
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Curated Dataset of Security Defects in Scientific Software
Projects

Justin Murphy
Tennessee Technological University

Cookeville, Tennessee
jdmurphy43@students.tntech.edu

Elias T. Brady
Tennessee Technological University

Cookeville, Tennessee
etbrady42@students.tntech.edu

Shazibul Islam Shamim
Tennessee Technological University

Cookeville, Tennessee
mshamim42@students.tntech.edu

Akond Rahman
Tennessee Technological University

Cookeville, Tennessee
arahman@tntech.edu

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
dataset, defects, julia, security, scientific software

ACM Reference Format:
Justin Murphy, Elias T. Brady, Shazibul Islam Shamim, and Akond Rahman.
2020. A Curated Dataset of Security Defects in Scientific Software Projects.
In Hot Topics in the Science of Security Symposium (HotSoS ’20), April 7–8,
2020, Lawrence, KS, USA. ACM, New York, NY, USA, 2 pages. https://doi.org/
10.1145/3384217.3384218

1 INTRODUCTION
Scientific software is defined as software that is used to explore
and analyze data to investigate unanswered research questions in
the scientific community [6]. The domain of scientific software
includes software needed to construct a research pipeline such as
software for simulation and data analysis, large-scale dataset man-
agement, and mathematical libraries [4]. Programming languages
such as Julia [1] are used to develop scientific software efficiently
and achieve desired program execution time. Julia was used in Ce-
leste 1, a software used in astronomy research. Celeste was used
to load 178 terabytes of astronomical image data to produce a cat-
alog of 188 million astronomical objects in 14.6 minutes 2. The
Celeste-related example provides anecdotal evidence on the value
of studying Julia-related projects from a cybersecurity perspective.

We focus on scientific software projects because these projects
have real-world implications for scientific research, finance-based
institutions, and the energy sector. Unlike general purpose pro-
gramming languages, we focus on Julia because Julia is a dedicated
programming language for creating scientific applications [1]. As a
hypothetical example, if security defects appear in Julia source code
files used by finance-based institutions such as Aviva, BlackRock,
1https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/
2https://juliacomputing.com/case-studies/celeste.html

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7561-0/20/04.
https://doi.org/10.1145/3384217.3384218

and Federal Reserve Bank of New York, then the software is sus-
ceptible to software breaches that can impact millions of end-users.

The goal of the paper is to help researchers in performing cyberse-
curity research in the domain of scientific software through a curated
dataset of security defects observed in scientific software projects.

We answer the following research question: How frequently do
security defects appear in scientific software projects?

Our contribution is a curated dataset of security defects in
scientific software projects developed with Julia.

2 METHODOLOGY
Answering our research question involves two steps: repository
curation and qualitative analysis of commits.

2.1 Repository curation
We use open source software (OSS) repositories to construct our
dataset. As advocated by prior research [7], OSS repositories need
to be curated. Software developers often use OSS repositories to
store personal projects that are not reflective of the professional
software development. We apply the following criteria to curate
our collected repositories:
• Criteria-1: At least 1% of the files in the repository must be Julia
source code files. By using a cutoff of 1% we assume to collect
repositories that contain sufficient amount of Julia source code
files for analysis.

• Criteria-2: The repository must be available for download.
• Criteria-3: The repository is not a clone.
• Criteria-4: The repository must have at least two commits per
month. Munaiah et al. [7] used the threshold of at least two
commits per month to determine which repositories have enough
software development activity. We use this threshold to filter
repositories with little activity.

• Criteria-5: The repository has at least 5 contributors. Our as-
sumption is that the criteria of at least 5 contributors may help us
to filter out irrelevant repositories. Previously, researchers have
used the cutoff of at least nine contributors [8].

• Criteria-6: The repository uses continuous integration (CI) tool.
Munaiah et al. [7] observed that professionally developed sci-
entific software projects use CI tools such as Travis CI 3. Our

3https://travis-ci.org/
1

https://doi.org/10.1145/3384217.3384218
https://doi.org/10.1145/3384217.3384218
https://doi.org/10.1145/3384217.3384218


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Murphy et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

assumption is that repositories that use CI are indicative of soft-
ware projects that are professionally developed. We included
projects that use Travis CI and have at least one month of data
before and after adoption of Travis CI.

2.2 Qualitative analysis of commits
We use commits from the collected OSS repositories obtained from
Section 2.1. We use commits because commits summarize changes
that are made to a source code file and could identify the types of
changes that are being performed on a source code file. We apply
qualitative analysis [9] on the collected commits to determinewhich
commit is related to a security defect. We apply qualitative analysis
using a rater who is well-versed on software security. The rater
determined each of the collected commits to be security-related by
performing the following activities:

• Activity-1: The rater observes if any of the following keywords
appear in the commit message: ‘race’, ‘racy’, ‘buffer’, ‘overflow’,
‘stack’, ‘integer’, ‘signedness’, ‘widthness’, ‘underflow’, ‘improper’,
‘unauthenticated’, ‘gain access’, ‘permission’, ‘cross site’, ‘css’,
‘xss’, ‘htmlspecialchar’, ‘denial service’, ‘dos’, ‘crash’, ‘deadlock’,
‘sql’, ‘sqli’, ‘injection’, ‘format’, ‘string’, ‘printf’, ‘scanf’, ‘request
forgery’, ‘csrf’, ‘xsrf’, ‘forged’, ‘security’, ‘vulnerability’, ‘vulnera-
ble’, ‘hole’, ‘exploit’, ‘attack’, ‘bypass’, ‘backdoor’, ‘threat’, ‘expose’,
‘breach’, ‘violate’, ‘fatal’, ‘blacklist’, ‘overrun’, and ‘insecure’. We
collect these keywords from prior work [2].

• Activity-2: The rater determines a commit to be a security-related
defect if the message indicates that an action was taken to ad-
dress a security concern for the software of interest. The rater
determines a commit message to be related to security concern if
any of the following security objects are violated: confidentially,
integrity, or availability. We apply this step because only relying
on keyword search could generate false positives.

• Activity-3: The rater’s categorization is verified with another
rater’s categorization. A subset of the collected commit messages
is given to the other rater. Cohen’s Kappa [3] is recorded and
interpreted using Landis and Koch’s guidelines [5] to measure
agreement between the raters.

Upon completion of the above-mentioned activities we obtain
a dataset where each commit is labeled as a security defect or
not. If the commit is related to a security defect then the label is
‘INSECURE’. Otherwise the commit is labeled as ‘NEUTRAL’. We
answer our research question by reporting the count and proportion
of commits that are labeled as ‘INSECURE’.

3 RESULTS
Using our filtering criteria mentioned in Section 2.1 we obtain 20
repositories. A complete breakdown of how many repositories are
satisfied using each criterion is listed in Table 1. We download these
repositories on August 30, 2019.

The second author of the paper performed the qualitative analy-
sis described in Section 2.2 to determine what commits are related
to security defects. The process took 117 hours for 7,024 commit
messages. The second author’s categorization is verified by using
the last author as another rater, who also applied qualitative anal-
ysis on the randomly-selected subset of the 50 commit messages.

Table 1: OSS Repositories Satisfying Criteria (Sect. 2.1)
Initial Repo Count 3,405,303

Criteria-1 (1% Julia files) 3,866
Criteria-2 (Available) 3,115
Criteria-3 (Not a clone) 2,173
Criteria-4 (Commits/Month ≥ 2) 2,173
Criteria-5 (Contributors ≥ 5) 253
Criteria-6 (CI) 20

Final Repo Count 20

The subset includes 50 commit messages. The Cohen’s Kappa is 1.0,
which is ‘almost perfect’, according to Landis and Koch [5].

We identify 308 commits in the collected 20 repositories to be
insecure. The proportion of security defects is 4.4%. The labeled
dataset is available online 4. The dataset consists two CSV files:
‘HOTSOS2020_SCI_SOFT_SECU’ has mapping of security-related
labels to commits, whereas ‘HOTSOS2020_SCI_SOFT_META’ con-
tains the repository links of commits. Both files can be imported
using standard tools such as Python Pandas 5.

4 CONCLUSION
The cybersecurity research communitymight benefit from a curated
dataset where commits mined from scientific software projects are
labeled as security defects. We constructed a curated security defect
dataset bymining 7,024 commits from 20 scientific software projects.
Our dataset can be beneficial for cybersecurity researchers in two
ways: (i) use the dataset to conduct security defect categorization
and prediction research; and (ii) find undiscovered security defects
in scientific software projects.

REFERENCES
[1] [n.d.]. The Julia Language. https://docs.julialang.org/en/v1/.
[2] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek

Janni. 2014. Identifying the Characteristics of Vulnerable Code Changes: An
Empirical Study (FSE 2014). Association for Computing Machinery, New York, NY,
USA, 257–268. https://doi.org/10.1145/2635868.2635880

[3] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educa-
tional and Psychological Measurement 20, 1 (1960), 37–46. https://doi.org/10.1177/
001316446002000104 arXiv:http://dx.doi.org/10.1177/001316446002000104

[4] George Thiruvathukal Jeffrey. Carver, Neil Hong. 2016. Software Engineering for
Science (1st ed.). CRC Press, NY, NY, USA.

[5] Richard Landis and Gary Koch. 1977. The Measurement of Observer Agreement
for Categorical Data. Biometrics 33, 1 (1977), 159–174. http://www.jstor.org/
stable/2529310

[6] E. S. Mesh and J. S. Hawker. 2013. Scientific software process improvement
decisions: A proposed research strategy. In 2013 5th International Workshop on
Software Engineering for Computational Science and Engineering (SE-CSE). 32–39.
https://doi.org/10.1109/SECSE.2013.6615097

[7] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
(2017), 1–35. https://doi.org/10.1007/s10664-017-9512-6

[8] Akond Rahman, Amritanshu Agrawal, Rahul Krishna, and Alexander Sobran. 2018.
Characterizing the Influence of Continuous Integration: Empirical Results from
250+ Open Source and Proprietary Projects (SWAN 2018). ACM, New York, NY,
USA, 8–14. https://doi.org/10.1145/3278142.3278149

[9] Johnny Saldaña. 2015. The coding manual for qualitative researchers. Sage.

4http://tiny.cc/hotsos20_scisoft
5https://pandas.pydata.org/

2

https://docs.julialang.org/en/v1/
https://doi.org/10.1145/2635868.2635880
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
http://arxiv.org/abs/http://dx.doi.org/10.1177/001316446002000104
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.1109/SECSE.2013.6615097
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/3278142.3278149

	1 Introduction
	2 Methodology
	2.1 Repository curation
	2.2 Qualitative analysis of commits

	3 Results
	4 Conclusion
	References

