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ABSTRACT
While Kubernetes enables practitioners to rapidly deploy their
software and perform container orchestration efficiently, security
of the Kubernetes-based deployment infrastructure is a concern for
industry practitioners. A systematic understanding of how dynamic
analysis can be used for securing Kubernetes deployments can
aid practitioners in securing their Kubernetes deployments. We
present an experience report, where we describe empirical findings
from three dynamic application security testing (DAST) tools on a
Kubernetes deployment used by ‘Company-Z’. From our empirical
study, we find (i) 3,442 recommended security configurations are
violated in ‘Company-Z’s’ Kubernetes deployment; and (ii) of the
three studied DAST tools, Kubescape and Kubebench provide the
highest support with respect to detecting 14 types of recommended
security configurations. Based on our findings, we recommend
practitioners to apply DAST tools for their Kubernetes deployments,
and security researchers to investigate how to detect configuration
violations dynamically in the Kubernetes deployment.

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; Formal software
verification; Empirical software validation; • Security and privacy
→ Software security engineering.
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1 INTRODUCTION
With the advent of container-based technologies, such as Docker,
usage of containers is becoming prevalent for software deployment.
In order to manage containers, practitioners apply the practice of
container orchestration with tools, such as Kubernetes. Kubernetes
has emerged as an open-source container orchestration that helps
practitioners manage provision containers efficiently [5, 13]. Or-
ganizations that adopted Kubernetes report significant benefits of
using Kubernetes. For example, practitioners at Adidas reported
that using Kubernetes, deployment frequency was increased from
every 4-6 weeks to 3-4 times a day. [6]. As another example, in the
case of Denso, the development cycle was reduced from 2-3 years
to 2 months [7].

While Kubernetes has aided in achieving multiple benefits, the se-
curity of Kubernetes deployments is a concern amongst industry
practitioners. According to the ‘2024 State of Kubernetes Security
Report’ that surveyed 600 practitioners, 60% respondents reported
security vulnerabilities in their Kubernetes deployments to be a
concern [23]. This concern is well-founded as security vulnerabil-
ities in Kubernetes deployments have been leveraged to conduct
security attacks, such as the infamous ‘Tesla attack’, where Tesla’s
Kubernetes deployment was attacked to conduct a cryptomining
attack. Cryptojacking is the attack of using a computing resource to
stealthily mine cryptocurrency without the user’s awareness [30].

The above-mentioned evidence showcases the importance of se-
curing Kubernetes deployments. The practitioner community has
responded to this need by deriving guidelines and developing dy-
namic application security testing (DAST) tools. For example, the
‘Center for Internet Security (CIS)’ organization has listed a set of
recommended security configurations that practitioner show apply
in their Kubernetes deployments [10]. CIS is a non-profit organi-
zation that recommends a set of security guidelines for various
software systems based on a consensus of cybersecurity experts [9].
Multiple DAST tools, such as Trivy [27] and Kubescape [17] are
available for practitioners to use.

Despite the availability of DAST tools, there is a lack of understand-
ing on the capabilities of these tools with respect to detecting the
violations of recommended security configurations. Such an under-
standing is pivotal as Kubernetes-related configurations similar to
that of Figure 1 can occur, which violates the recommended guide-
line of ‘Ensure that all Namespaces have Network Policies defined’.
‘Company-Z’ uses Kubernetes to deploy software applications, and
consider the security of software deployments to be of paramount
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kind: Pod

metadata:

name: simple -pod

! spec:

volumes:

- name: simple -no-ctx -vol

emptyDir: {}

1

Figure 1: Example of a specification that violates a CIS-
recommended guideline. Here, a pod does not use security-
Context, which makes a Kubernetes deployment susceptible
to security attacks [22]. A pod is the most fundamental de-
ployment unit in Kubernetes that groupsmultiple containers
together [16]. Use of securityContext is critical to restrict
malicious activities that can arise from supply chain attacks
for Kubernetes deployments [20].

importance. The practitioners at Company-Z have been emphasiz-
ing in applying DAST tools that detect violations of recommended
security configurations. This emphasis motivates us to investigate
existing DAST tools for Kubernetes deployments. Such an inves-
tigation can aid practitioners with recommendations on who to
secure their Kubernetes deployments, and by providing them with
evidence of commonly violated recommended configurations.

We answer the following research questions:

• RQ1 [Support]: How frequently do dynamic application secu-
rity testing tools support recommended security configurations in
Kubernetes deployments?

• RQ2 [Frequency]: How frequently are recommended security
configurations violated in a Kubernetes deployment?

We conduct an empirical study by applying 3DAST tools in Company-
Z’s Kubernetes deployment. First, we compute how frequently each
of the 3 DAST tools support 33 CIS-recommended configurations.
Second, we use the output of DAST tools to quantify how frequently
CIS-recommended configurations are violated.

Contributions: We list our contributions as follows:

• An evaluation of support for three DAST tools with respect to
detecting recommended security configurations; and

• An evaluation of how frequently recommended security configu-
rations are violated in an organization’s Kubernetes deployment.

2 RQ1: SUPPORT
First, we provide background information on Kubernetes. Then, we
provide context of why ‘Company-Z’ adopted Kubernetes in Sec-
tion 2.2. Next, we provide the methodology and results respectively,
in Sections 2.3 and 2.4.

2.1 Background
Kubernetes is an open-source software for the automated manage-
ment of containerized applications [21]. A Kubernetes installation
is also called a Kubernetes cluster [21]. Each Kubernetes cluster
contains a set of worker machines defined as nodes, and there are
two types of nodes in Kubernetes: control-plane nodes and worker
nodes.

Each control-plane node contains the components: ‘API server’,
‘scheduler’, ‘controller’, and ‘etcd’ [21]. Kubernetes serves its func-
tionality through an application program interface from the ‘API
server’. The ‘API server’ is responsible for orchestrating all the
operations within the cluster. Practitioners use a command-line
tool, ‘Kubectl,’ to communicate with the ‘API server’ in the control
plane node. The worker nodes host the applications that run on
Kubernetes [21]. The following components are included in the
worker node: ‘kube-proxy,’ ‘kubelet’, and ‘pod.’ The pod is the small-
est Kubernetes entity, which includes at least one active container.
A container is a standard software unit that packages the code and
related dependencies to run in any computing environment [21].

2.2 Kubernetes Adoption in ‘Company-Z’
‘Company-Z’ started using Kubernetes in 2018 to build edge com-
puting solutions to provide a scalable, reliable, low-latency cloud
platform optimized for distributed edge applications. ‘Company-Z
adopted Kubernetes for its core orchestration layer, which has ro-
bust container orchestration capabilities, strong ecosystem support,
and the ability to meet the dynamic scaling and resource manage-
ment needs of edge environments. The widespread adoption of
Kubernetes and its flexibility made it a natural choice to support
the goals of ‘Company-Z’ in standardization and interoperability in
edge computing infrastructure. Using Kubernetes, the ‘Company-
Z’ supports a deployment-ready, manageable, scalable, and highly
reliable complete virtualized edge infrastructure platform for con-
tainer workloads. Practitioners at Company-Z operate their entire
infrastructure using Amazon Elastic Kubernetes Service (EKS), a
managed Kubernetes service in the Amazon Web Services (AWS)
cloud deployment.

Company-Z considers security to be an a pivotal aspect in their soft-
ware development and deployment process. As such, practitioners
who are involved with Kubernetes deployments, have been explor-
ing tools that can aid in securing their Kubernetes deployments.
Our experience report provides a discussion on the capabilities of
DASTs with respect to coverage.

2.3 Methodology for RQ1
Our empirical study focuses on security configurations recom-
mended by a community of cybersecurity experts who specialize in
Kubernetes. Practitioners at ‘Company-Z’ follow the ‘CIS Amazon
EKS benchmark v1.2.0’ guideline, which prescribes 33 configura-
tions for Kubernetes deployments that use the Amazon EKS service
for container orchestration [10]. Cybersecurity experts in the Cen-
ter for Internet Security (CIS) provide these recommendations based
on consensus [8]. Each recommendation is mapped to a category.
For example, the recommendation ‘Minimize the admission of root
containers’ is mapped to a category called ‘Pod Security Policies’.
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We performed a qualitative analysis technique called closed cod-
ing [24] to create a one-to-one mapping relation between rules or
policies of the dynamic analysis tools used by the practitioners at
‘Company-Z’ and CIS-recommended security recommendations.

To answer RQ1, we use the three dynamic analysis tools used
by ‘Company-Z’. The Kubernetes practitioners at ‘Company-Z’
selected three tools from a set that can detect violations of CIS-
recommended security recommendations in the Amazon EKS de-
ployment. To select these tools, the practitioners considered a set
of dynamic analysis tools, including two commercial tools that
require paid subscription and license based on their experience and
security requirements of ‘Company-Z.’ The practitioners applied
the following criteria to identify the three tools.

• Criterion-1: The dynamic analysis tool must be publicly available
online and free to use without any subscription or license.

• Criterion-2: The tool must be executable using the command
line interface in the Amazon EKS deployment of ‘Company-Z’.
The practitioners exclude tools like Datree and Snyk as those
tools require manual integration for importing and scanning the
Amazon EKS deployment for security-related analysis.

• Criterion-3: The dynamic analysis tool must be able to detect
violations of recommended configurations in the Amazon EKS.
The practitioners documented that each tool can detect violations
of security-related configuration related to the Amazon EKS
deployment of ‘Company-Z’.

• Criterion-4: The practitioners select the tool that detects viola-
tions of at least five security configurations. This criterion the
practitioners selected is consistent with prior research on se-
curity tool evaluation that uses a minimum threshold of five
security weakness types to determine the generalizability of a
tool [19].

Upon application of the following criteria the practitioners identify
three tools Kube-bench, KubeScape, and Trivy to analyze Amazon
EKS deployment of ‘Company-Z’. Attributes of these three tools
are available in Table 1.

Kube-bench [14] is an OSS tool developed by Aqua Security.
Kubescape can verify the Kubernetes deployment configuration
with the CIS benchmark for Kubernetes. Practitioners can run Kube-
bench from the command line interface as a dynamic analysis tool
or as a job to scan Kubernetes deployment configurations.

Kubescape [17] is an OSS security analysis tool developed by
ARMO. Kubescape provides support for misconfiguration scanning
and security compliance within Kubernetes deployments. Practi-
tioners can use Kubescape as a static analysis tool to scan source
code in a local directory using a command line interface and as a
dynamic analysis tool to analyze Kubernetes deployment configu-
rations.

Trivy is an OSS tool developed by Aqua Security that can detect
security weaknesses in Kubernetes configuration files, and Ku-
bernetes deployment [27]. Practitioners can use Trivy to detect
security weaknesses for known vulnerabilities, misconfigurations,
and runtime security issues.
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Figure 2: Answer to RQ1: Support of DAST for CIS-
recommended security configurations.

2.3.1 Map Recommendations to Rules Implemented in the Tools.
The focus of is to identify which of the CIS-recommended security
configurations are supported by which tool. We use a qualitative
technique called closed coding [24] to perform a mapping between
the CIS-recommended recommendations and a rule implemented
within the tool. As part of applying the closed coding technique, the
first author and the second author of the paper read each of the rec-
ommendations and if the recommendation security configuration
is detected by inspecting the source code or documentation of the
tool. The second author of the paper is practitioner at Company-Z.
As part of applying closed coding we excluded recommendations
that are not applicable for dynamic analysis.

2.4 Answer to RQ1
In Figure 2, we provide an overview of the support for the dy-
namic analysis tools used in ‘Company-Z’. The CIS-recommended
security configurations are divided into 14 categories. A complete
breakdown of the security configurations is available in Table 3. For
example, the security configuration ‘Ensure that the cluster-admin
role is only used where required’ is used for the ‘RBAC and service
accounts’ category. We observe KubeScape and Kubebench to have
the support of 100% for 14 out of the 14 CIS-recommended security
configuration categories. In the case of Trivy, we observe >= 50%
support for 6 of the 14 categories. The remaining eight categories
that Trivy does not cover are: ‘container optimized OS’, ‘CNI plugin’,
‘Secrets management’, ‘pod security policies’, ‘Image registry and
image scanning’, ‘Identity and access management(IAM)’, ‘Amazon
EKS key management’, ‘Cluster networking’, ‘Authentication &
authorization’, and ‘Untrusted workload’.

Answer to RQ1: Among the three DAST tools, Kubescape
and Kubebench provide the most support for detecting
violations of CIS-recommended security configurations for
Kubernetes deployments.

3 RQ2: FREQUENCY
We provide themethodology and results respectively, in Sections 3.1
and 3.2.
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Table 1: Attributes of Selected DAST Tools

Tool Size
(KLOC)

Source Detection Method Output Format

Kube-bench 63.04 GitHub [14] Kube-bench identifies violations of CIS recommendations in Kubernetes
deployment. For each CIS recommendation, Kube-bench executes specific
commands in the Kubernetes deployment and reports the result

JSON, TXT

KubeScape 257.61 GitHub [17] Kubescape defines rules using the ‘rego’ policy language and communicates
with the Kubernetes API server using ‘k8s-interface’ wrapper to collect
deployment resources. After matching the defined rules with the deployment
resources, Kubescape identifies misconfigurations.

SARIF, JSON, XML, HTML, PDF

Trivy 514.05 GitHub [27] Trivy also uses ‘rego’ policy language and communicates with API server
with ‘trivy-kubernetes’ wrapper for collecting deployment resources. Trivy
identifies vulnerabilities and misconfigurations inside the Kubernetes de-
ployments.

SARIF, JSON, XML, HTML

3.1 Methodology for RQ2
We use the three DAST tools to identify configurations in Company-
Z’s Kubernetes deployment that violate CIS-recommended guide-
lines. Attributes of the deployment is available in Table 2. Each
of the three tools is executed from the command line. Output of
the tools are available as JSON files. We report the total count of
violation for each of the CIS-recommended security configurations
for each of the DAST tools.

Table 2: Attributes of the Amazon EKS Deployment

Attribute Value
Number of Worker Nodes 5
Number of Namespaces 53
Total Number of Resources deployed in the deployments 2,421
Maximum number of Resources in a Namespace 664
Minimum number of Resources in a Namespace 2
Cloud Provider AWS EKS
Region of AWS us-east-1, us-east-2
API server version v1.24.15-eks-a5565a6
Platform ‘linux/amd64’
Environment Production

3.2 Answer to RQ2
We report our findings in Table 3 using columns ‘Count (Kubescape)’,
‘Count (Trivy)’ and ‘Count (Kube-bench)’. Each column shows the
count of violated of CIS-recommended security configurations. If
the tool can not detect violation then we marked the count as ‘NA’.
We observe the most frequently violated configuration to be ‘Apply
Security Context to Your Pods and Containers’. In all, we observe
a total of 1482, 1955 and 5 instances of violations respectively, de-
tected by Kubescape, Trivy and Kube-bench.

Answer to RQ2: We identify 3,442 violations of CIS-
recommended configurations in the Kubernetes deploy-
ment of ‘Company-Z’.

4 DISCUSSION
We discuss the implications of our findings and threats to validity
respectively, in Sections 4.1 and 4.2.

4.1 Implications
4.1.1 Implications for Practitioners on Combining Dynamic Anal-
ysis Results. From Table 3, we observed that no DAST tool has

comprehensive coverage for the CIS-recommended security con-
figurations. Despite these shortcomings of individual DAST tools,
overall, they detect many violations of CIS-recommended configu-
rations. Furthermore, specific DAST tools can help detect violations
of certain categories of CIS-recommended security configurations.
For instance, Kubescape detects 6 CIS-recommended security con-
figurations in the ‘RBAC and Service Accounts category, while
Trivy identifies 7 in the ‘Pod Security Policies category. Combining
the results from the DAST tools can help practitioners identify a
broader range of violations related to CIS-recommended security
configurations. Therefore, Kubernetes practitioners should utilize
DAST tools in their Kubernetes deployments and integrate the
results from these tools to enhance their deployments’ security.

4.1.2 Implication for Security Researchers. From Figure 2, and Ta-
ble 3, we observed that DAST tools can not detect the violation con-
figurations even though the tools have rules to detect the violations.
For instance, Kubebench supports 33 CIS-recommended configura-
tions. However, Kubebench can only detect five CIS-recommended
security configurations in the Kubernetes deployment of ‘Company-
Z’. Furthermore, we observed only three CIS-recommended security
configurations where two tools agreed on violation detection. One
potential reason for this inconsistency and the inability to detect
CIS-recommended security recommendations is that the dynamic
analysis tools have different rules for detecting security configu-
ration violations. For instance, Trivy and Kubescape use different
Rego-based rules [28], [18] for detecting CIS-recommended security
configurations. At the same time, Kubebench runs commands with
privilege inside the Kubernetes deployments [15]. As a result, the
output of the DAST tools varies. Moreover, according to the CIS
recommendation guideline, most configurations require manual
analysis; as a result, they can not be detected automatically. Hence,
we advocate that the researchers investigate how to detect configu-
ration violations dynamically in the Kubernetes deployment.

4.2 Threats to Validity
We describe the limitations of our paper as follows:

External Validity: Our dynamic analysis tool evaluation results are
based on Company-Z’s Kubernetes deployment and our findings
may not generalize to other Kubernetes deployment.

Conclusion Validity: The mapping between the rules of security
analysis tools and recommended configurations are susceptible to
rater bias. We mitigate this limitation by using two raters, of which
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Table 3: Frequency of Violation for CIS-recommended Security Configurations in ‘Company-Z’

Category Recommended Configuration Count
(Kubescape)

Count (Trivy) Count (Kube-
bench)

Ensure that the ‘Anonymous Auth’ is not enabled NA NA 1
Worker node configuration files Ensure that the –authorization-mode argument is not set to ‘AlwaysAllow’ NA NA 1

Ensure that the –streaming-connection-idle-timeout argument is not set to 0 NA NA 1
Kubelet Ensure that the –protect-kernel-defaults argument is set to true NA NA 1

Ensure that the –make-iptables-util-chains argument is set to true 5 NA 1
Container optimized OS Prefer using a container-optimized OS when possible 5 NA NA

Ensure that the cluster-admin role is only used where required 1 NA NA
Minimize the access to secrets 99 25 NA
Minimize the wildcard use in roles and clusterroles 2 2 NA

RBAC and service accounts Minimize access to create pods 54 NA NA
Ensure that default service accounts are not actively used 61 NA NA
Ensure that the service account tokens are only mounted where necessary 397 NA NA
Limit use of the bind, impersonate and escalate permissions in the Kubernetes cluster 40 NA NA
Minimize the admission of privileged containers NA 6 NA
Minimize the admission of containers wishing to share host process ID namespace NA 2 NA
Minimize the admission of containers wishing to share host network namespace NA 6 NA

Pod security policies Minimize the admission of containers with allowPrivilegeEscalation NA 173 NA
Minimize the admission of root containers NA 233 NA
Minimize the admission of containers with added capabilities NA 4 NA
Minimize the admission of containers with capabilities assigned NA 224 NA

CNI plugin Ensure that all namespaces have network policies 47 NA NA
Prefer using secrets as files over secrets as environment variables 47 NA NA

Secrets management Consider external secret storage 256 NA NA
Create administrative boundaries between reources using namespaces 49 NA NA

General policies Apply security context to Your Pods and Containers 263 1,277 NA
The default namespace should not be used 21 NA NA
Ensure Image Vulnerability Scanning using Amazon ECR image scanning or a third party provider 1 NA NA

Image registry and image scanning Minimize user access to Amazon ECR 1 NA NA
Identity and access management
(IAM)

Prefer using dedicated EKS Service Accounts 51 NA NA

AWS EKS key management service Ensure Kubernetes are encrypted using custom master keys (CMKs) managed in AWS KMS 1 NA NA
Cluster networking Encrypt traffic to HTTPS load balancers with TLS certificates 2 NA NA
Authentication & authorization Manage Kubernetes RBAC users with AWS IAM Authenticator for Kubernetes 74 NA NA
Untrusted Workload Consider Fargate for running untrusted workloads 5 NA NA
All - 1,482 1,955 5

one is an industry practitioner with experience in cybersecurity.
Construction of our evaluation dataset is also susceptible to rater
bias. We mitigate this limitation by using two raters.

Internal Validity: One of the raters who performs the mapping is
a practitioner working at Company-Z. This affiliation may affect
intuitively affect the mapping process. We mitigate this limitation
by using another rater who has no affiliation with Company-Z.

5 RELATEDWORK
Our paper is related with prior research that have addressed Ku-
bernetes security and security tool evaluation.

To enhance the security of Kubernetes deployments, researchers
have implemented anomaly-based approaches [1, 26]. Tien et al
developed an anomaly detection tool that can monitor and detect
attacks in the Kubernetes deployment [26]. Cao et al. proposed
an anomaly detection tool that uses a state machine model for
Kubernetes deployment [4]. Hariri et al. developed an anomaly
detection tool specifically for scientific applications runnning in
Kubernetes [12].

Additionally, researchers used graph-based approaches to secure
Kubernetes deployments. Blaise et al. proposed a graph-based ap-
proach to extract and identify the attack path for Kubernetes de-
ployment [2]. Haque et al. constructed a knowledge graph for au-
tomating security configurations and mitigating misconfigurations
in Kubernetes deployment [11]. Zhu et al. developed an automated
security policy tool that can protect applications in the Kubernetes
deployment at runtime [29]. Empirical insights are another per-
spective for Kubernetes security research. Bose et al. conducted

qualitative analysis and constructed a dataset with security-related
commits [3]. Rahman et al. [22] developed a security analysis tool
called SLI-KUBE for detecting misconfiguration [22]. A followup
evaluation of the tool showed to be inadequate for detection of
CIS-recommended configurations [25].

However, the discussion above showcases a lack of research in the
DAST tool evaluation for the Kubernetes deployment. We address
this research gap in our paper.

6 CONCLUSION
Despite CIS-recommended security configurations for securing Ku-
bernetes deployments, there is a lack of understanding of the extent
to which DAST tools detect violations of these recommendations.
We have conducted an empirical study with 33 CIS-recommended
configurations and identified 3,442 configuration violations in the
Amazon EKS deployment of ‘Company-Z’. Based on our findings,
we recommend practitioners utilize DAST tools to secure Kuber-
netes deployments.
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