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ABSTRACT
Daily horror stories related to software vulnerabilities necessitates
the understanding of how vulnerabilities are discovered. Identifi-
cation of data sources that can be leveraged to understand how
vulnerabilities are discovered could aid cybersecurity researchers to
characterize exploitation of vulnerabilities. The goal of the paper is
to help cybersecurity researchers in characterizing vulnerabilities by
conducting an empirical study of software bug reports.We apply qual-
itative analysis on 729, 908, and 5336 open source software (OSS)
bug reports respectively, collected from Gentoo, LibreOffice, and
Mozilla to investigate if bug reports include vulnerability discovery
strategies i.e. sequences of computation and/or cognitive activities
that an attacker performs to discover vulnerabilities, where the
vulnerability is indexed by a credible source, such as the National
Vulnerability Database (NVD). We evaluate two approaches namely,
text feature-based approach and regular expression-based approach
to automatically identify bug reports that include vulnerability dis-
covery strategies.

We observe the Gentoo, LibreOffice, and Mozilla bug reports
to include vulnerability discovery strategies. Using text feature-
based prediction models, we observe the highest prediction per-
formance for the Mozilla dataset with a recall of 0.78. Using the
regular expression-based approach we observe recall to be 0.83
for the same dataset. Findings from our paper provide the ground-
work for cybersecurity researchers to use OSS bug reports as a data
source for advancing the science of vulnerabilities.

CCS CONCEPTS
• Security and privacy→ Software security engineering.
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1 INTRODUCTION
According to the United States Department of Homeland Secu-
rity, the information technology (IT) sector, which encompasses
software and software-based services is a critical infrastructure
and “central to the nation’s security, economy, and public health and
safety” [29]. However, software vulnerabilities can lead to large-
scale consequences. For example, in July 2019, the ‘DELL PC Doctor’
vulnerability impacted millions of Dell computers [13, 14]. Charac-
terizing how vulnerabilities are discovered can be helpful to devise
mechanisms that will protect software and software-based services
early at the development stage.

Creation of knowledge related to vulnerability discovery has
gained interest in the research community. For example, King [30]
emphasized on the understanding of attacker actions to characterize
the nature of vulnerabilities. Munaiah et al. [28] also expressed
similar views: “The ability to understand the way in which these
adversaries discover and exploit vulnerabilities to infiltrate systems
can help bring the attacker mindset out of the wild and into the
software development process”.

Identifying vulnerability discovery strategies can be useful to
characterize vulnerabilities in software systems. A vulnerability
discovery strategy is one or more computational and/or cogni-
tive activities that an attacker performs to discover a vulnerability,
where the vulnerability is indexed by a credible source, such as
the National Vulnerability Database (NVD). However, the availabil-
ity of data sources to study vulnerability discovery strategies is
limited [28]. Researchers in prior work [28] have stated that even
though identifying vulnerability discovery strategies is important,
conducting such analysis could be challenging due to “scarcity of
such empirical information”.

One option to identify vulnerability discovery strategies could
be the use of bug reports. A bug report is a description of bugs that
are typically indexed by bug databases. In the software engineering
domain, researchers have used open source software (OSS) bug
reports successfully to characterize and quantify software bugs [35].
Based on evidence reported by prior research [5, 7, 8], we conjecture
that bug reports from OSS can be used to identify vulnerability
discovery strategies. Prior research [5, 7, 8] has reported that OSS
bug reports include what sequence of actions were performed to
discover and reproduce a certain bug in a software. Our hypothesis
is that OSS bug reports will include sequence of actions that express
how the vulnerability was discovered by the attacker. For example,
if an OSS bug report includes steps of actions on how to reproduce
a vulnerability, then the bug report can further be investigated to
find out how the attacker discovered the vulnerability. OSS bug
reports are retrievable through OSS APIs, which researchers can
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use to construct datasets that can further be analyzed to identify
vulnerability discovery strategies.

The goal of the paper is to help cybersecurity researchers in charac-
terizing vulnerabilities by conducting an empirical study of software
bug reports.

We answer the following research questions:
� RQ1: How frequently do vulnerability discovery strategies
appear in bug reports?

� RQ2: How can we automatically identify bug reports that
include vulnerability discovery strategies?

We conduct an empirical analysis with OSS bug reports collected
from IT organizations who have open sourced the bug reports and
source code of their software. We apply qualitative analysis on
729, 908, and 5336 OSS bug reports respectively, collected from
Gentoo, LibreOffice, and Mozilla to investigate if those reports
include vulnerability discovery strategies. We also use two auto-
mated approaches namely, text feature-based approach and regular
expressions to identify bug reports that include vulnerability dis-
covery strategies. For text feature-based approach, we construct n-
grams [21] from the bug report content, and construct models with
statistical learners, such as classification and regression tree [3],
logistic regression [16], and deep neural networks [23]. We evaluate
our models using two approaches: 10�10-fold validation and cross
dataset evaluation.

We make the following contributions:
� An empirical study that shows evidence of vulnerability
discovery strategies that are present in OSS bug reports; and

� A set of prediction models that automatically identifies pres-
ence of vulnerability discovery strategies in OSS bug reports.

We organize the rest of the paper as following: in Section 2
we provide necessary background and prior research related to
our paper. We present the methodology of our paper in Section 3.
We provide empirical findings in Section 4, and discuss results
in Section 5. We describe the threats to validity for our paper in
Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section we provide necessary background on bug reports
and discuss relevant prior work.

2.1 Background on Bug Reports
Bug reports are software artifacts that are used by software devel-
opment teams to track bugs and tasks. Development teams use both
open source and proprietary tools to track their bugs. Examples of
open source tools include Bugzilla 1, Fossil 2, and Trac 3. Examples
of proprietary bug tracking tools include Jira 4 and Team Founda-
tion Server 5. Bug reports are also referred to as issue trackers.

Typical entities of bug reports include but are not limited to:
� title that summarizes the bug;
� a bug ID that is unique across all listed bugs;
� timestamp on when the bug report was created and updated;

1https://www.bugzilla.org/
2https://www.fossil-scm.org/home/doc/trunk/www/index.wiki
3https://trac.edgewall.org/
4https://www.atlassian.com/software/jira
5https://azure.microsoft.com/en-us/services/devops/server/

� affected product information e.g. operating system, product
type, and platform;

� bug report category;
� bug report priority; and
� comments that discuss how to reproduce the bug.

We provide an annotated snapshot of a bug report 6 retrieved
from the Mozilla organization in Figure 1 to illustrate entities of a
bug report even further.

Bug ID
Timestamp

Title

Product 
Information

Comment

Bug Category

Figure 1: Annotation of a bug report retrieved fromMozilla.

2.2 Related Work
Our paper is closely related to prior work that have investigated
bug localization, bug report identification, and bug report quality
assessment. For example, Peters et al. [32] proposed ‘FARSEC’, a
technique to reduce mislabelling of security bug reports using text-
based prediction models. Peters et al. [32] developed FARSEC for
automatic identification of security cross-words and for scoring bug
reports according to how likely they are to be labeled as security
bug reports.

Bug reports have also been leveraged for locating bugs in soft-
ware. Dilshener et al. [12] proposed and evaluated an approach that
uses a heuristic-based score for a file against a given report, without
requiring historical dataset of code and bug reports. Ali et al. [1]
proposed and evaluated ‘LIBCROOS’ that combines the results of
information retrieval techniques with binary class relationships
gathered through source code analyses.

Researchers have also investigated automated retrieval of in-
formation from bug reports. Chaparro et al. [7] investigated the
effectiveness of query reduction strategies, based on the structure
of bug descriptions available from bug reports. The authors [7]
proposed an automated technique where developers issue an initial
query from the full text of the bug report and inspect the top-N code
candidates returned by text retrieval-based bug localization tech-
niques. To reformulate the query, the authors [7] used 31 strategies
using 5 text retrieval-based bug localization techniques. In another
work, Chaparro et al. [8] proposed, implemented, and evaluated
‘DEMIBUD’, an automated technique to detect if bug information is
missing in bug reports to reproduce a bug. The authors [8] identi-
fied patterns that captured the discourse and developed 3 versions
6https://bugzilla.mozilla.org/show_bug.cgi?id=519925
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of DEMIBUD, based on heuristics, natural language processing and
linear support vector machine to detect the absence of expected
software behavior (EB) and steps to reproduce (S2R) in bug reports.
In another work, Chaparro et al. [5] proposed and evaluated EULER,
an automated technique to identify and evaluate the quality of the
steps to reproduce in a bug report and provide feedback to the
reporters about ambiguous steps. Chaparro et al. [5] used sequence
labeling in combination with discourse patterns and dependency
parsing to identify steps to reproduce sentences. EULER was also
capable to provide specific feedback to the reporter about missing
steps to reproduce a bug. Chaparro et al. [6] conducted an empirical
study to investigate to what extent duplicate bug report descrip-
tions use the same vocabulary and the impact of the vocabulary
agreement on duplicate detection of bug reports. Zhao et al. [40]
proposed and evaluated ‘S2RMiner’, an automated technique that
extracts the text description of steps to reproduce from bug reports
using HTML parsing, natural language processing and machine
learning techniques. The authors downloaded bug reports as HTML
files and used HTML parsing to extract relevant text from the files
of the bug reports. From the extracted content the authors used
natural language processing to obtain text features of each sentence,
and applied support vector machines in bug reports to predict and
extract steps to reproduce.

The above-mentioned discussion shows a plethora of research
related to bug reports e.g., bug information retrieval, bug localiza-
tion, and bug report quality assessment. However, we notice lack
of research that investigates if bug reports contain information on
how vulnerabilities are discovered. We address this research gap in
our paper.

3 METHODOLOGY
In this section, first we provide necessary definitions listed below:

� Vulnerability: A vulnerability is a weakness in computa-
tional logic existing in software and hardware components,
which upon exploitation can result in a negative impact to
confidentiality, integrity, or availability [11].

� Vulnerability discovery strategy: One or more computational
and/or cognitive activities that an attacker performs to dis-
cover vulnerabilities, where the vulnerability is indexed by
a credible source, such as the NVD.

Now, we describe ourmethodology to conduct the research study,
which is summarized in Figure 2.

3.1 Bug Database Mining
In our paper we focus on identifying if vulnerability discovery
strategies exist in software bug reports. The first step of performing
such analysis is to mine bug databases and collect bug reports. We
rely on OSS bug reports as they are accessible via APIs. We collect
bug reports from three organizations: Gentoo Linux 7, LibreOffice 8,
and Mozilla 9. We select these organizations as they are different
from one another with respect to the software product that they
deliver to the end-users. Gentoo Linux is an OSS Linux-based oper-
ating system. LibreOffice is an OSS for word processing. Mozilla

7https://www.gentoo.org/
8https://www.libreoffice.org/
9https://www.mozilla.org/en-US/

produces a wide range of OSS products including browsers (Mozilla
Firefox and Camino), e-mail clients (Mozilla Thunderbird), bug
tracking system (Bugzilla) and rendering engines (Gecko) 10. Our
assumption is that by collecting bug reports from a set of organi-
zations that produce a wide range of software for end-users, we
will be able to increase the generalizability of our findings. For all
three organizations namely, Gentoo Linux, LibreOffice, and Mozilla
we use the Bugzilla API to collect bug reports. We collect all bug
reports used for our paper on July 25, 2019.

3.2 Bug Report Filtering
We include vulnerabilities that are indexed by the National Vulner-
ability Database (NVD). Vulnerabilities in the NVD are indexed by
the keyword ‘CVE’ 11. Upon collection of the bug reports from the
three organizations, we apply filtering criteria to identify which
bug reports are related to a vulnerability. The filtering criteria are
listed below:

� Step-1: We search for the keyword ‘CVE’ in title, description,
and comments for each collected bug report.

� Step-2: From the search results, we manually examine if a
bug report actually is related to a vulnerability indexed by
the NVD.

Upon completion of this step we will obtain a set of bug reports
that are related to a vulnerability indexed by the NVD. Each col-
lected bug report maps to a CVE. As bug reports can be duplicated,
multiple bug reports can map to the same CVE.

3.3 Qualitative Rating to Construct Strategy
Oracle Dataset

We construct an oracle dataset to identify if a bug report contains
information on what strategy was adopted to discover a vulnera-
bility. We use raters to identify if a bug report contains strategies
to discover a vulnerability. In our paper, a rater is a person who
is knowledgeable in software security, and performs qualitative
analysis. Each rater, who are experienced in software security and
bug report, individually looks at a bug report and determines if the
bug report provides the strategy on how the reported vulnerability
was discovered. A rater determines a bug report to contain a strat-
egy to discover the vulnerability if each of the following criteria is
satisfied:

� Criteria-1: The bug report includes text patterns that indicate
whether the reporter is describing on how the vulnerabil-
ity is discovered. The rater manually examines if the bug
report includes any of the following text patterns: ‘steps’,
‘reproduce’, and ‘observed behavior’;

� Criteria-2: The bug report includes a sequence of steps on
how the vulnerability was discovered; and

� Criteria-3: The bug report provides output of the conducted
activities in the form of attachments, such as console output
and screenshots.

We report the agreement rate by calculating Cohen’s Kappa [9]
to record the agreement level between raters. We follow Landis
and Koch [22]’s interpretations to interpret Cohen’s Kappa values.

10http://kb.mozillazine.org/Summary_of_Mozilla_products
11https://nvd.nist.gov/vuln
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Bug database 
mining

Bug report 
filtering

Qualitative rating

Answer to RQ1

Answer to RQ2

Figure 2: Steps to conduct our research study.

Table 1: Cohen’s Kappa Interpretation by Landis and
Koch [22]

Cohen’s Kappa Interpretation
< 00.0 ‘Poor agreement’
0.00�0.20 ‘Slight agreement’
0.21�0.40 ‘Fair agreement’
0.41�0.60 ‘Moderate agreement’
0.61�0.80 ‘Substantial agreement’
0.81�1.00 ‘Almost perfect agreement’

Interpretation of Landis and Koch [22] for Cohen’s Kappa is listed
in Table 1.

The raters may disagree. We allocate another rater who is experi-
enced in bug reports and software security to resolve disagreements.
In the case of disagreements, the resolver’s decision is final.

3.4 Answer to RQ1: How frequently do
vulnerability discovery strategies appear in
bug reports?

Answer to RQ1 demonstrates evidence on whether or not bug re-
ports contain strategies that are used to discover vulnerabilities. We
answer RQ1 by using the oracle dataset constructed from Section 3.3.
The oracle dataset provides a mapping onwhich bug reports include
a strategy to discover a vulnerability. From the mapping we can
quantify how many bug reports include a vulnerability discovery
strategy. We use two metrics to quantify frequency:

� count of bug reports that include a strategy to discover a
vulnerability; and

� percentage of bug reports that include vulnerability discov-
ery strategies. We use Equation 1 to compute percentage of
bug reports that include a vulnerability discovery strategy.

Proportion of Bug Reports(%) =

# of bug reports that include a vulnerability discovery strategy
total # of bug reports in the dataset

(1)

3.5 Answer to RQ2: How can we automatically
identify bug reports that include
vulnerability discovery strategies?

Using raters to identify bug reports that include vulnerability dis-
covery strategies require manual effort and may not scale when
analyzing large amount of bug reports. We hypothesize automated
techniques that leverage text processing and machine learning can
help in identifying bug reports with vulnerability discovery strate-
gies. Similar to prior work [8] that has investigated reproducibility
of bugs from bug report content, we implement two approaches
that we describe below:

3.5.1 Regular Expression-based Approach. We hypothesize
that bug report descriptions or comments will include certain text
patterns that can be automatically analyzed to identify the pres-
ence of vulnerability discovery strategies. We use Figure 3 to il-
lustrate our hypothesis even further. From Figure 3 we observe a
bug report [4] comment to describe steps of actions to reproduce
a vulnerability. The steps to reproduce follow a certain pattern:
first, the ‘Steps To Reproduce’ keyword is used to express that the
following steps were used to reproduce the vulnerability. Next, , we
describe how the vulnerability is discovered by using an itemized
list of actions (‘1., 2., 3., 4.’). From the presented example in Figure 3,
we observe that text patterns that are reflective of vulnerability
discovery strategies exist in bug reports, and we can rely on regular
expressions to capture these patterns.

We rely on regular expressions provided by Chaparro et al. [8]
to derive the regular expressions needed to extract the text patterns
related to vulnerability discovery strategies. We rely on Chaparro
et al. [8]’s regular expressions as these regular expressions are
systematically derived from bug reports that express steps of actions
on how to reproduce a bug. We present the regular expression that
we use to automatically detect vulnerability discovery strategy
in Figure 4. Our assumption is that by using the same regular
expression we can also effectively identify vulnerability discovery
strategies in bug reports. We evaluate our assumptions further
using three measures to determine the performance of our regular
expression-based approach, which are described below:

4
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� Precision: Precision measures the proportion of bug reports
that include vulnerability discovery strategies given that the
model predicts to include vulnerability discovery strategies.
We use Equation 2 to calculate precision.

Precision =
TP

TP + FP
(2)

� Recall: Recall measures the proportion of bug reports that
include vulnerability discovery strategies and also correctly
predicted by the prediction model. We use Equation 3 to
calculate recall.

Recall =
TP

TP + FN
(3)

� F-Measure: F-Measure is the harmonic mean of precision
and recall. Increase in precision, often decreases recall, and
vice-versa [25]. F-Measure provides a composite score of
precision and recall, and is high when both precision and
recall is high.

F � Measure = 2 �
Precision � Recall

Precision + Recall
(4)

In Equations 2 and 3, TP, FP, and FN respectively, stands for true
positive, false positive and false negative.

Steps To Reproduce:
1. open Nightly with e10s enabled
2. open the attached HTML
3. select "THIS" text in the file
4. drag and drop the text to empty area of tabs 
bar

Figure 3: Example text pattern in bug report that expresses a
step of actions to discover a vulnerability (‘CVE-2017-7812’).

(step(s)?|how) to (reproduce|

recreate|create|replicate)|

(step|repro|repro step|

step to repro)|follow(ing)?

(scenario(s)?|step(s)?):|

^\d+\-+.+|^(\[\d+(\w+)?\]).+|

^(\(\d+(\w+)?\)).+|

^(\{\d+(\w+)?\}).+|

^step\d+ \:.* |^\d+(\.|\)) .*

1

Figure 4: Regular expression used to automatically identify
bug reports with vulnerability discovery strategies.

3.5.2 Machine Learning-based Approach. Wehypothesize that
by extracting text features and applying statistical learners we can
build models that will automatically predict what bug reports in-
clude vulnerability discovery strategies. We summarize the steps
to construct prediction models in Figure 5. We describe the steps to
construct prediction models below:

Text feature
extraction

Statistical 
learner

10x10-fold 
validation

Cross dataset
evaluation

Bug 
reports

Figure 5: Steps to construct prediction models to automati-
cally identify the presence of vulnerability discovery strate-
gies in bug reports.

Index Text feature Frequency

1 open 1

2 nightly 1

3 with 1

4 e10s 1

5 enabled 1

6 open nightly 1

7 nightly with 1

8 with e10s 1

9 e10s enabled 1

10 open nightly with 1

11 nightly with e10s 1

12 with e10s enabled 1

Figure 6: A hypothetical example to demonstrate text fea-
ture extraction process described in Section 3.5.2.We extract
uni-grams, bi-grams, and tri-grams frombug report content.

Step-1: Text feature extraction For our machine learning-based
approach we extract text features from the bug report comments.
For text feature extraction we apply uni-grams, bi-grams, and tri-
grams [21]. Uni-grams, bi-grams, and tri-grams are special cases
of n-grams i.e. a contiguous sequence of n tokens from a given
sample of text [21]. For uni-gram, bi-gram, and tri-gram, the value

5
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of n is respectively, one, two, and three. Our assumption is that by
capturing these sequences of tokens we may capture text features
that can be used to predict the presence of vulnerability discovery
strategies. In the case of uni-grams, we assume to capture special
keywords that could be used to predict the presence of vulnerability
discovery strategies in a bug report.

We further demonstrate the process of text feature extraction
using a hypothetical example: “open nightly with e10s enabled”. The
sentence is extracted from a Mozilla bug report, which maps to a
vulnerability indexed by the NVD (CVE-2017-7812) [4]. With the
application of our text feature extraction process we extract 12
features indexed as 1-12 in Figure 6. Text features indexed as 1-5 are
uni-grams, 6-9 are bi-grams, and 10-12 are tri-grams. From the 12
text features we construct a feature matrix, which is used as input
to the statistical learners.
Step-2: Apply statistical learnersResearchers use statistical learn-
ers to build predictionmodels that learn from historic data andmake
prediction decisions on unseen data. We use Scikit Learn API [31]
to construct prediction models using statistical learners. We use six
statistical learners that we briefly describe, and reasons for selecting
these learners, as following:

� Classification and Regression Tree (CART): CART generates
a tree based on the impurity measure, and uses that tree
to provide decisions based on input features [3]. We select
CART because this learner does not make any assumption
on the distribution of features, and is robust to model over-
fitting [3, 36].

� K Nearest Neighbor (KNN): The KNN classification technique
stores all available prediction outcomes based on training
data and classifies test data based on similarity measures. We
select KNN because prior research has reported that defect
prediction models that use KNN perform well [20].

� Logistic Regression (LR): LR estimates the probability that a
data point belongs to a certain class, given the values of fea-
tures [16]. LR provides good performance for classification
if the features are roughly linear [16]. We select LR because
this learner performs well for classification problems [16],
such as defect prediction [33] and fault prediction [20].

� Support Vector Machine (SVM): Support vector machines pre-
dict labels by quantifying the amount of separation for fea-
tures between multiple classes. We select SVM because prior
research [10, 27] has reported SVMs to perform well for
text-related classification.

� Random Forest (RF): RF is an ensemble technique that creates
multiple classification trees, each of which is generated by
taking random subsets of the training data [2, 36]. Unlike
LR, RF does not expect features to be linear for good classifi-
cation performance. Researchers [19] recommended the use
of statistical learners that uses ensemble techniques to build
defect prediction models.

� Deep Neural Network (DNN): Deep neural network is a vari-
ant of artificial neural network (ANN), where the count of
hidden layers used within the ANN is multiple, and can
vary from three to thousands of hidden layers [23]. Our im-
plementation of DNN uses five parameters: first, we use a
multi-layer perceptron with 5 hidden layers, where each

Table 2: Selection of Bug Reports for Analysis

Gentoo Libre Mozilla

Initial count 729 908 5,336
Criteria-1 (Keyword analysis) 566 89 1,151
Criteria-2 (Manual analysis) 9 32 536

Final bug report count 9 32 536

layer is fully connected to the next one. Second, we use the
backpropagation algorithm [39] for training. Third, we use
cross-entropy loss function for classification. Fourth, we use
the rectified linear unit function as our activation function,
and fifth we train our model for 200 epochs.

Prediction performance measures: As shown in Section 3.5.1, sim-
ilar to our evaluation of regular expression-based approach, we
use three measures to evaluate the prediction performance of the
constructed models: precision, recall, and F-measure.
Step-3: Evaluation We use two approaches to evaluate our con-
structed prediction models, which we describe below:

� 10�10-fold validation: We use 10�10-fold validation to evalu-
ate our prediction models. We use this approach by randomly
partitioning the dataset into 10 equal sized subsamples or
folds [36]. The performance of the constructed prediction
models is tested by using 9 of the 10 folds as training data, and
the remaining fold as test data. Similar to prior research [19],
we repeat the 10-fold validation 10 times to avoid prediction
errors. We report the median prediction performance score
of the 10 runs.

� Cross Dataset Prediction: For cross dataset prediction, we
build prediction models by training the statistical learners
on one dataset and use another dataset for testing. Along
with 10�10-fold validation we use cross dataset evaluation
because, the cross dataset evaluation can provide evidence
on how generalizable the machine learning-based approach
is, and if there are similarities between datasets with respect
to text features that are reflective of vulnerability discovery
strategies. The three datasets yield a total of six train and
test combinations. Similar to prior research [18], we repeat
the cross dataset prediction procedure 10 times and report
the median prediction performance score of the 10 runs.

4 EMPIRICAL FINDINGS
In this section we report our empirical findings.

4.1 Bug Database Mining
By using the Bugzilla API, we collect 15010, 30000, and 32170 bug
reports respectively, for Gentoo Linux, LibreOffice, and Mozilla.

4.2 Bug Report Filtering
We collect 9, 32, and 536 bug reports that map to a CVE indexed
in NVD. In Table 2, we report a complete breakdown of how many
bug reports are filtered using our criteria mentioned in Section 3.2.
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Table 3: Agreement Level between Raters to Construct Ora-
cle Dataset

Property Gentoo LibreOffice Mozilla
Agreement 99.7% 98.1% 99.7%
Cohen’s κ 0.67 0.74 0.68
Interpretation Substantial Substantial Substantial

Table 4: Answer to RQ1: Bug Reports with Strategies to Dis-
cover Vulnerabilities

Metric Gentoo Libre Mozilla

Count 9 29 425
Proportion of Bug Reports(%) 1.2 3.2 7.9

4.3 Qualitative Rating to Construct Strategy
Oracle Dataset

We allocate two raters, the first and second authors of the paper to
conduct qualitative rating. Both raters individually, examined bug
reports for all three datasets to identify which bug reports include
strategies to discover vulnerabilities. We report summary statistics
of the qualitative rating step in Table 3. The Cohen’s Kappa is listed
in the ‘Cohen’s κ’ row. The ‘Agreement’ row reports the count of
bug reports for which we observe agreements between the rating
of the first and the second authors. For example, the two authors
agreed on the rating for 99.7% bug reports for Gentoo, and the
Cohen’s κ is 0.67.

Our results show that the agreement between the raters varied
from 98.1%�99.7%. According to Landis and Koch [22], the agree-
ment rate is ‘Substantial’ indicating high agreement between the
two raters. For the disagreements we use the last author as the
resolver. Upon resolving disagreements we construct an oracle
dataset that we use to answer RQ1 and RQ2.

4.4 Answer to RQ1: How frequently do
vulnerability discovery strategies appear in
bug reports?

We examine bug reports to see if the reports contain strategies
used in vulnerability discovery. The number of bug reports that
included vulnerability discovery strategies varied from 1.2%�7.9%.
Proportion-wise the Mozilla dataset has the highest amount of bug
reports that include vulnerability discovery strategies: 7.9% of the
5,336 bug reports downloaded from Mozilla maps to a vulnerability,
and also include the vulnerability discovery strategy in the bug
report. We provide detailed answers in Table 4, where the ‘Propor-
tion (%)’ metric shows the proportion of bug reports that include
strategies to discover vulnerabilities. Based on our answers to RQ1
we can conclude that bug reports can be used to identify strategies
for vulnerability discovery.

4.5 Answer to RQ2: How can we automatically
identify bug reports that include
vulnerability discovery strategies?

We answer RQ2 in this section. We present the results using regular
expression in Table 5, where we report the precision, recall, and F-
measure for three datasets: Gentoo, Libre, and Mozilla. Considering

Table 5: Answer to RQ2: Results for the Regular Expression
Approach

Metric Gentoo Libre Mozilla
Precision 0.14 0.19 0.16
Recall 0.37 0.79 0.83
F-measure 0.20 0.31 0.27

recall, we observe the regular expression approach to perform the
best for the Mozilla dataset with a recall of 0.83. Considering F-
measure, LibreOffice performs best: for LibreOffice we observe
a F-measure of 0.31. We do not observe precision to be >= 0.19
for any of the datasets, which suggests regular expression-based
approaches can generate a lot of false positives.

We present the findings related to machine learning approach
with 10�10-fold validation in Table 6. The ‘Learner’ lists the names
of the learner for which we report precision, recall, and F-measure
for the three datasets: Gentoo (GENT), LibreOffice (LIBR), and
Mozilla (MOZI). We observe LR to provide the highest F-measure
for Mozilla. Precision is the highest for Mozilla when CART is
applied. The performance is the worst for the Gentoo dataset: no
learner is able to detect the presence of vulnerability discovery
strategy for the dataset. For the Gentoo dataset, precision, recall,
and F-measure are respectively, 0.0, 0.0, and 0.0 for all six learners.

We report the cross dataset prediction results in Tables 7, 8,
and 9. As described in Section 3.5.2, for cross dataset evaluation,
we construct a model with one dataset, and test the performance
of the model using another dataset. Tables 7, 8, and 9 respectively,
describe the prediction results, when we train models with the
Gentoo, LibreOffice, andMozilla datasets.We observe the prediction
performance to be lowest when themodel is trainedwith theGentoo
dataset. When trained with the Mozilla dataset, the precision, recall,
and F-measure of the Gentoo dataset are respectively, 1.00, 0.71,
and 0,74, which are higher than that of the 10�10-fold validation.
Our findings show that when trained with the Mozilla dataset the
prediction performance is higher for the other datasets implying
that the text features extracted from the Mozilla dataset can be used
to predict the presence of vulnerability discovery strategies in other
datasets.

5 DISCUSSION
We discuss the findings of our paper in this section:

5.1 On the Value of Bug Reports to Advance
Understanding of Vulnerabilities

Results from Table 4 show that OSS bug reports contain vulnera-
bility discovery strategies. Our reported frequency of vulnerability
discovery strategy is lower than that of bug discovery strategy as
reported in prior research [8]. Chaparro et al. [8] studied 2,912 bug
reports and observed 51.9% of the studied bug reports to include
strategies on how a bug was discovered.

5.2 Reporting of Vulnerability Discovery
Strategies in Bug Reports

As shown in Table 4, the proportion of bug reports that include
vulnerability discovery strategies vary from 1.2%�7.9%. One possi-
ble explanation can be attributed to lack of context on how a rater
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Table 6: Answer to RQ2: Results for Machine Learning-based Approach with 10�10-fold Validation

Learner Precision Recall F-measure
GENT LIBR MOZI GENT LIBR MOZI GENT LIBR MOZI

CART 0.00 0.67 0.90 0.00 0.67 0.71 0.00 0.67 0.79
DNN 0.00 0.00 0.82 0.00 0.00 0.77 0.00 0.00 0.79
KNN 0.00 0.00 0.64 0.00 0.00 0.11 0.00 0.00 0.18
LR 0.00 0.50 0.87 0.00 0.33 0.78 0.00 0.40 0.82
RF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SVM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7: Answer toRQ2: Results forMachine Learning-based
Approachwith Cross-dataset Evaluation. Training dataset is
Gentoo.

Precision Recall F-measure
LIBR MOZI LIBR MOZI LIBR MOZI

CART 0.00 0.00 0.00 0.00 0.00 0.00
DNN 0.00 0.26 0.00 0.11 0.00 0.15
KNN 0.00 0.00 0.00 0.00 0.00 0.00
LR 0.00 0.12 0.00 0.00 0.00 0.00
RF 0.00 0.00 0.00 0.00 0.00 0.00
SVM 0.00 0.00 0.00 0.00 0.00 0.00

Table 8: Answer toRQ2: Results forMachine Learning-based
Approachwith Cross-dataset Evaluation. Training dataset is
LibreOffice.

Precision Recall F-measure
GENT MOZI GENT MOZI GENT MOZI

CART 0.00 0.53 0.00 0.65 0.00 0.59
DNN 0.00 0.59 0.00 0.09 0.00 0.15
KNN 0.00 0.00 0.00 0.00 0.00 0.00
LR 0.00 0.50 0.00 0.04 0.00 0.07
RF 0.00 0.00 0.00 0.00 0.00 0.00
SVM 0.00 0.00 0.00 0.00 0.00 0.00

Table 9: Answer toRQ2: Results forMachine Learning-based
Approachwith Cross-dataset Evaluation. Training dataset is
Mozilla.

Precision Recall F-measure
GENT LIBR GENT LIBR GENT LIBR

CART 0.77 0.67 0.71 0.07 0.74 0.12
DNN 0.57 0.71 0.71 0.17 0.63 0.27
KNN 1.00 0.00 0.25 0.00 0.40 0.00
LR 0.83 0.70 0.64 0.24 0.36 0.73
RF 0.00 0.00 0.02 0.00 0.04 0.00
SVM 1.00 0.00 0.00 0.00 0.00 0.00

perceives the content of the bug report. Description of the discovery
strategy might make more sense to the person who performed the
discovery but due to lack of context, a rater, who is well-versed in
software security may not understand the steps of actions on how
to perform the discovery. A set of guidelines on proper reporting
of vulnerability discovery strategies can be helpful for security re-
searchers who do not actively contribute to OSS projects, but need
to report vulnerabilities.

Lack of context to reproduce a bug is common in software de-
velopment. In 2016, developers who host their projects on GitHub,
signed and sent a petition to GitHub, where they stated that bug

reports “... are often filed missing crucial information like reproduc-
tion steps” 12. Researchers [15, 41, 42] have reported the negative
impact of incomplete bug reports. For example, non-reproducible
bugs [15], unfixed bugs [41], and delayed bug resolution [42] are
often attributed to incomplete information related to bug descrip-
tions.

5.3 Automation
Our findings reported in Section 4.5 provide evidence that the
two automation strategies we used have limitations. As shown in
Table 5, using regular expressions, the highest F-measure is 0.31,
which is subject to improvement. With 10�10-fold validation the
highest F-measure is 0.82, but 0.00 for Gentoo. Furthermore, from
Section 4.5 we observe that when building models with the Mozilla
dataset, the prediction performance measure is relatively higher
for cross-dataset prediction results. One possible explanation can
be the text patterns that appear in the Mozilla dataset are capable
of separating out bug reports that include vulnerability discovery
strategies and bug reports that do not. Our findings suggest that
automated detection of vulnerability discovery strategy in bug
reports is related to the textual content presented in the bug reports.

5.4 Future Research
Findings from our paper provide opportunities to pursue the fol-
lowing research directions:

� Strategy Mining: Researchers can use bug reports to identify
what strategies are used to discover vulnerabilities. A synthesis
of vulnerability discovery strategies can be helpful for IT orga-
nizations who do not have security experts in their team, but
are interested in discovery and repair of software vulnerabilities
before they are released to the end-users. Munaiah et al. [28]
stressed the importance of identifying vulnerability discovery
strategies from available software artifacts: “As the complexity
of the software system increases, speculating the different ways in
which an attacker could exploit a vulnerability becomes a daunting
task. The key, therefore, is to leverage empirical information to
characterize the typical ways in which attackers tend to discover
and exploit vulnerabilities.”.
While pursuing this research project, researchers may benefit
from applying qualitative analysis with multiple raters, as au-
tomated techniques, such as the use of regular expressions and
text feature-based prediction models are limited with respect
to detection accuracy. In addition, researchers can compare and
contrast the findings obtained from bug reports to those obtained

12https://github.com/dear-github/dear-github
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from other data sources, such as capture the flag (CTF) com-
petitions. Recently, researchers [28] have mined CTF data and
observed that while discovering vulnerabilities, CTF participants
discover vulnerabilities in a sequential manner, which is similar
to our definition of vulnerability discovery strategy. Also, re-
searchers can investigate who performs the discovery strategies,
their experience in vulnerability discovery, and how difficult it is
to perform the discovery. Our findings provide the foundation
for further research in the domain of vulnerability understanding
and characterization.

� Improving Automated Detection Strategies: We have dis-
cussed how our automated approaches to detect vulnerability
discovery strategy is limited with respect to detection accuracy.
We advocate for future research that will investigate if other text
mining techniques, such as topic modeling [38], word2vec [26],
and sequential text pattern mining [24] can effectively detect
presence of vulnerability discovery strategies.
Currently, our automated approach does not show prediction
performance that is consistent across all datasets. For example,
for the Gentoo dataset, both the machine learning approach
and regular expression-based approach showed lower detection
accuracy results compared to those of Mozilla and LibreOffice.
Apart from text mining and regular expressions, researchers
can investigate what other techniques can be used to build a
universal classifier that is capable of detecting the presence of
vulnerability discovery strategies for multiple datasets collected
from a wide range of domains, such as browsers (Mozilla) and
operating systems (Gentoo).

� Towards Better Reporting of Vulnerability Discovery: Our
findings show evidence that vulnerability discovery strategies
may not be adequately reported in bug reports. For OSS projects,
practitioners who report vulnerability discovery strategies might
be peripheral contributors [34] i.e. contributors who do not reg-
ularly engage in regular software development and maintenance
tasks, and may not be aware of the practices on how to report
vulnerability discovery strategies. Concrete guidelines could be
helpful in proper reporting of vulnerability discovery strategies.

6 THREATS TO VALIDITY
We discuss the limitations of our paper as following:

� Conclusion Validity: All of our findings are derived from three
datasets, which are constructed by the two raters. The data con-
struction process is susceptible to rater judgment. The raters’
experience can bias the process of identifying what bug reports
include strategies to discover vulnerabilities. We mitigate this
limitation by assigning at least two raters. We also use a resolver
to resolve the disagreements between the two raters.
Prior work [17, 37] has underlined the importance of tuning
parameters of statistical learners to get better prediction per-
formance. While building prediction models we didn’t tune the
statistical learners. For CART, KNN, LR, RF, and SVM we rely
on the default parameters provided by the Scikit Learn API [31].
For DNN, the parameters are determined by the first author’s
judgment. We acknowledge that not tuning parameters of statis-
tical learners might influence the prediction performance of the
constructed models.

� ConstructValidity:We use raters to construct the oracle dataset.
Our process is susceptible to mono-method bias where subjective
judgment of raters can influence the findings. We mitigate this
threat by using two raters and one resolver.

� External Validity: Our results are subject to external validity as
we used three datasets collected from the OSS domain. Findings
from our paper may be limited and may not generalize to other
datasets. We mitigate this limitation by using datasets from three
organizations who deliver a variety of software products to the
end-users.

� Internal Validity: From the bug reports we extract comments
and descriptions to collect necessary text to determine if a bug
report includes strategies to discover vulnerabilities. The descrip-
tions and comments available in the bug reports may not be
comprehensive to provide enough context to determine if a strat-
egy is present. We rely on CVEs reported in the bug reports to
identify those that are related to vulnerabilities. The bug reports
may include discussion on vulnerabilities that are not confirmed
and indexed in NVD. Our analysis may miss latent vulnerabili-
ties and unconfirmed vulnerabilities, which could influence the
results.

7 CONCLUSION
Identifying and characterizing the nature of vulnerabilities have
gained a lot of interest amongst researchers. However, data sources
to study vulnerabilities can be limiting. One approach to mitigate
this limitation is to investigate if bug reports include descriptions
of how vulnerabilities are discovered. We hypothesized that bug
reports could include descriptions of how vulnerabilities are dis-
covered, which could help researchers to further identify what
strategies practitioners execute to discover vulnerabilities for OSS.
We evaluated our hypothesis by conducting an empirical analysis
with 729, 908, and 5336 bug reports respectively, collected from
Gentoo, LibreOffice, and Mozilla.

We observe OSS bug reports to include descriptions on how to
discover vulnerability strategies: the proportion of bug reports that
included vulnerability discovery strategies varied from 1.2%�7.9%.
Based on our answers to RQ1 we can conclude that software bug re-
ports include information that can be used to identify strategies for
vulnerability discovery. Our findings also suggest that automated
detection of vulnerability discovery strategy is dependent on the
text features that we mine from bug reports, and is sensitive to
what dataset is being used. For example, we observe the highest
detection performance for Mozilla using the machine learning ap-
proach. Using the regular expression-based approach we observe
the highest detection performance for LibreOffice. Based on our
empirical study we recommend researchers to apply qualitative
analysis to identify vulnerability discovery strategies, as automated
approaches may be limiting to detect the presence of vulnerability
discovery strategies in OSS bug reports. We hope our paper will ad-
vance research in the area focused on characterizing vulnerabilities
in OSS projects.
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