
Practitioner Perceptions of Ansible Test Smells
Yue Zhang∗ Fan Wu† Akond Rahman§

∗Department of Computer Science, Tuskegee University, Tuskegee, AL, USA
§Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA

Email: ∗yzhang8317@tuskegee.edu †fwu@tuskegee.edu §akond@auburn.edu

Abstract—The practice of infrastructure as code (IaC) recom-
mends automated management of computing infrastructure with
application of quality assurance, such as linting and testing. To
that end, researchers recently have investigated quality concerns
in IaC test manifests by deriving a catalog of test smells.
The relevance of the identified smells need to be quantified by
obtaining feedback from practitioners. Such feedback can help
the IaC community understand if smells have relevance amongst
practitioners, and derive future research directions. We survey
30 practitioners to assess the relevance of three Ansible test
smell categories namely, assertion roulette, local only testing,
and remote mystery guest. We observe local only testing to be
the most agreed upon test smell category, whereas, assertion
roulette is the least agreed upon test smell category. Our findings
provide a nuanced perspective of test smells for IaC, and lays
the groundwork for future research.

Index Terms—ansible, devops, empirical study, infrastructure as
code, testing, smells

I. INTRODUCTION

With the advent of cloud computing resources, automation
tools, such as Ansible have gained in popularity amongst
organizations. Ansible is used to implement infrastructure as
code (IaC), which is the practice of automatically managing
computing infrastructure at scale. The practice of IaC advo-
cates for integration of recommended software engineering
practices, such as quality assurance so that IaC manifests, such
as Ansible manifests do not include defects. Prior research [3],
[4], [9] has documented defects in Ansible manifests. If defects
remain unmitigated, then these defects can lead to large-scale
consequences [3]. Accordingly, researchers have advocated for
integration of quality assurance for IaC manifests used to
provision computing infrastructure, and also for test manifests
used to test the provisioning process.

Recently, researchers [7] have focused on improving quality
assurance for Ansible test manifests. They [7] have derived
a list of test smells, i.e., coding patterns in test manifests
that are correlated with defects. They [7] identified three
test smell categories: assertion roulette, local only testing,
and remote mystery guest. One limitation of the researchers’
work [7] is related to practitioner validation: they did not
quantify practitioners’ perceptions of the identified test smell
categories. Addressing such limitation is important as practi-
tioner agreement with the identified test smell categories can
provide validation and evidence of relevance for the identified
test smell categories. Practitioner-reported disagreements can
reveal the reasons for disagreements, and how test smell-

related research can be improved by considering practitioner
context.

Accordingly, we answer the following research question: RQ:
How do practitioners perceive test smell categories for Ansible
test manifests?

We conduct a survey with 30 practitioners to quantify the
relevance of test smells documented for Ansible manifests.
Our contribution: is quantification of practitioner perceptions
for Ansible test smell categories.

II. RELATED WORK

Our paper is related to prior research that have investigated test
smells for general purpose programming languages (GPLs),
such as Java. Van Deursen et al. [16] identified 11 categories
of test smells that can be refactored using 6 activities. Tufano
et al. [15] built on top of van Deursen et al. [16]’s work to
investigate how practitioners perceive 5 categories of JUnit
test smells. Qusef et al. [8] proposed a technique to predict
the presence of faults in production source code by leveraging
metrics related to test smells. Junior et al. [12] reported that
practitioners’ professional experience is not a root cause for
introducing test smells. Spadini et al. [14] investigated JUnit
test cases collected from 10 projects, and reported that test
cases with test smells are more likely to be more defect-
prone. Bavota et al. [1] reported test smells to negatively
impact software maintenance. In another paper, Bavota et
al. [2] quantified the relationship between test smells and test
code comprehension, and observed that in the absence of test
smells comprehension is 30% better. Practitioner perceptions
of test smells have also been investigated. For example, Junior
et al. [12] surveyed 60 practitioners to understand whether test
professionals inadvertently insert test smells, and reported that
experienced practitioners frequently introduced test smells. In
another paper, Tufano et al. [15] surveyed 19 practitioners to
investigate practitioners’ perceptions of 5 categories of JUnit
test smell, and reported that practitioners generally do not
perceive test smells as actual problem. Tufano et al. [15] also
suggested that automated tools for identifying test smells are
needed for practitioners.

While there is a plethora research related to test smells for
GPLs, we observe a lack of characterizing the practitioner
perceptions of test smells for Ansible manifests. We address
this gap in our paper.

Pre-
prin

t



TABLE I: Name, Definition, and Smell Density of Identified Test Smells Documented by Hassan and Rahman [7].

Smell Name Definition Smell Density
Assertion Roulette The recurring coding pattern of using multiple undocumented assert statements, which is unable to identify

a specific failed assertion.
3.16

Local Only Testing The recurring coding pattern of executing tests in the local development environment only. 1.47
Remote Mystery Guest The recurring coding pattern of using external resources. 4.59

III. METHODOLOGY

We answer RQ by conducting an online survey with practi-
tioners who develop IaC manifests. We first ask practitioners
about their experience in developing IaC manifests. Next, we
ask how frequently practitioners test IaC manifests using a
Likert scale: never, rarely, about half of the time, most of
the time, and always. Then, we ask “We have identified three
test smell categories by analyzing open source test manifests
used for IaC. Each of these categories are listed below. To
which extent do you agree that these test smell categories
are applicable for IaC?”. The definitions of each test smell
category is provided in Table I with smell density reported
by Hassan and Rahman [7]. Smell density if the count of test
smells that appear in every 1,000 lines of test code for Ansible
manifests [7]. For each smell category we provide names,
definitions, and examples. We construct the survey following
Kitchenham and Pfleeger’s guidelines [6]: (i) to measure
agreement use of a Likert scale: strongly disagree, disagree,
neutral, agree, and strongly agree; (ii) add explanations related
to study purpose, (iii) provide an estimate of completion time;
and (iv) conduct a pilot survey to get initial feedback. From the
feedback of the pilot survey, we add an open-ended question
so that survey respondents can provide more context including
feedback on the reasons they agreed or disagreed. The survey
questionnaire is available online [19].

We conduct the survey using e-mails. We obtain e-mail ad-
dresses by mining repositories used in prior work [7]. We
randomly select 250 e-mail addresses, which we use to send
the survey link. We offer a drawing of one 50 USD Amazon
gift card as an incentive for participation following Smith
et al. [13]’s recommendations. We conduct the survey from
February 20, 2021 to October 20, 2022 following the Internal
Review Board (IRB) protocol #2356.

IV. SURVEY RESULTS

We obtain 30 responses (response rate=12.0%). We acknowl-
edge the survey response rate to be low, which is common
in software engineering research. Smith et al. [13] reported
software engineering survey response rate to vary from 6% to
36%. A breakdown of respondents’ reported experience with
IaC is reported in Table II. Table III provides a breakdown
of reported test frequency. We observe 76.6% of survey
respondents to either ‘never’ or ‘rarely’ test IaC manifests.

We provide our answer to RQ in Figure 1, where we provide
the agreement rate for each identified category. The right hand
side provides the percentage of survey participants who agreed
or strongly agreed with the identified test smell categories.
The left hand side of Figure 1 provides the percentage of

participants who disagreed or strongly disagreed with the test
smell categories.

TABLE II: Survey Respondents’ Experience in IaC
Experience Respondent count
1− 2 years 14
> 2− 3 years 2
> 3− 4 years 4
> 4− 5 years 3
> 5 years 7

TABLE III: Testing Frequency Reported by Respondents
Reported Frequency Respondent count
Never 8
Rarely 15
About half of the time 2
Most of the time 4
Always 1

According to survey results, the most agreed upon category
is local only testing. The least agreed upon smell category is
assertion roulette. We observe an agreement rate of 50% or
more for local only testing and remote mystery guest.

7%

27%

36%

87%

53%

21%

7%

20%

43%ASSERTION_ROULETTE

REMOTE_MYSTERY_GUEST

LOCAL_ONLY_TESTING

0 25 50 75 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 1: Feedback from practitioners: the most agreed upon test
smell category is local only testing.

We identify insights on practitioner perceptions related to
identified smell categories. One practitioner agreed with local
only plays stating “Testing on a local workstation is unlikely
to be representative or meaningful. One big example is that
developer workstations are usually heavily loaded with many
libraries, runtimes, development tools and SDKs, which may
be assumed by the Ansible script but not present on a minimal
server install”. We also document disagreements. One practi-
tioner disagreed with mystery guest as a test smell category
stating “ I don’t see anything bad in using external dependency
to do some checks. It all depends on the size of the dependency
and the amount of dependencies”. A practitioner disagreed
with assertion roulette explaining “While it can be abused,
compound assertions are sensible when they are clear and
logically related”.

V. DISCUSSION AND CONCLUSION

Section IV provides a nuanced practitioner perspective on
identified test smell categories. We observe assertion roulette

Pre-
prin

t



is the least agreed upon test smell category, even though
for GPLs assertion roulette is positively correlated with the
existence of faults [8], and defect proneness [14]. Further-
more, unlike GPLs for which assertion roulette is the most
agreed upon test smell category [15], assertion roulette for
Ansible test manifests is the least agreed upon category. One
possible explanation can be attributed to IaC manifests’ use of
domain specific languages (DSLs) [10], [11]. The syntax and
semantics of DSLs are different from GPLs [5], [17], [18].
Our hypothesis is that differences between DSLs and GPLs
can correlate with the characterization of test smells in Ansible
manifests.

We also observe remote mystery guest to be the second least
agreed upon category, even though it is the most frequent
category. One possible explanation is that practitioners are
not aware of test smell consequences and presence, and
inadvertently include such smells in test plays due to a lack
of awareness. Tufano et al. [15] also reported practitioners to
be unaware of test smells in JUnit test cases.

Conclusion: Our empirical study showcases that not all
identified test smells for Ansible manifests have relevance
amongst practitioners. For example, the least agreed upon
test smells category for Ansible is assertion roulette, which is
the second most frequent test smell category based on smell
density [7]. The implication of our finding is that in future
work, researchers can investigate why test smells have varying
practitioner perceptions, and use the gathered explanations to
better design test-related linting tools. Based on our findings,
we conclude that the test smell taxonomy derived by Hassan
and Rahman [7] lays the groundwork to further understand the
context of why test smells appear in Ansible manifests, which
can be incorporated into a test smell detection tools.

ACKNOWLEDGMENTS

We thank the PASER group at Auburn University for their
valuable feedback. This research was partially funded by the
U.S. National Science Foundation (NSF) Award # 2247141,
Award # 2310179, Award # 2209637, and the U.S. National
Security Agency (NSA) Award # H98230-21-1-0175.

REFERENCES

[1] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), 2012, pp. 56–65.

[2] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Software
Engineering, vol. 20, no. 4, pp. 1052–1094, 2015.

[3] S. Dalla Palma, D. Di Nucci, F. Palomba, and D. A. Tamburri, “Within-
project defect prediction of infrastructure-as-code using product and
process metrics,” IEEE Transactions on Software Engineering, vol. 48,
no. 6, pp. 2086–2104, 2022.

[4] ——, “Toward a catalog of software quality metrics for infrastructure
code,” Journal of Systems and Software, vol. 170, p. 110726, 2020.

[5] P. Hudak, “Modular domain specific languages and tools,” in Pro-
ceedings. Fifth International Conference on Software Reuse (Cat.
No.98TB100203), Jun 1998, pp. 134–142.

[6] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys.
London: Springer London, 2008, pp. 63–92. [Online]. Available:
https://doi.org/10.1007/978-1-84800-044-5_3

[7] H. Mohammad Mehedi and A. Rahman, “As code testing: Characterizing
test quality in open source ansible development,” in 2022 15th IEEE
Conference on Software Testing, Verification and Validation (ICST).
Los Alamitos, CA, USA: IEEE Computer Society, apr 2022. [Online].
Available: https://akondrahman.github.io/publication/icst2022

[8] A. Qusef, M. O. Elish, and D. Binkley, “An exploratory study of the
relationship between software test smells and fault-proneness,” IEEE
Access, vol. 7, pp. 139 526–139 536, 2019.

[9] A. Rahman, E. Farhana, C. Parnin, and L. Williams, “Gang of
eight: A defect taxonomy for infrastructure as code scripts,” in
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ser. ICSE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 752–764. [Online].
Available: https://doi.org/10.1145/3377811.3380409

[10] A. Rahman, E. Farhana, and L. Williams, “The ‘as code’activities:
development anti-patterns for infrastructure as code,” Empirical Software
Engineering, vol. 25, no. 5, pp. 3430–3467, 2020.

[11] A. Rahman and L. Williams, “Characterizing defective configuration
scripts used for continuous deployment,” in 2018 IEEE 11th Inter-
national Conference on Software Testing, Verification and Validation
(ICST), April 2018, pp. 34–45.

[12] N. Silva Junior, L. Rocha, L. Almeida Martins, and I. Machado, “A
survey on test practitioners’ awareness of test smells,” arXiv, pp. arXiv–
2003, 2020.

[13] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in 2013 6th In-
ternational Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), May 2013, pp. 89–92.

[14] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in 2018
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2018, pp. 1–12.

[15] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 4–15. [Online].
Available: https://doi.org/10.1145/2970276.2970340

[16] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok, “Refac-
toring test code,” in Proceedings of the 2nd international conference
on extreme programming and flexible processes in software engineering
(XP), 2001, pp. 92–95.

[17] E. Van Wyk, L. Krishnan, D. Bodin, and A. Schwerdfeger, “Attribute
grammar-based language extensions for java,” in Proceedings of the
21st European Conference on Object-Oriented Programming, ser.
ECOOP’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 575–599.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2394758.2394796

[18] M. Voelter, DSL Engineering: Designing, Implementing and Using
Domain-Specific Languages. USA: CreateSpace Independent Publish-
ing Platform, 2013.

[19] Y. Zhang and A. Rahman, “Verifiability package for paper,”
https://figshare.com/s/84e12acb3f5c9a2e0af2, 2022, [Online; accessed
01-Dec-2022].

Pre-
prin

t




