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1 INTRODUCTION
Scientific software is defined as software that is used to explore
and analyze data to investigate unanswered research questions in
the scientific community [6]. The domain of scientific software
includes software needed to construct a research pipeline such as
software for simulation and data analysis, large-scale dataset man-
agement, and mathematical libraries [4]. Programming languages
such as Julia [1] are used to develop scientific software efficiently
and achieve desired program execution time. Julia was used in Ce-
leste 1, a software used in astronomy research. Celeste was used
to load 178 terabytes of astronomical image data to produce a cat-
alog of 188 million astronomical objects in 14.6 minutes 2. The
Celeste-related example provides anecdotal evidence on the value
of studying Julia-related projects from a cybersecurity perspective.

We focus on scientific software projects because these projects
have real-world implications for scientific research, finance-based
institutions, and the energy sector. Unlike general purpose pro-
gramming languages, we focus on Julia because Julia is a dedicated
programming language for creating scientific applications [1]. As a
hypothetical example, if security defects appear in Julia source code
files used by finance-based institutions such as Aviva, BlackRock,
1https://www.hpcwire.com/off-the-wire/julia-joins-petaflop-club/
2https://juliacomputing.com/case-studies/celeste.html
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and Federal Reserve Bank of New York, then the software is sus-
ceptible to software breaches that can impact millions of end-users.

The goal of the paper is to help researchers in performing cyberse-
curity research in the domain of scientific software through a curated
dataset of security defects observed in scientific software projects.

We answer the following research question: How frequently do
security defects appear in scientific software projects?

Our contribution is a curated dataset of security defects in
scientific software projects developed with Julia.

2 METHODOLOGY
Answering our research question involves two steps: repository
curation and qualitative analysis of commits.

2.1 Repository curation
We use open source software (OSS) repositories to construct our
dataset. As advocated by prior research [7], OSS repositories need
to be curated. Software developers often use OSS repositories to
store personal projects that are not reflective of the professional
software development. We apply the following criteria to curate
our collected repositories:
• Criteria-1: At least 1% of the files in the repository must be Julia
source code files. By using a cutoff of 1% we assume to collect
repositories that contain sufficient amount of Julia source code
files for analysis.

• Criteria-2: The repository must be available for download.
• Criteria-3: The repository is not a clone.
• Criteria-4: The repository must have at least two commits per
month. Munaiah et al. [7] used the threshold of at least two
commits per month to determine which repositories have enough
software development activity. We use this threshold to filter
repositories with little activity.

• Criteria-5: The repository has at least 5 contributors. Our as-
sumption is that the criteria of at least 5 contributors may help us
to filter out irrelevant repositories. Previously, researchers have
used the cutoff of at least nine contributors [8].

• Criteria-6: The repository uses continuous integration (CI) tool.
Munaiah et al. [7] observed that professionally developed sci-
entific software projects use CI tools such as Travis CI 3. Our

3https://travis-ci.org/
1
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assumption is that repositories that use CI are indicative of soft-
ware projects that are professionally developed. We included
projects that use Travis CI and have at least one month of data
before and after adoption of Travis CI.

2.2 Qualitative analysis of commits
We use commits from the collected OSS repositories obtained from
Section 2.1. We use commits because commits summarize changes
that are made to a source code file and could identify the types of
changes that are being performed on a source code file. We apply
qualitative analysis [9] on the collected commits to determinewhich
commit is related to a security defect. We apply qualitative analysis
using a rater who is well-versed on software security. The rater
determined each of the collected commits to be security-related by
performing the following activities:

• Activity-1: The rater observes if any of the following keywords
appear in the commit message: ‘race’, ‘racy’, ‘buffer’, ‘overflow’,
‘stack’, ‘integer’, ‘signedness’, ‘widthness’, ‘underflow’, ‘improper’,
‘unauthenticated’, ‘gain access’, ‘permission’, ‘cross site’, ‘css’,
‘xss’, ‘htmlspecialchar’, ‘denial service’, ‘dos’, ‘crash’, ‘deadlock’,
‘sql’, ‘sqli’, ‘injection’, ‘format’, ‘string’, ‘printf’, ‘scanf’, ‘request
forgery’, ‘csrf’, ‘xsrf’, ‘forged’, ‘security’, ‘vulnerability’, ‘vulnera-
ble’, ‘hole’, ‘exploit’, ‘attack’, ‘bypass’, ‘backdoor’, ‘threat’, ‘expose’,
‘breach’, ‘violate’, ‘fatal’, ‘blacklist’, ‘overrun’, and ‘insecure’. We
collect these keywords from prior work [2].

• Activity-2: The rater determines a commit to be a security-related
defect if the message indicates that an action was taken to ad-
dress a security concern for the software of interest. The rater
determines a commit message to be related to security concern if
any of the following security objects are violated: confidentially,
integrity, or availability. We apply this step because only relying
on keyword search could generate false positives.

• Activity-3: The rater’s categorization is verified with another
rater’s categorization. A subset of the collected commit messages
is given to the other rater. Cohen’s Kappa [3] is recorded and
interpreted using Landis and Koch’s guidelines [5] to measure
agreement between the raters.

Upon completion of the above-mentioned activities we obtain
a dataset where each commit is labeled as a security defect or
not. If the commit is related to a security defect then the label is
‘INSECURE’. Otherwise the commit is labeled as ‘NEUTRAL’. We
answer our research question by reporting the count and proportion
of commits that are labeled as ‘INSECURE’.

3 RESULTS
Using our filtering criteria mentioned in Section 2.1 we obtain 20
repositories. A complete breakdown of how many repositories are
satisfied using each criterion is listed in Table 1. We download these
repositories on August 30, 2019.

The second author of the paper performed the qualitative analy-
sis described in Section 2.2 to determine what commits are related
to security defects. The process took 117 hours for 7,024 commit
messages. The second author’s categorization is verified by using
the last author as another rater, who also applied qualitative anal-
ysis on the randomly-selected subset of the 50 commit messages.

Table 1: OSS Repositories Satisfying Criteria (Sect. 2.1)
Initial Repo Count 3,405,303

Criteria-1 (1% Julia files) 3,866
Criteria-2 (Available) 3,115
Criteria-3 (Not a clone) 2,173
Criteria-4 (Commits/Month ≥ 2) 2,173
Criteria-5 (Contributors ≥ 5) 253
Criteria-6 (CI) 20

Final Repo Count 20

The subset includes 50 commit messages. The Cohen’s Kappa is 1.0,
which is ‘almost perfect’, according to Landis and Koch [5].

We identify 308 commits in the collected 20 repositories to be
insecure. The proportion of security defects is 4.4%. The labeled
dataset is available online 4. The dataset consists two CSV files:
‘HOTSOS2020_SCI_SOFT_SECU’ has mapping of security-related
labels to commits, whereas ‘HOTSOS2020_SCI_SOFT_META’ con-
tains the repository links of commits. Both files can be imported
using standard tools such as Python Pandas 5.

4 CONCLUSION
The cybersecurity research communitymight benefit from a curated
dataset where commits mined from scientific software projects are
labeled as security defects. We constructed a curated security defect
dataset bymining 7,024 commits from 20 scientific software projects.
Our dataset can be beneficial for cybersecurity researchers in two
ways: (i) use the dataset to conduct security defect categorization
and prediction research; and (ii) find undiscovered security defects
in scientific software projects.
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