88 0.91
Service 54 0.85 0.93
Syntax 74 0.93 0.93
No defect 1644 0.99 0.98
Average 0.90 0.94

at least 10 contributors may help us to filter out irrelevant reposi-
tories. Previously, researchers have used the cutoff of at least nine
contributors [55] [1] as a curation criterion. As shown in Table 6,
291 repositories met our filtering criteria. Attributes of the collected
repositories are available in Table 7.

5.2 Sanity Check for ACID
Before applying ACID for all datasets, we apply a sanity check to
assess ACID’s detection performance for ECMs not included in the
oracle dataset. The first author randomly selected 500 ECMs from
each of the four datasets, and applied ACID on 2,000 ECMs. We
report the precision and recall in Table 8. We observe the recall for
all defect categories is >= 0.91, which indicates ACID’s ability to
detect most existing defect categories, but generate false positives.

5.3 RQ3: Frequency of Defect Categories
In this section, we answer How frequently do the identified de-
fect categories appear in infrastructure as code scripts?.

5.3.1 Methodology for Defect Category Frequency. We answer
RQ3 by reporting ‘defect proportion’ and ‘script proportion’ values,
as well as, temporal frequency for each defect category. ‘Defect
Proportion’ refers to the percentage of commits in the dataset that
belong to a defect category, similar to Hindle et al. [24]. The defect
proportion metric provides a summarized view of defect category
frequency across the whole dataset, whereas, ‘script proportion’
refers to the proportion of scripts that are modified in commits
that include at least one category. Practitioners can find ‘script pro-
portion’ values useful, as the metric quantifies how many scripts
include at least one defect category. ‘Defect/Year’ shows how each
category of defects evolve with time, and summarizes temporal
trends. We report the temporal frequency for each year using Equa-
tion 1, where we calculate the metric ‘Defect/Year’ for a certain
category x that occurs in year y.

Defect/Year(x ,y)% =
# of ECMs in year y and marked as defect category x

total ECMs in year y
∗ 100%

(1)

5.3.2 Answer to RQ3: How frequently do the identified defect
categories appear in infrastructure as code scripts? We report defect
proportion and script proportion values for the eight categories
in Table 9. Configuration data defects is the most frequently oc-
curring category based on the defect proportion metric. Network
is the most frequent subcategory: 75.3%∼88.2% of the identified

Table 9: Defect and Script Proportion for Defect Categories

Defect Prop. (%) Script Prop. (%)
Categ. GHB MOZ OST WIK GHB MOZ OST WIK
Cond. 0.3 0.04 0.3 0.1 1.9 0.3 1.8 1.4
Conf.Data 9.5 3.8 11.5 7.2 29.2 23.5 33.9 29.6
Depe. 1.8 1.3 2.4 1.7 10.6 12.4 16.3 17.1
Docu. 1.7 0.8 1.6 1.5 13.7 7.2 14.0 13.6
Idem. 0.1 0.01 0.3 0.01 1.0 1.6 3.5 0.1
Secu. 0.1 0.5 0.5 0.1 0.9 5.5 2.8 1.1
Serv. 1.4 2.6 1.8 3.0 4.9 23.1 9.3 12.4
Synt. 2.8 1.7 2.3 2.4 16.3 9.2 19.2 17.4
Total 16.6 10.9 18.7 15.2 43.6 47.4 48.6 49.2

configuration data defects are network defects. Frequency of sub-
categories for configuration data defects is available online [57].
We observe 23.5%∼33.9% scripts to be modified in commits related
to configuration data, which is the highest across all defect cate-
gories. As reported in the ‘Total’ row in Table 9, we observe 16.6%,
10.9%, 18.7%, and 15.2% of all commits to include at least one of the
eight defect categories, respectively, for GitHub, Mozilla, Openstack,
and Wikimedia. Also, we observe 43.6%, 47.4%, 48.6%, and 49.2%
of all scripts to include at least one defect category respectively,
for GitHub, Mozilla, Openstack, and Wikimedia. Similar to defect
proportion, based on script proportion values, we observe configu-
ration data-related defects to be the dominant category across all
four datasets.

In Figure 7, the x-axis presents years, and the y-axis presents de-
fect/year values for each year. From Figure 7, over time we observe
defects to be reported across all datasets as indicated by ‘TOTAL’.
For configuration data-related defects, the defect/year value does
not reduce to zero, indicating configuration data defects to be re-
ported throughout the entire lifetime period for all four datasets.

Our defect categories can correlate. Correlating categories are
detectable: if rules for multiple categories are satisfied then ACID
will report an ECM belonging to multiple categories. ECMs that
tested positive for two categories were 1.01%, 0.05%, 1.72%, and
0.82%, respectively, for GitHub, Mozilla, Openstack, and Wikimedia.
ECMs that tested positive for three categories were 0.09%, 0.00%,
0.12%, and 0.04%, respectively, for GitHub, Mozilla, Openstack, and
Wikimedia. For any of the datasets we do not observe ECMs that
tested positive for four or more defect categories.

Answer to RQ3: Configuration data is the most dominant defect
category. Our identified defect categories can correlate, for example,
ECMs that tested positive for two categories were 0.05%∼8.01%
across four datasets.

6 DISCUSSION
We discuss our findings in this section.

Practitioner Perception and Observed Evidence: According
to Srikanth and Menzies [5], “documenting developer beliefs should
be the start, not the end, of software engineering research. Once preva-
lent beliefs are found, they should be checked against real-world data”,
suggesting researchers to complement survey data with software
repository data. We too have complemented survey data with anal-
ysis of OSS data. We have reported varying practitioner perceptions
for the identified categories in Section 3.3.2. We notice congruence
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Figure 7: Evolution of defect proportion for eight categories; GitHub: 7a, Mozilla: 7b, Openstack: 7c, and Wikimedia: 7d. For
each dataset, ‘Total’ presents the proportion of commits, which includes at least one category of defect.

for two categories: configuration data and dependency are the sec-
ond most agreed upon category and also frequently occurs in OSS
datasets. On the other hand, service defects are least agreed upon,
but they are more frequent than idempotency, the defect category
surveyed practitioners most agreed upon.

In the Reddit post [16] mentioned in Section 1, practitioners
reported only one defect category–syntax. Along with syntax, our
taxonomy includes seven other defect categories. Suggestions from

online forums could be inconclusive, and practitioners can find our
taxonomy helpful.

Mitigation: Companies can mitigate the occurrence of defects
by incorporating tools that target one or more of the identified
categories during IaC development. For example, companies can
adopt ‘rspec-puppet’ [64] to reduce conditional and service defects.
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Tools such as Tortoise [81], ‘librarian-puppet’ [38], and ‘puppet-
strings’ [29] might be helpful respectively, in mitigating configura-
tion data, dependency, and documentation defects. Static analysis
tools such as SLIC [58] and ‘puppet-lint’ [54] might respectively,
be helpful in mitigating security and syntax defects. Mitigation of
idempotency defects might be possible through early detection of
idempotency with Hummer et al. [27]’s approach that uses model-
based testing [77] to detect idempotency.

Implications: Our paper can be helpful in the followingmanner:
• better understanding of defects: use of definitions and examples
in Section 3.2 to understand the consequences of IaC defect cate-
gories, and activities needed to mitigate each defect category;

• triaging defects: using our taxonomy, practitioners can find what
IaC-related defect categories are being reported for a long period,
helping them make informed decisions on defect triaging;

• measuring IaC script quality: use our reported frequency in Ta-
ble 9 as a reference;

• saving manual effort: Zou et al. [86] identified three reasons why
practitioners find automated defect categorization important:
better resource allocation, saving manual work in classifying
defects, and facilitating postmortem analysis. For automated cat-
egorization of IaC defects ACID can be helpful for practitioners.
Manual analysis of one ECM on average has taken 75 seconds
per rater, whereas, ACID takes 0.09 seconds on a ‘macOS Mojave’
laptop with 1.4 GHz Intel Core i5 processor and 16 GB memory.
ACID could be useful for teams that don’t have raters to perform
postmortem analysis using qualitative coding; and

• constructing IaC-related education materials: educators who con-
duct IaC-related courses at the undergraduate and graduate level,
can use Section 3.2 to showcase what types of quality issues can
arise while developing IaC scripts.
Future Work: Researchers can investigate if above-mentioned

recommendations can actually reduce defects in IaC scripts. The
coding patterns that ACID use, could be further leveraged in inves-
tigating if defect categories for IaC, such as configuration data, can
be detected at compile time.

7 THREATS TO VALIDITY
We briefly describe the limitations of our paper in this section.

Conclusion Validity: The derived defect categories and the
oracle dataset are susceptible to rater bias. In both cases, wemitigate
rater bias by allocating multiple raters. Also, we use the content of
commit messages to determine the defect categories for IaC scripts,
which is limiting as commit messages do not always express a
defect-related action. Practitioners may use other keywords that
we did not include. We mitigate this limitation by using a set of
defect-related keywords, derived from prior research, and shown to
be adequate in detecting defect-related commits [63] [62] [41]. Also,
ACID uses dependency parsing that relies on annotated datasets
mined from news articles [32], which can be limiting to capture
dependencies.

External Validity: We have not analyzed proprietary reposito-
ries, and our findings are limited to OSS datasets with Puppet scripts.
We mitigate this limitation by mining OSS repositories from GitHub
and three organizations. We conduct our empirical study with one
IaC tool called Puppet. We acknowledge that our findings may be

limited to Puppet. However, evidence demonstrates our categories
to exist across languages: e.g., idempotency appears for Chef [27]
and CFEngine [4]. Considering frequency and category, Schwarz et
al. [66] found configuration-related code smells to generalize across
multiple languages, which suggests that our findings related to con-
figuration data defects may generalize too. Furthermore, ACID’s
design is language-independent. ACID uses dependency parsing
and pattern matching to detect defect categories.

Internal Validity: The defect category list is not comprehensive,
as the derivation process is dependent on the collected commits
and rater judgment. We mitigate this limitation with 1,448 ECMs
and two raters to derive defect categories. We acknowledge the
limitations of the rules presented in Table 2, as the construction is
dependent upon the ECMs and diffs of the collected commits, along
with the first author’s judgment. Practitioners can use certain string
patterns to describe a category that we did not list. We mitigate this
limitation by inspecting 1,448 ECMs and diffs to derive the used
string patterns.

8 CONCLUSION
Defects in IaC scripts can have serious consequences. Defect catego-
rization can help practitioners to make informed decisions on how
to mitigate IaC defects. We applied qualitative analysis on 1,448
defect-related commits to identify defect categories for IaC scripts.
We surveyed 66 practitioners to assess if practitioners agree with
the identified defect categories. Next, we constructed a tool called
ACID and apply ACID on 80,415 commits from 291 repositories to
automatically identify defect categories in IaC scripts.

Our derived taxonomy consists of eight defect categories that in-
cluded idempotency, a category specific to IaC. Amongst 66 survey
respondents, 79% of the practitioners agreed with idempotency-
related defects, and 49%∼79% of the practitioners agreed with one
of the identified defect categories. We observe configuration data-
related defects to be the most frequent defect category, whereas
idempotency is the least frequently occurring defect category. Us-
ing our reported defect category frequency results, practitioners
can prioritize V&V efforts by fixing configuration data defects that
occur in 23.5%∼33.9% of IaC scripts.

Our research can be helpful for practitioners to improve IaC
script quality, as they can use ACID to identify defect categories au-
tomatically, and use our definitions and examples of each identified
defect category to assess the importance of the identified defect
categories. Our taxonomy of IaC defects can help practitioners in
understanding the nature of defects and guide them in triaging
defects, prioritizing V&V efforts, and measuring IaC script quality.
We hope our findings will facilitate further research in the domain
IaC script quality.
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