
Noname manuscript No.
(will be inserted by the editor)

Come for Syntax, Stay for Speed, Write Secure Code:
An Empirical Study of Security Weaknesses in Julia
Programs

Yue Zhang · Justin Murphy · Akond
Rahman

the date of receipt and acceptance should be inserted later

Abstract Context : Practitioners prefer to achieve performance without sacri-
ficing productivity when developing scientific software. The Julia programming
language is designed to develop performant computer programs without sacrific-
ing productivity by providing a syntax that is scripting in nature. According to the
Julia programming language website, the common projects are data science, ma-
chine learning, scientific domains, and parallel computing. While Julia has yielded
benefits with respect to productivity, programs written in Julia can include secu-
rity weaknesses, which can hamper the security of Julia-based scientific software.
A systematic derivation of security weaknesses can facilitate secure development
of Julia programs—an area that remains under-explored.

Objective: The goal of this paper is to help practitioners securely develop Julia
programs by conducting an empirical study of security weaknesses found in Julia
programs.

Methodology : We apply qualitative analysis on 4,592 Julia programs used in
126 open-source Julia projects to identify security weakness categories. Next, we
construct a static analysis tool called Julia Static Analysis Tool (JSAT) that au-
tomatically identifies security weaknesses in Julia programs. We apply JSAT to

This research was partially funded by the U.S. National Science Foundation (NSF) Award #
2247141, Award # 2310179, Award # 2312321, and the U.S. National Security Agency (NSA)
Award # H98230-21-1-0175.

Yue Zhang
Auburn University, AL, USA
E-mail: yzz0229@auburn.edu

Justin Murphy
Cookeville, TN, USA
E-mail: justindmurphy33@gmail.com

Akond Rahman
Auburn University, AL, USA
E-mail: akond.rahman.buet@gmail.com

Pre-
prin

t

2 Zhang et al.

automatically identify security weaknesses in 558 open-source Julia projects con-
sisting of 25,008 Julia programs.

Results: We identify 7 security weakness categories, which include the usage of
hard-coded password and unsafe invocation. From our empirical study we identify
23,839 security weaknesses. On average, we observe 24.9% Julia source code files
to include at least one of the 7 security weakness categories.

Conclusion : Based on our research findings, we recommend rigorous inspection
efforts during code reviews. We also recommend further development and applica-
tion of security static analysis tools so that security weaknesses in Julia programs
can be detected before execution.

Keywords empirical study · insecure coding · Julia · security weakness · secure
software development

1 Introduction

Scientific software developers prefer scripting languages, such as Python and R
due to ease in iterative and exploratory development (Bezanson et al., 2018b).
However, to increase program execution speed, scientific software developed in
scripting languages needs to be migrated to languages, such as C and Fortran
as these languages increase program execution speed (Bezanson et al., 2018b).
While such migration usually results in improved program execution speed, it
comes with development and maintenance overhead (Bezanson et al., 2018b). The
programming language Julia is designed and introduced so that developers do
not need to migrate from one language to another, in order to improve program
execution speed. Julia is designed to provide programming syntax similar to that of
scripting languages, with similar program execution speed of compiled languages
with low-level memory access (Jul, 2019; Bezanson et al., 2018b). Julia’s appeal
for developers is colloquially referred to as “come for the syntax, stay for the speed”
because Julia provides the ability to develop software in a scripted manner without
sacrificing program execution speed (Jul, 2019).

Since its inception in 2012, Julia has experienced growing popularity in recent
years (Computing, 2022). According to a survey of Stack Overflow users in 2020,
Julia is considered as one of the “top 10 most loved programming languages” by
practitioners (Julia, 2020). We observe Julia being used in research and product
development. For example, Julia was used in Celeste (Julia, 2017; jul, 2017), a
software used in astronomy research. Celeste was used to load 178 terabytes of
astronomical image data to produce a catalog of 188 million astronomical objects in
14.6 minutes, yielding a performance improvement by a factor of 1,000, compared
to prior implementation (Julia, 2017).

Despite reported benefits, Julia programs may include security weaknesses that
can potentially lead to serious consequences. Security weaknesses are recurring
coding patterns that can make software vulnerable to security attacks. Let us
consider Figure 1 in this regard. Figure 1 provides a code snippet from a Julia
program found in the open source software (OSS) Julia project jevo 1 cloned

1 https://github.com/tmptrash/jevo

Pre-
prin

t

Security Weaknesses in Julia 3

1function serialize(s::SerializationState, x::Symbol)
2 tag = sertag(x)
3 if tag > 0
4 return write_as_tag(s.io, tag)
5 end
6 pname = unsafe_convert(Ptr{UInt8}, x)
7 ln = Int(ccall(:strlen, Csize_t, (Cstring,), pname))
8 if ln <= 255
9 writetag(s.io, SYMBOL_TAG)

10 write(s.io, UInt8(ln))
11 else
12 writetag(s.io, LONGSYMBOL_TAG)
13 write(s.io, Int32(ln))
14 end
15 unsafe_write(s.io, pname, ln)

1

Fig. 1: Example of a security weakness (unsafe invocation) in a Julia project

from GitHub 2. Considering Figure 1, a security weakness can be observed at line
6 of the code snippet. The unsafe_convert() function on line 6 is used to convert
a Julia object to a pointer (Julia, 2021c). unsafe_convert() function is later used
by pname, which in turn is used by ln in line 6. Another security weakness is
observed on line 15 where the unsafe_write() function is used.

Figure 1 demonstrates an example of a security weakness in Julia source code
files, which provides malicious users the opportunity to perform a unsafe invo-
cation attack (Julia, 2021c; Boxler, 2018). According to the Common Weakness
Enumeration (CWE) (MITRE, 2021j), “when software allows a user’s input to
contain code syntax, it might be possible for an attacker to craft the code in such a
way that it will alter the intended control flow of the software. Such an alteration
could lead to arbitrary code execution” (MITRE, 2021i).

Over the last two decades, experts in the domain of scientific software development
have advocated for integration of quality assurance activities, such as code review
and testing for software (Heroux et al., 2007; Kelly et al., 2008, 2011; Morris, 2008).
Such advocacy was echoed recently by Heymann et al. (2023), who observed that
practitioners who develop scientific software lack necessary knowledge and tools
to secure software that are used for scientific experiments. Milewicz et al. (2022)
emphasized on early integration of secure development practices for scientific soft-
ware mentioning “Not securing software right from the development stage is like
putting a deadbolt on a cardboard door ”. These guidelines from experts is applica-
ble for Julia programs as well, as these programs are frequently used in scientific
software development (Rahman et al., 2023a; Farhana et al., 2019; Rahman et al.,
2023a). A systematic analysis of security weaknesses for Julia programs will lay the
groundwork for secure development of Julia programs by detecting and mitigating
security weaknesses in Julia programs similar to that in Figure 1. Such analysis,
which remains under-explored (Rahman et al., 2023a), can help practitioners to (i)
perform security code reviews for Julia programs, and (ii) conduct static analysis
to identify security weaknesses in an automated way for Julia programs.

2 https://github.com/

Pre-
prin

t

4 Zhang et al.

RQ1: Insecure Coding
Patterns Categorization

Qualitative Analysis Identify Insecure
Coding Patterns

RQ2: Insecure Coding
Patterns Frequency

Dataset Collection

Fig. 2: An overview of our methodology.

Existence of security weaknesses in Julia source code files similar to that of Figure 1
can be detrimental to the security of Julia-based software projects. Secure coding is
important for Julia-based projects as recently in 2021, a Julia-related vulnerability
impacted 56,703 IP addresses (cvedetails, 2021). The vulnerability was rated to
be ‘critical’ (cvedetails, 2021). These evidence motivate our empirical study of
investigating security weaknesses in Julia projects.

The goal of this paper is to help practitioners securely develop Julia programs by
conducting an empirical study of security weaknesses found in Julia programs.

We answer the following research questions:

– RQ-1 (Categorization): What categories of security weaknesses appear for
Julia programs?

– RQ-2 (Frequency): How frequently do the identified security weaknesses ap-
pear for Julia programs?

We derive security weakness categories for Julia programs by applying a qualitative
analysis technique called open coding (Saldaña, 2015) with 4,592 Julia programs
obtained from 126 OSS Julia project repositories. Next, we construct a security
static analysis tool called Julia Static Analysis Tool (JSAT) that automatically
identifies security weaknesses in Julia programs. We apply JSAT to identify security
weaknesses in 25,008 Julia programs from 558 open-source Julia programs. Dataset
and source code used for our paper is publicly available online (Rahman et al.,
2023c).

Contributions: We list our contributions as follows:

– A derived list of security weakness categories in Julia source code files; and

– An evaluation of security weakness frequency in Julia source code files.

We organize rest of the paper as follows: We provide the methodology and results
related to RQ-1 in Section 2. We provide the methodology and results related
to RQ-2 in Section 3. We discuss our findings, limitations, and related work re-
spectively in Section 4, 5, and 6. Finally, we conclude the paper in Section 7. An
overview of our methodology is presented in Figure 2.

Pre-
prin

t

Security Weaknesses in Julia 5

2 Security Weakness Categories in Julia Programs

Our paper showcases an empirical study with a focus on identifying security weak-
nesses in Julia programs. In this section, we answer RQ-1: What categories of se-
curity weaknesses appear for Julia programs? We provide necessary background,
methodology and results respectively, in Sections 2.1, 2.2 and 2.3.

2.1 Background

We provide necessary background on Julia source code files and CWE in the
following subsections.

2.1.1 Julia Source Code Files

Julia is an emerging programming language with over 25 million downloads and
over 5,000 Julia packages registered by the Julia community, including various
mathematical libraries, data manipulation tools, and packages for general-purpose
computing, for community use (Julia, 2021b). Julia is recognized to solve the “two
language problem” (Bezanson et al., 2018a, 2017), referring to the circumstance
where practitioners have to switch to a programming language that is more dif-
ficult to use in order to achieve better performance. For example, because of its
scripting nature, writing programs in Python can be relatively straightforward
for practitioners. However, this may come with the sacrifice of program execu-
tion time as Python programs may not be as fast as C programs. Rapid program
execution is a desirable characteristic when employing resource-intensive, compu-
tational programs on large datasets, as done by the Celeste project (Julia, 2017).
Python provides libraries to process large datasets, however, when it comes to
performance compared to C, Python has its limitations. Julia was designed to
provide both friendly syntax as well as speed. According to Perkel (2019), “Ju-
lia circumvents that two-language problem because it runs similar to C, but reads
similar to Python. And it includes built-in features to accelerate computationally
intensive problems, such as distributed computing, that otherwise require multiple
languages”.

Julia programs take advantage of Just-In-Time (JIT) compilation, which is the
process of compiling lines of code sequentially as they are seen, instead of compiling
all lines beforehand. Using JIT compilation, Julia is perceived to be useful in
developing computationally efficient programs. Julia programs are also compiled
into an intermediate representation of byte-code, allowing for portability between
different computer architectures. Julia programs can also call low-level functions
from the C run-time.

Let us consider the annotated example of a Julia program in Figure 3. Similar
to general purpose programming languages (GPLs), Julia has dedicated code ele-
ments, such as include on line 6 and println on line 8, which are used to specify
dependencies and redirect program output to the console. A collection of Julia
programs is referred to as a package. Functions in Julia are defined using the
function keyword, as seen on line 10. Julia allows the return of one or multiple
values without explicitly specifying the return keyword, as long as the values to

Pre-
prin

t

6 Zhang et al.

1# Pre-compilation enabled
2__precompile__()
3# Create Example module
4module Example
5 # Include a package dependency
6 include("example.jl")
7 # Hello world program
8 println("Hello World")
9 # Function to add two values

10 function add_and_sub(a, b)
11 sum = a+b
12 dif = a-b
13 sum, dif
14 end
15
16 ans1, ans2 = add_and_sub(11, 7)
17 # result: 18, 4
18end

1

Fig. 3: An annotated example of a Julia program

be returned are on the last line in the function body. For example, in Figure 3, the
function add_and_sub performs two mathematical operations, addition and sub-
traction, and returns the results of those two operations by using the statement
‘sum, dif’ as the last line in the function body on line 16.

2.1.2 CWE

CWE is a community-driven database for software security weaknesses and vulner-
abilities (MITRE, 2021j). The database is owned by the MITRE Corporation, with
support from US-CERT and the National Cybersecurity Division of the United
States Department of Homeland Security (MITRE, 2021j). The intention behind
creation of the database is to aid the software community in understanding secu-
rity weaknesses in software, creating automated tools so that security weaknesses
in software can be automatically identified and addressed, and creating a common
baseline standard for security weakness identification, mitigation, and prevention
efforts (MITRE, 2021j).

2.2 Methodology for RQ-1

We answer RQ-1 by applying a qualitative analysis approach as summarized in
Figure 4. The qualitative analysis technique that we apply is called open cod-
ing (Saldaña, 2015), which we use with open source Julia programs. Indeed, ap-
plication of qualitative analysis techniques, such as open coding (Saldaña, 2015)
is applicable for any programming language, but here the difference is that we
allocated a rater who is an expert in Julia and secure software development to
derive security weakness categories. Through this exercise, we focus on deriving
security weakness categories that are applicable for Julia programs. Because of
this particular activity, a practitioners who uses Julia programs will not have to
learn about CWEs themselves and identify security weaknesses.

Pre-
prin

t

Security Weaknesses in Julia 7

Open coding by
second author

Multi-phase open
coding by

volunteers
Murphy
et al.’s

Dataset

Rater
verification

Final
Taxonomy

Taxonomy from
volunteers

Taxonomy
by second

author

Fig. 4: An overview of the qualitative analysis process used to answer RQ-1.

Security weaknesses are recurring coding patterns that can make a software vul-
nerable to security attacks. Security weaknesses may not always lead to a security
breach, but manual inspection is still a necessary undertaking (Rahman et al.,
2019c, 2021a).

2.2.1 Qualitative Analysis

Instructions for Raters Performing Open Coding We conduct the following:

1. we confirm that the rater has familiarity with security weaknesses;

2. we provide the CWE database (2021j) to the rater so that they know what
security weakness categories can occur for software;

3. we provide a tutorial 3 for the rater so that they can be familiar with the
common code constructs of Julia;

4. upon being familiar with CWE entries and Julia code constructs, for each
source code file the rater performs the following:

(a) inspect each line of code in the source code file;

(b) isolate any coding pattern that could be of indicative a security weakness
based on rater knowledge; and

(c) map a CWE for the identified pattern, if there is no mapping then discard
the pattern. We use CWE entries here for validation purposes as a rater’s
knowledge can bias the security weakness derivation procedure. According
to the GitHub Advisory website, only one CVE (‘CVE-2021-4048’) 4 is re-
ported, which may not be adequate for deriving the common security weak-
nesses. That is why we asked each rater to familiarize with CWE entries.
While deriving the security weakness categories, it is necessary to validate
the open coding process. To substantiate the derived categories, we map
each identified category to at least one CWE entry (MITRE, 2021j). For

3 https://syl1.gitbook.io/julia-language-a-concise-tutorial
4 https://github.com/advisories/GHSA-wgf2-cvhg-c384

Pre-
prin

t

8 Zhang et al.

example, the derived security weaknesses category shown in Figure 5, weak
encryption, maps to “CWE-327: Use of a Broken or Risky Cryptographic
Algorithm” (MITRE, 2021d). By mapping between security weakness cat-
egory and at least one corresponding CWE entry, we are able to validate
the open coding process.

5. groupify all identified coding patterns using open coding by

(a) First, identifying initial codes;

(b) Second, identifying initial categories; and

(c) Third, deriving categories from initial categories.

To keep track of the security weaknesses, raters maintain a spreadsheet. A snapshot
of the spreadsheet is available in Table 1.

Table 1: A Snapshot of the Spreadsheet Used by Raters While Performing Open
Coding

Coding Pattern CWE ID File Name Initial Code Initial
Cate-
gory

getindex(a::UnsafeMatrixView,
i::Int) = unsafe_load(a.ptr, i)

CWE-94 NumericExtensions.jl/src/unsafe_views.jl unsafe_load Unsafe
Invoca-
tion

ptr = Base.unsafe_convert(PtrT, x) CWE-94 MPI.jl/src/datatypes.jl unsafe_convert Unsafe
Invoca-
tion

ptr = Base.unsafe_convert(PtrT, x) CWE-94 MPI.jl/src/datatypes.jl unsafe_convert Unsafe
Invoca-
tion

unsafe_store!(convert(Ptr$(T.types[i]),
out)+$jloffset, read_ref(file, ref))

CWE-94 JLD.jl/src/jld_types.jl unsafe_store! Unsafe
Invoca-
tion

filehash = sha1(f) CWE-321 OpenGene.jl/src/Reference/Genome/downloader.jl sha1(f) Weak
En-
cryp-
tion

push!(args, a), _args) # FIXME:
append! doesn’t support sets

CWE-546 Latte.jl/src/net.jl # FIXME:
append!
doesn’t
support sets

Suspicious
Com-
ments

Demonstration of Open Coding We determine categories of security weaknesses in
Julia programs by conducting a qualitative analysis technique called open coding
(Saldaña, 2015). In open coding, a rater observes and synthesizes patterns within
structured or unstructured text (Saldaña, 2015). We apply open coding to recog-
nize patterns that are indicative of a security weakness in Julia programs contained
in OSS Julia programs downloaded from GitHub. By applying open coding, we
assume to be able to determine which categories of security weaknesses appear for
Julia programs, as well as obtain context on how the identified security weaknesses
can be detected in an automated way.

Pre-
prin

t

Security Weaknesses in Julia 9

Code Snippet Inital Code Initial Category Category

etag = bytes2hex(MD5.md5(file contents))

elseif length(key) > sha1blocksizebytes

hashed = sha1(key)

return [hashed; ...

MD5.md5(file contents)

hashed = sha1(key)

MD5 weak en-

cryption algo-

rithm

SHA-1 weak en-

cryption algo-

rithm

Weak Encryption

Fig. 5: Example to demonstrate the process of determining security weakness cat-
egories in Julia source code files.

Figure 5 provides an example of how the open coding process is performed for Julia
programs. First, we extract Julia code snippets and separate out the raw text. Here,
the raw text is unaltered text obtained for each source code file. We extract source
code file content from each source code file. For example, we separate the raw
text of filehash = sha1(f) and hashed = sha1(key) from the two code snippets
shown in Figure 5. Next, we determine an initial category for each of the raw texts.
The two initial categories based on the raw text are ‘SHA-1 weak encryption
algorithm’ and ‘SHA-1 weak encryption algorithm’, derived from the use sha1
from the Julia standard library (Jul, 2022). The methods associated with SHA-1
used in the code snippets of Figure 5 is a weak encryption algorithm (OWASP,
2021b). Finally, as both initial categories ‘SHA-1 weak encryption algorithm’
and ‘SHA-1 weak encryption algorithm’ is related to weak encryption algo-
rithms, we merge the two initial categories into one final category called ‘weak
encryption’.

The last author further checked the rating of the second author who performed
open coding. As part of this inspection process, the last author inspected if the
definition of the mapped CWE is in fact applicable for the derived category and the
code snippet that is used to derive the category. Upon completion of this inspection
process, the last author found three categories identified by the second author
that do not directly map to CWE-provided definitions. These three categories are:
hard-coded user name, default port, and unrestricted IP address.

2.2.2 Dataset Collection

We apply open coding on all 4,592 Julia programs contained in the 126 OSS
repositories provided by Murphy et al. (2020). We select Murphy et al.’s (2020)
dataset because it is curated and systematically filtered based on prior research
(Munaiah et al., 2017), and can be used for research studies. The open coding
process took 665 hours to complete.

2.2.3 Rater Verification

Our open coding process is subject to rater bias as these categories are derived by
one rater. We mitigate this limitation by allocating another rater, who is not an
author of the paper. The rater is a software engineer working for a defense contrac-
tor, with three years of professional software experience. We allocate randomly-
selected 500 Julia source code files to the additional rater. By selecting these 500

Pre-
prin

t

10 Zhang et al.

randomly-selected Julia source code files, we obtain a 95% confident level for our
set of 4,592 Julia source code files.

The rater is asked to inspect each of the 500 randomly-selected Julia source code
files, and map them to one or multiple identified security weakness categories.
The rater was provided a document with examples, definitions for each security
weakness category. We record a Cohen’s Kappa (Cohen, 1960) of 0.79, indicat-
ing ‘substantial’ agreement according to Landis and Koch (1977). In the case of
disagreements, the first author acted as the resolver. The first author’s decision
is final in this regard. The agreement level ‘substantial’ is based on Landis and
Koch (1977) interpretation of Cohen’s Kappa. According to this interpretation,
the rater have agreed on majority on the items that were asked to label, but there
were disagreements as well.

2.2.4 Additional Open Coding

The reason of using one rater is because of the lack of rater availability, i.e.,
finding a volunteer who has academic experience in securing coding and willing to
spend time voluntarily to derive security weakness categories by inspecting each
of the 4,592 Julia source code files. While we have mitigated this limitation by
using another rater with 500 randomly-selected Julia source code files, this activity
is limiting as the additional rater only inspected 500 of the total set. As such,
we allocate two additional raters who are graduate students in the department
to perform an additional round of open coding. Both students are enrolled in
M.Sc. in Cybersecurity program, and voluntarily agreed to participate in the open
coding process. Both students have taken courses that teaches secure coding, such
as ‘Secure Software Process’ and ‘Computer and Network Security’. We apply
open coding in two phases as multi-phase open coding (Hickey and Kipping, 1996;
Sweeney et al., 2013) facilitates rater reliability and achieves rater consensus. The
two phases are synchronized open coding and independent open coding, which are
discussed as follows:

1. Synchronized open coding : As part of this open coding process, both rater
conduct the open coding process in collaboration where they discuss with each
other while deriving security weakness categories. As part of the open coding
process, each rater individually inspect each of the 2,296 Julia source code file
to determine is a security weakness is present and if the determined security
weakness category is not reported in the taxonomy. After the open coding
process is complete, we compute a Cohen’s Kappa (1960) of 0.92 indicating
‘almost perfect’ agreement (Landis and Koch, 1977). The disagreements are
resolved by the last authors of the paper who has 8 years of experience in
secure coding. The last author’s categorization is final for the files that the
raters are disagreed upon. Upon completion of the synchronized open coding
phase we do not identify any security weakness categories that have not been
identified by the second author.

2. Independent open coding : As part of this open coding process the two raters do
not coordinate or discuss during the open coding process. Each rater inspects
the remaining 2,296 Julia source code files that are not used in the synchronized
open coding phase. Upon completion of the open coding process, we observe a

Pre-
prin

t

Security Weaknesses in Julia 11

Fig. 6: Identified security weakness Categories in Julia Programs.

Cohen’s Kappa (1960) of 0.68 indicating ‘substantial’ agreement (Landis and
Koch, 1977). The disagreements are resolved by the last authors of the pa-
per similar to that of the synchronized open coding process. The last author’s
categorization is final for the files that the raters are disagreed upon. Upon
completion of the independent open coding phase we do not identify any secu-
rity weakness categories that have not been identified by the second author.

2.3 Answer to RQ-1: Security Weakness Categories in Julia Source Code Files

In this section, we answer RQ-1: What categories of security weaknesses appear for
Julia programs? As shown in Figure 6, we identify 7 security weakness categories
for Julia programs through the open coding (Saldaña, 2015) process described in
Section 2.2.1. We provide definitions, descriptions, examples, and mapped CWE
entries for each of the 7 security weakness categories as follows.

I. Command Injection: This category is the recurring pattern of using certain
methods that facilitate the execution of arbitrary commands in Julia programs.
Command injection allows attackers to execute dangerous commands directly on
the operating system (MITRE, 2021g). An attacker can use a command injec-
tion attack to acquire privileges, allowing the attacker to gain unauthorized ac-
cess to execute a privileged program (MITRE, 2021g). For Julia programs, the
run(cmd) method can be used to execute arbitrary Julia commands and gain con-
trol of the operating system (Wallace, 2016). Julia-specific coding patterns that
facilitate execution of arbitrary commands are: run(cmd), eval(parse()), and
remote_caller(). The category corresponds to “CWE-78: Improper Neutraliza-
tion of Special Elements used in an OS Command (‘OS Command Injection’)”
(MITRE, 2021g).

Example: Listing 1 provides an example of command injection in a Julia source
code file. Here, in line #2, eval(parse()) is the security weakness, which is used
to assign a value to keytype. keytype is later used by h2 in line# 3.

1 for ikey = 1 : length(key)
2 keytype = eval(parse("typeof(Seismic.InitSeisHeader().$(

string(key[ikey])))"))↪→

3 h2 = reinterpret(keytype,vec(h1[ikey,:]))
4 a = minimum(h2)
5 b = maximum(h2)

Listing 1: An example of command injection in a Julia source code file.

Pre-
prin

t

12 Zhang et al.

II. Hard-Coded Password: This category is the recurring pattern of using hard-
coded passwords. The use of a hard-coded password can increase the possibility
that encrypted data is uncovered by a malicious actor (MITRE, 2021h). Hard-
coded passwords allow an attacker to bypass any authentication configured by the
software administrator (MITRE, 2021h). The category corresponds to “CWE-798:
Use of Hard-coded Credentials” (MITRE, 2021h).

Example: Listing 2 provides an example of a hard-coded password in a Julia
source code file. In line #5, the hard-coded password is mysql_pswd = “root”
that is used to setup a database connection string.

1 #
2 # Create MySQL DB connection
3 host = "127.0.0.1";
4 mysql_usr = "root";
5 mysql_pswd = "root";
6 dbname = "pubmed_obesity_2010_2012";
7

8 const mysql_conn = DBUtils.init_mysql_database(host, mysql_usr, mysql_pswd,
dbname) # hide↪→

9 PubMed.create_tables!(mysql_conn) # hide

Listing 2: An example of hard-coded password in a Julia source code file.

III. Inadequate Exception Handling: This category is the recurring pattern of
using generic exception handlers or using no exception handlers at all by leveraging
println(). The use of generic exceptions promotes complex error handling code
that is more likely to contain security vulnerabilities (MITRE, 2021e). According
to CWE, not using an exception handler allows a malicious user to trigger un-
expected conditions “thus violating the programmer’s assumptions, possibly intro-
ducing instability, incorrect behavior, or a vulnerability”. The category corresponds
to “CWE-754: Improper Check for Unusual or Exceptional Conditions” (MITRE,
2023).

Example: Listing 3 provides an example of inadequate exception handling in a
Julia source code file. Here, in line #2, we observe a specific exception not being
thrown, which is an example of inadequate exception handling.

1 p = prime_decomposition(OK, 2)[1][1]
2 @test_throws ErrorException Hecke.locally_free_basis(I, p)

Listing 3: An example of inadequate exception handling in a Julia source code
file.

IV. Insecure HTTP: This category is the recurring pattern of using HTTP with-
out Transport Layer Security (TLS) or HTTPS without Secure Sockets Layer
(SSL) protection. If sensitive data is transmitted without TLS protection with
HTTP, the data is transmitted in clear-text and could be sniffed by a malicious
actor (MITRE, 2021b). Coding patterns found in Julia programs include the use

Pre-
prin

t

Security Weaknesses in Julia 13

of the HTTP protocol without TLS, or SSL is set to false when using HTTPS pro-
tocol. The category corresponds to “CWE-319: Cleartext Transmission of Sensitive
Information” (MITRE, 2021b).

Example: Listing 4 provides an example of insecure HTTP in a Julia source code
file. The example of insecure HTTP in line #6 is used to obtain and extract JSON
data.

1 push!(v.data, VegaData(name = "geodata",
2 url = "http://trifacta.github.io/vega/data/ us-10m.json",
3 format = VegaFormat(_type = "topojson", feature = "states"),
4 transform = [VegaTransform(Dict{Any, Any}("type" => "geopath", "projection"

=> "albersUsa")),↪→

5 VegaTransform(Dict{Any, Any}("type" => "lookup", "on" => table,
"onKey" => "x", "keys" => ["id"], "as" => ["table2"])),↪→

6 VegaTransform(Dict{Any, Any}("type" => "filter", "test"
=>"datum.layout_path!=null && datum.table2!=null"))]↪→

Listing 4: An example of insecure HTTP in a Julia source code file.

V. Suspicious Comments: This category is the recurring pattern of including
information in comments relating to malfunctioning or missing features of a Ju-
lia project. Suspicious comments indicate the referenced code could possibly be
exploited by malicious users (MITRE, 2021f). Coding patterns found in Julia pro-
grams include putting keywords, such as ‘FIXME’ in the comments of the source-
code. Including keywords, such as ‘TODO’, in comments is a common practice in
software engineering, but can lead to negative consequences, such as introducing
bugs in software source code (Tan et al., 2007; Storey et al., 2008). The category
corresponds to “CWE-546: Suspicious Comment” (MITRE, 2021f).

The motivation of including this particular category is because of its recurrence ob-
served during our open coding process and an entry in the CWE database (MITRE,
2021j) According to CWE, “Suspicious comments could be an indication that there
are problems in the source code that may need to be fixed and is an indication
of poor quality. This could lead to further bugs and the introduction of weak-
nesses” (MITRE, 2021f). This indicates that suspicious comments can propagate
and trigger more weaknesses in software source code. The derivation of this cate-
gory is also consistent with other research studies (Rahman et al., 2021a; Rahman
and Williams, 2021) related to security weaknesses.

Example: Listing 5 provides an example of a suspicious comment. The code snippet
in line #1 shows that the implementation for get_main_mode needs to be improved
so that when the module is changed REPL content can be reprinted.

VI. Unsafe Invocation: This category is the recurring pattern of using meth-
ods that do not validate user input in Julia programs. Unsafe invocation occurs
when the code allows a user’s input to not be validated, and therefore it could be
possible for an attacker to provide malicious code that will alter the intended func-
tion of the program (MITRE, 2021i). Unsafe injection is different from command
injection command injection does not involve the attacker’s code being executed
by the application, but rather the attacker extends the default functionality of

Pre-
prin

t

14 Zhang et al.

1 # FIXME: Find a way to reprint what's currently entered in the REPL after
changing↪→

2 # the module (or delete it in the buffer).
3

4 using Logging: with_logger
5 using .Progress: JunoProgressLogger
6

7 function get_main_mode()
8 mode = Base.active_repl.interface.modes[1]
9 mode isa LineEdit.Prompt || error("no julia repl mode found")

10 mode
11 end

Listing 5: An example of suspicious comment in a Julia source code file.

the application to execute system commands (OWASP, 2021a). Unsafe invocation
can occur in Julia programs through the use of the ‘unsafe’ prefix for partic-
ular functions (Julia, 2021c). Julia-specific coding patterns that does not pro-
vide validation for user input are: ‘Base.unsafe_load’, ‘Base.unsafe_convert’,
‘Base.unsafe_store!’, ‘Base.unsafe_copy!’, ‘Base.unsafe_pointer_to_objref’,
and ‘Base.unsafe_wrap’. The category corresponds to “CWE-94: Improper Con-
trol of Generation of Code (‘Unsafe Invocation’)” (MITRE, 2021i).

The four functions that are related to unsafe invocation can be used to interface
with C functions (Jul, 2022). These functions are used when developers want to
interface the Julia program with a C program. The ‘unsafe’ prefix has different
implications for different ‘unsafe’ functions. In particular,

– For unsafe_load the ‘unsafe’ prefix indicates that the functions itself does not
perform any validation on the pointer p that is provided as an input parameter
to the function. It is crucial to ensure that the pointer is valid and points to
the expected memory location so that program crashes or incorrect results can
be avoided (JLHUB, 2024).

– For unsafe_convert, the ‘unsafe’ prefix indicates that the result of this func-
tion is no longer accessible to the program, which may cause undefined behav-
ior, including segmentation faults, at any later time (JLHUB, 2024).

– For unsafe_store! the ‘unsafe’ prefix indicates that no validation is performed
on the pointer p that is passed as an input parameter to the function. Incorrect
usage of this function may cause a segmentation fault, similar to that of C
programs (JLHUB, 2024).

– For unsafe_copy! the ‘unsafe’ prefix indicates that no validation is performed
to ensure that the parameter N is within the limits of the array. Incorrect
usage may cause segmentation fault because of out-of-bounds errors (JLHUB,
2024).

– For unsafe_pointer_to_objref the ‘unsafe’ prefix indicates that if not han-
dled adequately, undefined behavior will result when the pointer is passed to
the function. The pointer that is passed to the function refers to a valid heap-
allocated Julia object (JLHUB, 2024).

Pre-
prin

t

Security Weaknesses in Julia 15

– For unsafe_wrap the ‘unsafe’ prefix indicates that the function will crash if
the provided pointer is not a valid memory address to data of the requested
length. The function wraps an Array object around the data at the address
given by the pointer without making a copy (julia, 2024).

Example: Listing 6 provides an example of Unsafe invocation in a Julia source
code file. The program is used to calculate the dimension of an array a. In line#
5, unsafe_load is used to load a value from the i address starting at a.ptr.

1 size(a::UnsafeCubeView) = (a.dim1, a.dim2, a.dim3)
2 size(a::UnsafeCubeView, d::Int) = d == 1 ? a.dim1 : d == 2 ? a.dim2 : d == 3 ?

a.dim3 : 1↪→

3 length(a::UnsafeCubeView) = a.len
4

5 getindex(a::UnsafeCubeView, i::Int) = unsafe_load(a.ptr, i)

Listing 6: An example of unsafe invocation in a Julia source code file.

VII. Weak Encryption: This category is the recurring pattern of using crypto-
graphic algorithms that are weak or have been proven to be broken (OWASP,
2021b) to encrypt sensitive information. The use of a broken or risky crypto-
graphic algorithm may result in the exposure of confidential information (MITRE,
2021a,c,d). This category includes security weaknesses that use the md5() function,
and the sha-1() function. The category corresponds to “CWE-311: Missing En-
cryption of Sensitive Data”, “CWE-321: Use of Hard-coded Cryptographic Key”,
and “CWE-327: Use of a Broken or Risky Cryptographic Algorithm” (MITRE,
2021a,c,d).

Example: Listing 7 provides an example of weak encryption in a Julia source
code file. We observe in line #4, sha1 to be used to hash the contents of a file.

1 function check_sha1(file, hash)
2 info("checking SHA1...")
3 f = open(file)
4 filehash = sha1(f)
5 # work around for SHA.sha1() incompatibility
6 if isa(filehash, Array{UInt8,1})
7 filehash = bytes2hex(filehash)
8 end
9 if lowercase(filehash) == lowercase(hash)

10 info("SHA1 OK")
11 return true
12 else
13 warn("wrong hash, expect $hash, but got $filehash")
14 return false
15 end
16 return false
17 end

Listing 7: An example of weak encryption in a Julia source code file.

Pre-
prin

t

16 Zhang et al.

We report the exploit likelihood for each identified security weakness category in
Table 2. We observe four categories to have a ‘high’ likelihood of being exploited:
command injection, hard-coded password, insecure HTTP, and weak encryption.
Results reported in Table 2 further showcase that our derived security weakness
categories have relevance as four of the seven security weakness categories are
highly likely to be exploited.

Table 2: Exploit Likelihood of Identified Security Weakness Categories

Category CWE ID Exploit Likelihood
Command Injection CWE-78 ‘High’ (MITRE, 2021g)
Hard-Coded Password CWE-798 ‘High’ (MITRE, 2021h)
Inadequate Exception Handling CWE-754 ‘Medium’ (MITRE, 2023)
Insecure HTTP CWE-319 ‘High’ (MITRE, 2021b)
Suspicious Comments CWE-546 Not Available
Unsafe Invocation CWE-94 ‘Medium’
Weak Encryption CWE-327 ‘High’ (MITRE, 2021d)
Weak Encryption CWE-321 ‘High’ (MITRE, 2021c)
Weak Encryption CWE-311 ‘High’ (MITRE, 2021a)

We have reported which of our derived security weakness categories appear for
other programming languages. The details are available in Table 3.

Table 3: Comparison of Security Weakness Categories Across Languages

Category Julia
[This Paper]

Ansible
(Saavedra and Ferreira, 2023)

Chef
(Rahman et al., 2021a)

Kubernetes
(Rahman et al., 2023b)

Puppet
(Rahman et al., 2019b)

Python
(Ruohonen et al., 2021)

Command Injection Y N N N N Y
Hard-Coded Password Y Y Y Y Y Y
Inadequate Exception
Handling

Y N N N N Y

Insecure HTTP Y Y Y Y Y N
Suspicious Comments Y Y Y N Y N
Unsafe Invocation Y N N N N N
Weak Encryption Y Y Y N Y Y

In Table 3, we observe the categories of security weaknesses vary from one program-
ming language to another. The category that is common across all languages is
hard-coded password. Four of the seven categories identified for Julia is observant
for Ansible, Chef, Puppet, and Python. In the case of Ansible and Kubernetes, the
programs are written in YAML format, whereas Chef and Puppet have a Ruby-like
syntax. As all Python, Ruby, and YAML are more mature programming languages
that Julia, the likelihood of finding static analysis tools are higher than that of
Julia. However, we observe that not all identified security weakness categories for
Julia appear solely in one programming language. Because of this observation and
due to syntactic and semantic differences, we have no option to use an existing
tool for these languages. Therefore, we needed to develop a security static analysis
tool called JSAT.

Pre-
prin

t

Security Weaknesses in Julia 17

Answer to RQ-1: We identify 7 categories of security weaknesses in Julia
programs: command injection, hard-coded password, inadequate exception
handling, insecure HTTP, suspicious comments, unsafe invocation, and
weak encryption.

3 Frequency of Security Weaknesses in Open Source Julia Source
Code Files

In this section, we answer RQ-2: How frequently do the identified security weak-
nesses appear for Julia programs? We answer RQ-2 by investigating the structure
of Julia programs so that we can automatically identify security weaknesses in
Julia programs. Use of parse trees for security weakness detection is commonplace
but as evident from our discussion in Section 3.1, there exists no tools for Julia
that can detect security weaknesses. Our construction of JSAT addresses that gap.
Construction of the tool JSAT required usage of Julia-specific parsers and gaining
an understanding of Julia-specific code constructs.

3.1 Methodology for RQ-2

JSAT is a static analysis tool that will automatically identify the 7 security weakness
categories identified and described in Section 2.3 for Julia programs. As input, a
practitioner will provide the file path where the Julia repositories that are to be
evaluated reside, and JSAT will output to a CSV file the count of each detected
security weakness for each Julia program contained in the repositories.

Two factors motivate the construction of JSAT:

1. We observe that there does not exist a static analysis tool dedicated to the
Julia programming language (OWASP, 2021c; NIST, 2021b). We also have
have explored for static analysis tools for Julia programs and found two tools
namely, ‘StaticLint.jl’ (julia-vscode, 2023) and ‘Jet.jl’ (aviatesk, 2023) We have
downloaded and explored the code of these two tools. From our investigation,
we find that none of the seven categories of security weaknesses are detected
by the two tools. A comparison of between JSAT and the two tools is provided
in Table 4. ‘StaticLint.jl’ identifies code smells, such as unused binding, un-
used variables, and default keyword mismatch. ‘JET.jl’ identifies type-related
defects in Julia programs, such as type instability and erroneous type usage.

2. There are fundamental differences between Julia and other GPLs with respect
to syntax and semantics (Bezanson et al., 2017, 2018a; Zappa Nardelli et al.,
2018), and therefore there is a need to construct a tool that will detect security
weaknesses in Julia programs.

For certain programming languages, such as Python there exists linters that also
detects security weaknesses. For example, Pylint 5 can be used to detect instances
of inadequate exception handling in Python programs. Our assumption is that

5 https://pylint.readthedocs.io/en/

Pre-
prin

t

18 Zhang et al.

Table 4: Comparison of JSAT, ‘StaticLint.jl’, and ‘JET.jl’ With Respect to Detect-
ing Identified Security Weakness Categories

Category JSAT StaticLint.jl JET.jl
Command Injection Yes No No
Hard-Coded Password Yes No No
Inadequate Exception Handling Yes No No
Insecure HTTP Yes No No
Suspicious Comments Yes No No
Unsafe Invocation Yes No No
Weak Encryption Yes No No

JSAT

Parser Rule Matcher Analyzer

Source Code Report

Fig. 7: Components of JSAT.

by exploring two popular linters for Julia, namely StaticLint.jl and JET.jl we too
would be able to to identify a set of security weaknesses derived as part of our
taxonomy. However, from Table 4 we observe that none of these tools is capable
of detecting the identified security weakness categories.

We by no means are advocating against the usage of StaticLint.jl and JET.jl.
Both are popular static analysis tools, where StaticLint.jl can be used to extract
source code metrics from a Julia source code file, and JET.jl can be used to detect
type-related defects, such as type instability (Rahman et al., 2023a). In short,
StaticLint.jl and JET.jl includes multiple rules that are useful for Julia-based
software development but do not detect our identified set of security weakness
categories.

Figure 7 shows the components of JSAT. As input, JSAT takes one or multiple
Julia source code files as input. Upon receiving the input, JSAT’s ‘Parser’ compo-
nent applies lexical analysis to determine is the provided program is syntactically
correct. If it is, then JSAT extracts tokens from the code and generates an abstract
syntax tree. Next, the ‘Rule Matcher’ component matches a set of rules written in
first-order logic to detect certain patterns in the code that are indicative of secu-
rity weaknesses. Finally, the ‘Analyzer’ component applies def-use chain analysis
to determine if the detected pattern is actually being used by other portions of
the program. If yes, then the reported pattern is reported tot he Julia user as a
valid security weakness in forms of a report. None of the three components use
any deep learning techniques.

3.1.1 JSAT’s Security Weakness Detection Process

JSAT detects security weaknesses in three steps:

Pre-
prin

t

Security Weaknesses in Julia 19

Table 5: Example rules for detecting security weaknesses in Julia programs

Security Weakness
Category

Rule

Command Injection isRunCommand(x) OR isEval(Parse(x)
Hard-Coded Password (isKey(x) OR isJLVar(x)) AND len(x.value)>0 AND

(isPassword(x))
Inadequate Exception
Handling

isJLCatchBlock(x) AND isGenExcept(x.value) OR
len(x.value) == 0

Insecure HTTP isKey(x) AND isHTTP(x.value)
Suspicious Comments isJLComment(x) AND hasSuspWord(x)
Unsafe Invocation hasUnsafePrefix(x) AND hasPtrUsedLater(x)
Weak Encryption isJLEncodeMethod(x) OR isJLDecodeMethod(x)

AND (isMD5(x) OR isSHA-1(x))

Table 6: String patterns used for functions in rules

Function String Pattern
hasUnsafePrefix() ‘unsafe_convert’ ‘unsafe_load’, ‘un-

safe_store!’, ‘unsafe_copy!’, ‘unsafe_wrap’,
‘unsafe_pointer_to_objref’

hasPtrUsedLater ‘ptr’
isRunCommand() ‘run’
isEval() ‘eval’
isJLCatchBlock ‘catch’
isJLEncodeMethod ‘encode’
isJLDecodeMethod ‘decode’
isParse() ‘parse’
isPassword() ‘password’, ‘pswd’, ‘psswd’
isGenExcept() ‘throw, ‘error’, ‘ErrorException’
isHTTP() ‘http’
hasSuspWord() ‘hack’, ‘todo’, ‘to-do’, ‘fixme’, ‘bug’
isMD5() ‘md5’
isSHA1() ‘sha1’

Step#1-Parsing: JSAT uses a parser to parse the Julia programs into tokens that
are used to determine the presence of security weaknesses. For parsing, JSAT uses
a Julia package, CSTParser.jl 3. Prior to parsing, the file type for each file in
the repository is checked to make sure that only Julia files are parsed, and if
the file exists (not empty). The CSTParser package uses another Julia package,
Tokenize.jl 4, which aims to extend the built-in parser by providing additional
meta information along with the resultant abstract syntax tree (AST).

Step#2-Rule Execution: JSAT will execute a set of rules for each security weakness
category to identify security weaknesses. To generate rules for each security weak-
ness category, we abstract coding patterns associated with each category. The
rules for detecting security weaknesses in Julia programs are shown in Table 5.
JSAT uses pattern matching to execute the rules in Table 5, similar to other static
analysis tools (Rahman et al., 2019c, 2021b, 2023b; Mohammad Mehedi and Rah-
man, 2022). The patterns needed to execute the rules are listed in Table 6. For

3 https://github.com/julia-vscode/CSTParser.jl
4 https://github.com/JuliaLang/Tokenize.jl/

Pre-
prin

t

20 Zhang et al.

1ptrA = Base.unsafe_convert(Ptr{$elt},A)
2ptrB = Base.unsafe_convert(Ptr{$elt}, B)
3ptrC = Base.unsafe_convert(Ptr{$elt}, C)
4
5strA = size(A, 3) == 1 ? 0 : Base.stride(A, 3)
6strB = size(B, 3) == 1 ? 0 : Base.stride(B, 3)
7strC= Base.stride(C, 3)
8
9n_threads = min(Threads.nthreads(), 1 + max(length(A),

↪→ length(B)) 8000)
10# In some tests,size(20,20,20)is worth splitting

↪→ between two threads,
11# as is size (32,32,8).
12
13if n_threads > 1
14
15 old_threads = get_num_threads()
16 set_num_threads(1)
17 Threads.@sync for ks in

↪→ Iterators.partition(1:size(C, 3),
↪→ cld(size(C, 3), n_threads))

18 Threads.@spawn for k in ks
19
20 ptrAk = ptrA + (k-1) * strA * sizeof($elt)
21 ptrBk = ptrB + (k-1) * strB * sizeof($elt)
22 ptrCk = ptrC +(k-1) * strC * sizeof($elt)

1

Fig. 8: An example to demonstrate our def-use chain analysis approach.

example, to execute the rule for insecure HTTP, JSAT uses isHTTP() from Table
6.

Step#3-Def-use chain analysis: We use def-use chain analysis (Aho et al., 1986) to
identify if a security weakness is actually being used in other portions of a Julia
program. Def-use chain analysis is one form of information flow analysis that is
used to track data flows from an information source to a target.

A code snippet that matches the rules to detect security weaknesses may not be
used anywhere in a Julia program. Therefore, JSAT should not generate security
weakness alerts where a rule is matched but not used anywhere in the program.
In order to provide JSAT this capability, we apply def-use chain analysis (Aho
et al., 1986). JSAT applies def-use chain analysis for the following security weak-
ness categories: command injection, insecure HTTP, hard-coded password, unsafe
invocation, and weak encryption, as these were the security weaknesses that were
observed to be associated with assignment operations during the open coding (Sal-
daña, 2015) process discussed in Section 2.2.1.

Figure 8 provides a code snippet from a Julia project found in our dataset, the
OSS Julia project ‘NNlib.jl’6. We use Figure 8 to demonstrate our application
of def-use chain analysis. Considering Figure 8, the variables ptrA, ptrB, and ptrC
use the security weakness unsafe_convert(). The unsafe_convert() function is
a security weakness for the unsafe invocation category, and if any or all of the
inputs for A, B, or C contain malicious data, a unsafe invocation attack could be

6 https://github.com/FluxML/NNlib.jl

Pre-
prin

t

Security Weaknesses in Julia 21

performed. Looking further down the code snippet in Figure 8, we observe ptrA,
ptrB, and ptrC to be respectively, used by ptrAk, ptrBk, and ptrCk in lines 20,
21, and 22.

Our def-chain analysis technique tracks the flow of data by constructing data
dependence graphs (DDGs). In each DDG, an edge exists between a sink and a
source node if the variable in the source node is used by the sink node. The source
node is the code snippet that matches any of the rules listed in Table 5. The sink
node can be any code snippet for which the assignment operation is applied.

1 P <-input by user
2 ptrA = Base.unsafe_convert(Ptr{$elt},A)<- A can contain malicious data
3

4 ptrAk = 5
5 if P:
6 ptrAk = ptrA
7 end
8 if !P:
9 run(construct_command(ptrAk))

10 end
11

12 << Do something with ptrAk >>

Listing 8: An example Julia program to demonstrate JSAT’s ability to detect se-
curity weaknesses.

In the context of Listing 8, the security weakness will be detected as a valid security
weakness, which in fact is a false positive. As we track the flow of data, JSAT is
susceptible to generate false positives for programs that use path-sensitive data
flow analysis.

3.1.2 Evaluation of JSAT

We conduct two activities to evaluate JSAT: (i) evaluation with a sampled dataset
and (ii) practitioner verification. We describe these activities as follows:

Evaluation activity-1: Evaluation with a sampled dataset : Security static
analysis tools are subject to empirical evaluation (Rahman et al., 2019c, 2021b).
We use a sampled dataset to evaluate JSAT’s accuracy. We apply closed coding
(Saldaña, 2015) to identify which of the randomly selected files include a security
weakness category. Closed coding differs from the open coding process explained
in Section 2.2.1 because with the closed coding process we are looking for pre-
determined patterns for each of the 7 security weakness categories.

The rater who performed closed coding did not participate in the open coding
process. The rater also is not any of the authors of the paper. We used this rater
to mitigate any bias that can stem from while using any of the authors or the
voluntary rater for closed coding process. While performing closed coding the
rater followed the definitions of each security weakness category. The rater did not
report any new security weakness categories, i.e., during the closed coding process

Pre-
prin

t

22 Zhang et al.

Table 7: Attributes of the Sampled Dataset

Category Data
Data Source Repositories provided by Murphy et al. (2020)
Total Repositories 57
Total Commits 33,053
Timespan 01/2014-10/2019
Total Julia Source Code Files 100
Total Size (Lines of Code) 193,738

Table 8: Evaluation of JSAT with sampled dataset for evaluation

Security Weakness Category Occurrences Precision Recall
Command Injection 6 1.00 1.00
Hard-Coded Password 1 1.00 1.00
Inadequate Exception Handling 82 0.96 1.00
Insecure HTTP 4 1.00 1.00
Suspicious Comment 48 1.00 1.00
Unsafe Invocation 3 1.00 1.00
Weak Encryption 3 1.00 1.00
No security weakness 54 1.00 0.98
Average 0.99 0.99

the rater did not mention any new categories that we have not identified from our
open coding analysis.

The sampled dataset was obtained by selecting a random sample of 100 Julia
source code files from the dataset provided by Murphy et al. (2020). There is no
overlap between the oracle dataset and sanity dataset as well as the oracle dataset
and the dataset used for practitioner verification. Attributes of the sampled data
is provided in Table 7.

The closed coding process took 26 hours to conduct and upon completion, we apply
JSAT on the 100 Julia programs. We assess JSAT’s accuracy using two metrics:
precision and recall. Precision refers to the fraction of correctly identified security
weaknesses among the total identified security weakness, as determined by JSAT.
Recall refers to the fraction of correctly identified security weaknesses that have
been retrieved by JSAT.

We identify 142 security weaknesses among the 100 Julia programs through the
closed coding process (Saldaña, 2015). The ‘No security weakness’ row indicates
that of the 100 Julia programs, 54 files do not include any security weakness. The
rest of the 46 files include at least one security weakness. A complete breakdown
of JSAT’s precision and recall values is provided in Table 8. For example, in the
sampled dataset, we identify 82 occurrences of the inadequate exception handling.
The precision and recall of JSAT for 82 occurrences of inadequate exception han-
dling is respectively, 0.96 and 1.0. JSAT generates 3 false positives and zero false
negatives for inadequate exception handling. For the sampled dataset, the average
precision and recall of JSAT is 0.99.

Evaluation activity-2: Practitioner verification : We recruit a practitioner
who is working in industry and has experience in Julia-based software development
for three years. From the set of security weaknesses detected by JSAT, we select

Pre-
prin

t

Security Weaknesses in Julia 23

Table 9: Evaluation of JSAT by practitioner

Security Weakness Category TPs Precision Recall
Hard-Coded Password 1 0.50 1.00
Inadequate Exception Handling 9 0.74 1.00
Insecure HTTP 3 0.60 1.00
Suspicious Comment 54 0.67 1.00
Unsafe Invocation 130 0.77 1.00
Weak Encryption 1 1.00 0.67
Average 0.71 0.94

a random sample with 95% confidence interval. As reported in Section 13, the
detected security weakness count is 23,839, for which a random sample with 95%
confidence yields 379 security weaknesses. We provide these security weaknesses
for labeling, where the practitioners apply closed coding to map each detected
security weakness to any of the 7 categories. While applying closed coding, the
practitioner is asked to use the provided guidebook that includes the definitions of
the 7 security weakness categories, and their Julia-related software development
experience. We provide no time restriction for the practitioner. For this activity,
we provide a 25 USD Amazon gift card to the practitioner for their efforts.

The practitioner performs labeling in 50.5 hours. With the dataset labeled by the
practitioner, we observe the average precision and recall to be respectively, 0.71
and 0.94. Compared to the evaluation with the sampled dataset, as summarized in
Table 8, we observe the precision and recall to decrease. The ‘TPs’ column shows
the true positive instances determined by the practitioner. According to Table 9,
the 198 security weaknesses detected by JSAT are in fact present in the correspond-
ing Julia programs and also relevant to the practitioner. The practitioner found
one instance of weak encryption usage that was not identified by JSAT, which re-
sulted in a decrease in recall, compared to that of the other categories. Results
presented in Table 9 also show that majority of the detected security weaknesses
are relevant, as of the 379 security weaknesses instances detected by JSAT, the
practitioner found 198 of them as true positives.

3.1.3 Comparison with SEMGREP

We further compare the performance of JSAT to that with a state-of-the-art tool
called SEMGREP, which provide support for scanning Julia source code files. For
comparison, we use a randomly-selected sample of 500 Julia source code files that is
not used in the Evaluation Dataset or during practitioner verification. We selected
a set of 500 Julia source code files as it is a sample with 95% confidence interval,
5% margin of error, and 50% population proportion from the set of 4,592 source
code files. For the collected sample the first author inspects the source code files
as well as the alerts generated by both tools to calculate precision and recall. We
do not use the Evaluation Dataset of the dataset used by practitioner verification
as the rater in this regard.

Table 10 provides the findings. On average, JSAT’s precision and recall is respec-
tively, 3.7% and 35.9% higher than that of SEMGREP. Compared to that of JSAT,
the recall of SEMGREP is higher for unsafe invocation. Compared to that of JSAT,
the precision of SEMGREP is higher for the following categories: command injection,

Pre-
prin

t

24 Zhang et al.

Table 10: Comparison of JSAT and SEMGREP with respect to detecting security
weaknesses

Category JSAT SEMGREP
Count Precision Recall Precision Recall

Command Injection 31 0.93 0.84 1.00 0.64
Hard-Coded Password 14 0.87 0.50 0.00 0.00
Inadequate Exception Handling 248 0.88 0.97 0.95 0.70
Insecure HTTP 8 0.80 1.00 0.87 0.87
Suspicious Comment 154 0.83 0.96 0.97 0.86
Unsafe Invocation 45 1.00 0.86 1.00 0.93
Weak Encryption 8 0.53 1.00 0.80 0.50
Combined 508 0.83 0.87 0.80 0.64

inadequate exception handling, insecure HTTP, suspicious comment, and weak en-
cryption. In the case of SEMGREP, the precision and recall for detecting hard-coded
passwords is 0.0.

Findings related to Evaluation of JSAT: We observe an average precision
and recall of respectively, 0.99 and 0.99 for the sampled dataset. The aver-
age precision and recall drops to respectively, 0.71 and 0.94 when obtained
feedback from an industry practitioner. The practitioner found 198 of the
provided 379 security weaknesses to be true positives. These results show
that JSAT is capable of detecting security weaknesses that are relevant to
practitioners.

3.1.4 Dataset Collection

We answer RQ-2 by mining OSS repositories from GitHub. We select repositories
from GitHub to assess the prevalence of the identified security weaknesses and in-
crease generalizability of our findings, as organizations tend to host their popular
OSS projects on GitHub (Rahman et al., 2019c). That being said, OSS reposito-
ries can be susceptible to quality concerns since users often host repositories on
GitHub for personal purposes that do not adequately reflect professional software
development (Munaiah et al., 2017). As advocated by prior research (Munaiah
et al., 2017), OSS repositories need to be curated. We apply the following criteria
to curate the collected repositories:

– Criterion-1: At least 1% of the files in the repository must be Julia programs to
collect repositories that contain sufficient amount of Julia programs for analysis
(Murphy et al., 2020).

– Criterion-2: The repository is not a copy of another repository.

– Criterion-3: The repository has at least five contributors. Prior research (Hum-
batova et al., 2020) has also used the threshold of at least five contributors, with
the assumption that it helps to filter out repositories used for personal purposes.

– Criterion-4:. The repository must have at least two commits per month. Mu-
naiah et al. (2017) used the threshold of at least two commits per month to
determine which repositories have enough development activity.

Pre-
prin

t

Security Weaknesses in Julia 25

Table 11: Filtering of OSS Julia Repositories

GitHub
Initial Repository Count 11,981
Criterion-1 (1% Julia files) 11,981
Criterion-2 (Not a copy) 11,968
Criterion-3 (Contributors >=5) 950
Criterion-4 (Commits/Month >=2) 558
Final Count 558

Table 12: Attributes of Dataset

Category Data
Total Repositories 558
Total Commits 378,239
Total Developers 14,295
Time Span 01/2014 - 01/2023
Total Julia Source Code Files 25,008
Total Size (Lines of Code) 4,668,055
Total Count of Issue Reports 185,290
Total Count of Stars 117,673

As shown in Table 11, we answer RQ-2 using 25,008 programs collected from 558
OSS Julia project repositories downloaded from GitHub. We clone the master
branches of the 558 repositories. We provide attributes of the mined 558 reposito-
ries in Table 12. In all we collect 25,008 Julia source code files.

3.1.5 Sanity Check

Our evaluation of JSAT described in Section 3.1.1 is limited to the sampled dataset
for evaluation. We account for this limitation by creating another dataset called
the ‘sanity dataset’ that does not include any of the 126 OSS repositories used in
forming the sampled dataset or the open coding process described in Section 3.1.
With respect to accuracy, JSAT may have high accuracy on the sampled dataset,
but not on the complete dataset. We perform a sanity check using 430 Julia pro-
grams randomly-selected from 10 OSS Julia projects downloaded from GitHub
that are part of the final dataset described in Section 3.1.4. We manually inspect
each Julia program applying closed coding (Saldaña, 2015) to provide a mapping
between each file and a security weakness category. Next, we run JSAT on the
sanity dataset. Finally, we report the precision and recall of JSAT for the 430
randomly-selected files.

We locate 188 security weaknesses through the closed coding process. The sanity
dataset respectively, includes 18, 58, 78, 31, and 3 instances of unsafe invocation,
command injection, inadequate exception handling, suspicious comment, and weak
encryption. The precision for unsafe invocation, command injection, inadequate
exception handling, suspicious comment, and weak encryption is respectively, 0.94,
0.98, 0.98, 1.00, and 1.00. The recall for unsafe invocation, command injection,
inadequate exception handling, suspicious comment, and weak encryption is re-
spectively, 1.00, 1.00, 1.00, 1.00, and 1.00. The average precision and recall for the
security weakness categories regarding the sanity dataset and sampled dataset is

Pre-
prin

t

26 Zhang et al.

>= 0.98, which gives us the confidence of detecting all existing security weaknesses
in our datasets while generating false positives.

3.1.6 Quantifying Security Weakness Frequency

We answer RQ-2 by reporting:

– Count of security weaknesses;

– Weakness per repo using Equation 1;

– Weakness proportion using Equation 2; and

– Weakness density with Equation 3.

The three metrics characterize the frequency of security smells differently. The
smell density metric is more granular, and focuses on the content of a Julia source
code file as measured by how many smells occur for every 1,000 LOC. The weakness
proportion metric is less granular and focuses on the existence of at least one
of the seven security weakness categories. Finally, weakness per repo showcases
on average how many repositories with Julia source code files include security
weaknesses.

Weakness per Repo (i) =
of repositories with >= 1 security weaknesses

Total Julia repos in the dataset
∗ 100%

(1)

Weakness Proportion (i) =
of Julia files with >= 1 security weaknesses

Total Julia files in the dataset
∗ 100%

(2)

Weakness Density (i) =
Total # of security weaknesses

Total lines of code of Julia files / 1,000
(3)

3.2 Answer to RQ-2

In this section, we answer RQ-2: How frequently do the identified security weak-
nesses appear for Julia programs? Altogether, JSAT identifies 23,839 security weak-
nesses among the 25,008 Julia programs contained in the 558 OSS Julia programs
making up our dataset. The most frequent category is inadequate exception han-
dling. A complete breakdown of the findings is provided in Table 13.

Of the total 23,839 security weakness 8.18%, 5.00%, 0.11%, 54.7%, 2.13%, 29.24%,
and 0.64% are respectively, instances of unsafe invocation, command injection,
hard-coded password, inadequate exception handling, insecure HTTP, suspicious
comment, and weak encryption. For the 13,050 instances of inadequate exception
handling, 5.3%, 24.9%, and 69.8% respectively, are exposing stack traces, catching
generic exceptions, and throwing generic exceptions.

Pre-
prin

t

Security Weaknesses in Julia 27

Table 13: Answer to RQ-2: Frequency of Security Weaknesses In Julia Source Code
Files

Category Occurrences Weakness Density Weakness Proportion Weakness per Repo
Command Injection 1,193 0.3 1.51% 31.0%
Hard-Coded Password 27 0.01 0.06% 1.25%
Inadequate Exception
Handling

13,050 3.25 13.78% 86.0%

Insecure HTTP 508 0.13 0.59% 12.93%
Suspicious Comment 6,956 1.73 13.33% 78.31%
Unsafe Invocation 1,951 0.49 2.07% 23.11%
Weak Encryption 154 0.04 0.30% 6.81%
Combined 23,839 5.93 24.9% 95.34%

JSAT is run on the 25,008 Julia programs contained in the 558 OSS Julia repos-
itories. We identify 25,016 Julia source code files and 1,978 repositories for Julia
source code files. A complete breakdown of findings related to RQ-2 is presented in
Table 13 with Occurrences, Weakness Density, Weakness proportion, and Weak-
ness per Repo.

Occurrences: The occurrences of 7 categories are presented in the ‘Occurrences’
column of Table 13. The ‘Combined’ row presents the total security weaknesses.
We identify 23,839 security weakness mapping to 7 categories in 25,008 Julia source
code files. We observe inadequate exception handling is the most prevalent security
weakness category in Julia source code files, with 13,050 occurrences, followed by
suspicious comment with a 6,956 occurrences.

Weakness Density: In the ‘Weakness Density’ column of Table 13 we report
weakness density. The ‘Combined’ row presents the weakness density for total
Julia source code files when all 7 security weakness categories are considered. The
most frequent category is inadequate exception handling, for which we observe a
density of 3.25 per KLOC. Considering all 7 categories, the density is 5.93 per
KLOC.

Weakness Proportion: In the ‘Weakness Proportion’ column of Table 13 we
report weakness proportion. The ’Combined’ row presents the proportion of Julia
source code files in which at least one of the 7 categories appear. We observe 13.78%
and 13.33% of Julia source code files include inadequate exception handling and
suspicious comment. The proportion of hard-coded password, insecure HTTP, and
weak encryption appear in Julia source code files is less than 1%. Altogether, 24.9%
of Julia source code files include at least one security weakness.

Weakness per Repo: In the ‘Weakness per Repo’ column of Table 13 we report
weakness per repo. The ‘Combined’ row presents the proportion of repositories
with Julia source code files include at least one security weakness. We observe
the proportion of inadequate exception handling and suspicious comment occur in
repositories for Julia source code files exceeds 30.0%. As shown in the ‘Combined’
row, 95.34% of 558 repositories with Julia source code files include at least one
security weakness.

We further compute how many detected security weaknesses were with and with-
out def-use chain analysis. In Table 14, the ‘Reduction (%)’ column reports the
percentage of security weaknesses that we reduced by applying def-use chain anal-

Pre-
prin

t

28 Zhang et al.

Table 14: Reduction in Detected Security Weaknesses with Def-use Chain Analysis

Category With Def-
use

Without
Def-use

Reduction
(%)

Command Injection 1,193 1,314 9.2
Hard-Coded Password 27 284 90.5
Insecure HTTP 508 511 0.6
Unsafe Invocation 1,951 2,292 14.8
Weak Encryption 154 154 0.0
Total 3,833 4,555 15.8

ysis. We applied def-use chain analysis for five categories. Use of def-use chain
analysis resulted in a total reduction of 15.8% security weaknesses as detected by
JSAT. These results demonstrate that JSAT’s use of def-use chain analysis can help
in better detection of certain security weakness categories in Julia programs.

Answer to RQ-2: Altogether, we identify 23,839 security weaknesses in
25,008 Julia source code files. On average, we observe 24.9% of Julia source
code files to include at least one security weakness.

4 Discussion

We discuss the implications for both practitioners and researchers who work with
Julia programs in the following sections.

4.1 Implications for Practitioners

We discuss the implications of our empirical study for practitioners in the following
subsections:

4.1.1 Mitigation-related Recommendations

We advise practitioners to apply the following measures to mitigate detected se-
curity weaknesses:

– Command Injection: Practitioners can apply static analysis tools, such as JSAT
to detect security weaknesses related to command injection. When performing
input validation, consider all potentially relevant properties, including length,
type of input, range of acceptable values, missing inputs, extra inputs, and
syntax. Only accept inputs that strictly conform to specifications and reject
any input that does not strictly conform to specifications (MITRE, 2021g).

– Hard-Coded Password: Practitioners can apply static analysis tools, such as
JSAT and Snyk 7, to detect hard-coded passwords. We also recommend practi-
tioners to use secret management tools, such as Hashicorp Vault 8 to store and
retrieve passwords.

7 https://snyk.io/
8 https://www.vaultproject.io/

Pre-
prin

t

Security Weaknesses in Julia 29

– Inadequate Exception Handling:. We advocate for adequate exception handling
by not exposing stack traces and throwing/catching specific exceptions. We
recommend practitioners to avoid using broad or generic error handling.

– Insecure HTTP:. We advocate for better tool support so that programmers do
not abandon the process of setting up HTTP with SSL/TLS. Practitioners can
periodically check existence of secure HTTP endpoints, as a URL that uses
HTTP now can later be changed to HTTP with SSL/TLS.

– Suspicious Comments: Remove any comments that suggest the presence of bugs
or incomplete functionality before deploying a project (MITRE, 2021f).

– Unsafe Invocation: Practitioners can apply static analysis tools, such as JSAT,
to detect security weaknesses relating to unsafe invocation attacks. When per-
forming input validation, consider all potentially relevant properties, including
length, type of input, range of acceptable values, missing inputs, extra inputs,
and syntax (MITRE, 2021i). Allowlists and denylists can be useful for detecting
potential attacks. An ‘allowlist’ is a list of assets, such as hosts, email addresses,
or applications that are authorized to be present or active on a system according
to a well defined baseline, and a ‘denylist’ is a list of assets that are known to
be associated with malicious activity (Sedgewick et al., 2015; NIST, 2021a).

– Weak Encryption: Practitioners can use cryptography algorithms recommended
by the National Institute of Standards and Technology (Baker, 2020). CWE
(MITRE, 2021c,d) recommends that sensitive data “should be encrypted with
keys that are at least 128 bits in length for adequate security”.

4.1.2 Prioritization-related Recommendations

Results reported in Table 2 have implications related to prioritization. Four of
the seven identified security weakness categories have a high likelihood of being
exploited and therefore, those security weakness categories can be prioritized first
for mitigation. More concretely, JSAT can be further extended to not only report
the location of the security weakness, but also report that the detected security
weakness has a ‘high’, ‘medium’, or ‘low’ likelihood of being exploited. Further-
more, when applying code review, practitioners can prioritize for security weakness
categories using the results from Table 2. Because of our derived taxonomy, prac-
titioners do not need to hire a security expert to manually inspect Julia programs.

4.1.3 Propagation-related Implications

We observe from Table 13 that security weaknesses exist in OSS Julia programs
hosted on GitHub. Our findings demonstrate the prevalence of security weaknesses
in Julia programs. The prevalence of security weaknesses in OSS Julia programs
could potentially trigger the propagation of security weaknesses in Julia project
development, as unaware Julia practitioners may consider security weakness usage
as an acceptable practice. Based on our findings and the afore-mentioned dis-
cussion, we advocate for detection and mitigation of security weaknesses in Julia
programs. Our security static analysis tool JSAT can be helpful to locate where
the 7 security weakness categories appear in Julia programs. Practitioners can use
data presented in Tables 13 as a security weakness benchmark for Julia programs.

Pre-
prin

t

30 Zhang et al.

4.1.4 Usage of JSAT in Julia-based Software Development

JSAT can be used in two ways as discussed as follows:

– JSAT can be used to directly to scan any Julia program upon completion of
writing code. The scan can be conducted manually by executing the tool or
through a ‘git hook’ 9.

– JSAT can be used as a plugin in the IDE by creating a wrapper around the two
three components namely, ‘parser’, ‘rule matcher’, and ‘analyzer’. The detec-
tion of security weaknesses is dependent on JSAT’s rule matching ability and
data flow analysis. JSAT relies on a specific set of patterns that prohibits gen-
eration of a lot of alarms. Therefore, when applied in practice JSAT is expected
to not generate a lot of alarms.

4.2 Future Work

We provide the following directions as future work:

– Empirical Studies: This paper provides the ground-work to conduct empirical
studies that will investigate the reasons that attribute to security weaknesses
in Julia programs. Future research can investigate to what extent these reasons
are applicable for Julia programs. Researchers can survey practitioners develop-
ing Julia programs to assess practitioner perspective of the identified 7 security
weakness categories. More sophisticated information flow analysis can be de-
veloped and performed based on the work done for this paper. Furthermore,
researchers can investigate if security weaknesses mentioned in code snippets
from online forums, like Stack Overflow or the devoted Julia Discourse forum
(Julia, 2021a), propagate into OSS Julia project development.

– A Generalizable Framework: Julia is still an emerging programming language,
and more language features are expected to be introduced as time progresses.
To meet the needs of this evolving programming language, researchers and tool-
smiths can build on top of JSAT to propose a framework that can detect all
categories of security weaknesses that can occur in Julia programs. One ap-
proach of constructing a framework of this nature is to rely on CWE entries,
and perform a holistic analysis of Julia programs that are publicly available on
GitHub.

– Repairs of security weaknesses: Currently, JSAT does not provide any recom-
mendations on how to repair detected security weaknesses. As future work,
researchers can explore if template-based techniques (Gazzola et al., 2019) or
large language models, such as ChatGPT (OpenAI, 2022) are capable of repair-
ing security weaknesses in Julia programs.

5 Threats to Validity

We discuss the limitations of this paper as following:

9 https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

Pre-
prin

t

Security Weaknesses in Julia 31

– Conclusion Validity: Our derivation of security weakness categories and the rules
to detect each category are limited to the files in the dataset that we used in
Section 2.2.2. We mitigate these limitations by applying qualitative analysis with
4,592 Julia programs used in 126 open-source Julia programs (Murphy et al.,
2020) to identify security weakness categories. The derived security weakness
categories are susceptible to rater bias for both the open coding and closed
coding processes (Saldaña, 2015). We mitigate this limitation by performing
rater verification. We acknowledge that the derived rules may not capture all
possible variants of a security weakness category as these rules are derived from
open coding. As described in Section 2.2.2, we use 4,592 Julia programs mined
from 126 repositories. Our rules are limited to this set of Julia programs.

We acknowledge that JSAT may generate false positives when applied to other
datasets. We mitigate this limitation by evaluating JSAT using both a sampled
dataset and a sanity dataset, reported in Section 3.1, Section 3.1.2, and Section
13, and Section 3.1.5 respectively. We further mitigate the possibility of false
positives by employing def-use chain analysis as a part of JSAT’s functionality to
reduce the number of false positives for the security weakness categories: com-
mand injection, hard-coded password, unsafe invocation, and weak encryption,
reported in Section 3.1.1. As we track the flow of data, JSAT is susceptible to
generate false positives for programs that use path-sensitive data flow analysis
even after applying def-use chain analysis.

The datasets used for evaluating JSAT are limited to the repositories that we
have mined and may not be reflective of other data sources that are hosted
on proprietary and GitLab code hosting platforms. Furthermore, we have used
one practitioner to seek practitioner feedback. As such the reported detection
accuracy for JSAT is subject to vary when used by other practitioners.

JSAT applies data flow analysis to mitigate false positives but does not apply
control flow analysis. As a result, if a security weakness is mitigated by control
flow, e.g., within an if-else block, then JSAT will report false positive instances.
This limitation can impact the reported detection accuracy for JSAT.

– External Validity The datasets used for this paper are all constructed by mining
OSS repositories from GitHub. Our findings may not generalize for proprietary
datasets. Our findings may also not generalize for other OSS repositories that
are not included in our dataset.

– Internal Validity: While constructing the sampled dataset for evaluation and
sanity check datasets for evaluating JSAT, we acknowledge that we may have
unconscious expectations surrounding the outcomes that could potentially im-
pact the closed coding process (Saldaña, 2015). These implicit expectations is
applicable for both: the initial and additional rounds of qualitative analysis.

We have applied a multi-phase and multi-rater approach for deriving our tax-
onomy of security weaknesses. While this approach mitigates rater bias, we
acknowledge that this approach can be a source of rater inconsistency.

Pre-
prin

t

32 Zhang et al.

6 Related Work

We discuss relevant related work in this section.

6.1 Prior Research Related to Julia

Our paper is related to prior research that has conducted research related to
Julia-related software development. Rahman et al. (2023a) derived a defect tax-
onomy for Julia programs. Innes et al. (2019) constructed and evaluated ‘Zygote’,
a tool to solve differential equations. Churavy (Churavy, 2019) constructed and
evaluated a debugging tool called ‘Cthulhu’ that uses static and dynamic anal-
ysis. Comparison of Julia program performance to that of other programming
languages has also been investigated. Gibson (2017) argued that Julia has multi-
ple benefits over general purpose programming languages with respect to graphic
rendering capabilities, user experience, and program execution time. Tomasi et
al. (2018) documented Julia programs to have comparable performance compared
to C++ programs. They (Tomasi and Giordano, 2018) also advocated for Julia’s
use in astrophysics research as Julia provides JIT compilation, produces opti-
mized machine code with LLVM, and provides support for missing data values.
Januszek et al. (2018) compared the performance of five programming languages
with O(n3) algorithms and observed superior computational efficiency for Julia
programs compared to that of Wolfram, R, Python, and C# programs. For par-
allel programming, Gmys et al. (2020) found Julia to be better than Python with
respect to performance, and better than C programs with respect to productivity.
Sells (2020) used an open-source, industry-standard, missile and rocket simula-
tion software called ‘Mini-Rocket’ to assess and benchmark productivity metrics
of Julia against Python, Java, and C++. Their (Sells, 2020) results showed that
Julia required far less lines of code than the other three languages and was sec-
ond best only to Python in terms of ‘ease-of-coding’ productivity. Axillus (2020)
compared the execution times of Julia and Python to perform machine learning
tasks and reported that Julia was 1.25∼1.5 times faster than Python during the
GPU-accelerated DNN experiments and also outperformed Python in 5 out of 8
k-nearest neighbor experiments. Dogaru et al. (2015) observed that Julia’s base
JIT implementation was 157.5 times faster than raw Python code and 3.09 times
faster than JIT-assisted Python code.

6.2 Prior Research Related to Security Weaknesses

Our paper is also related to prior research that has investigated security weaknesses
for other languages, such as C++, Python, and languages used for configuration
scripts. We briefly describe relevant prior research as follows:

– Security Weaknesses in C++ Programs: In separate publications, Verdi
et al. (2022) and Zhang et al. (2022) conducted empirical studies of security
weaknesses in C++ programs that are available on Stack Overflow. Here they
identified security weaknesses that map to CWE entries by using a tool called
CPPCheck. Zhang et al. (2022) reported the most frequently occurring security
weakness to be CWE-908, i.e., the use of an uninitialized resource. Unlike Verdi

Pre-
prin

t

Security Weaknesses in Julia 33

et al. 2022, they identified security weaknesses that map to CWE entries by
using a tool called SourcererCC. Verdi et al. (2022) reported the most frequently
occurring category to be CWE-1006, i.e., bad coding practices. In another paper,
Alnaeli et al. (2016) used to a tool called UnsafeDetector to investigate security
weaknesses in 15 software systems developed in C and C++, and observed
‘strcmp’ to be used most frequently.

– Security Weaknesses in Configuration Scripts: Configuration scripts are
used to automatically manage computing infrastructure with dedicated pro-
gramming languages, such as Ansible, Chef, and Puppet. In separate publica-
tions, Rahman et al. derived taxonomies for Ansible (Rahman et al., 2021a),
Chef (Rahman et al., 2021a), and Puppet (Rahman et al., 2019b). Across all
these studies (Rahman et al., 2021a, 2019b), Rahman et al. found hard-coded
secrets to be the most frequently occurring category (Rahman and Williams,
2021). In all the of the afore-mentioned publications security weakness categories
are derived through open coding. Rahman et al.’s security weakness detection
tools were improved by Ferreira et al. (2023) and Opendebeeck et al. (2022) for
Ansible as well as by Reis et al. (2023) for Puppet.

– Security Weaknesses in Container Orchestration: In recent work, Rah-
man et al. (2023b) derived a taxonomy for configuration files used for con-
tainer orchestration. In particular, Rahman et al. (2023b) built on existing
work (Shamim et al., 2020) to derive security misconfigurations for Kubernetes
manifests. Here, the authors detected security misconfigurations by deriving a
taxonomy of security misconfigurations.

– Security Weaknesses in Python Programs: Rahman et al. (2019d) mined
5,822 Python Gists and found command injection to be the most frequently
occurring security weakness category. Jukka et al. (2021) mined PyPI packages
and reported inadequate exception handling to be the most frequently occurring
category. Bhuiyan et al. (2022) studied Python-based machine learning projects,
and found use of potentially dangerous functions to be the most frequently
occurring category. Rahman et al. (2019a) mined 44,966 Stack Overflow answers
and found code injection to be the most frequently occurring category. All of
these publications use a security static analysis tool called ‘Bandit’ to identify
security weaknesses that map to CWE entries.

6.3 Prior Research Related to Deep Learning for Classification Tasks

Zheng et al. (2021) used deep convolutional network to identify unauthorized
broadcasting in radio communications. In separate publications, Zheng et al. used
deep learning to automatically classify automated modulation (2022; 2023) and
constellation images (2024) used in wireless networks. Chakraborty et al. (2022),
Fu et al. (2022), and Hin et al. (2022) respectively, used deep learning, stacking
transformers, and graph neural networks to detect vulnerabilities in source code.

Summary: The above-mentioned discussion showcases the prevalence of empiri-
cal research in security weakness detection for wide-range of general-purpose pro-
gramming languages as well as domain-specific languages. None of these research
addresses the secure development aspects of Julia-based software. Furthermore,

Pre-
prin

t

34 Zhang et al.

the research studies that have investigated Julia focus on performance and usabil-
ity but do not address the need of deriving a taxonomy for security weaknesses and
developing a tool to detect them. In our paper, we have addressed this research
gap by:

1. Using qualitative analysis to derive a taxonomy of security weaknesses;

2. Using def-use chain analysis and rule matching to detect security weaknesses
in Julia source code files; and

3. Conducting an empirical study of security weaknesses in OSS Julia source code
files.

7 Conclusion

Julia is an emerging programming language used both in scientific computing and
product development. Julia is designed to have similar syntax to a scripting lan-
guage and similar program execution speed with low-level memory access to a com-
piled language, such as C. Despite reported benefits, Julia programs can include
security weaknesses. Security weaknesses found in Julia programs can provide ma-
licious users means to conduct attacks that can lead to serious consequences. We
conduct an empirical study applying open coding to identify 7 security weakness
categories: command injection, hard-coded password, inadequate exception han-
dling, insecure HTTP, suspicious comments, unsafe invocation, and weak encryp-
tion. We construct and evaluate a static analysis tool called JSAT to automatically
identify security weaknesses in Julia programs. Using JSAT, we analyze 558 OSS
Julia project repositories, consisting of 25,008 Julia programs, and identify 23,839
security weaknesses.

Based on our empirical study, we advocate (i) practitioners to apply rigorous
inspection efforts as part of their Julia program development process, and (ii) re-
searchers to focus further on development and application of security static analysis
tools, such as JSAT, so that security weaknesses in Julia programs can be detected
before they are being deployed for production. We hope this paper will advance
the domain of security research for Julia programs as it continues to emerge as a
popular programming language.

Future Directions for Exploration Our paper provides groundwork for future di-
rections to explore in the following areas:

– Enhanced analysis techniques: In our paper, we have applied data flow analysis
within a Julia files. Researchers can further explore if other artifacts, such
as Julia binaries can be used for applying data flow analysis for identifying
more weaknesses efficiently. Development of such techniques can also lead to
new research in other domains, such as Julia-related performance analysis and
Julia-related defect detection.

– Inclusion of more weakness categories: Our taxonomy includes 7 weaknesses,
which may not be comprehensive. We invite researchers to apply our method-
ology on more datasets to identify more weakness categories not reported in
our paper.

Pre-
prin

t

Security Weaknesses in Julia 35

– Replication studies for further substantiation: Similar to prior research in IaC,
we invite researchers to conduct replication of our research in exact as well as
different settings. These replications can challenge or substantiate our findings
in this novel domain of Julia-related research.

– Industrial experience reports: While JSAT shows promise with respect to de-
tection of security weaknesses, the tool needs to be deployed in an industrial
setting where a team of practitioners will use the tools and provide their ex-
perience in using the tool.

– Systematic comparison: As time progresses, we forecast that there will be more
tools that can identify security weaknesses in Julia programs. Once the tool
landscape is more mature, researchers can conduct systematic evaluation of
these Julia-related tools, similar to other domains, such as smart contracts.

Data Availability Statement: Dataset and source code used in our paper is
publicly available online (Rahman et al., 2023c).

Acknowledgements We thank the PASER group at Auburn University for their valuable
feedback. This research was partially funded by the U.S. National Science Foundation (NSF)
Award # 2247141, Award # 2310179, Award # 2312321, and the U.S. National Security
Agency (NSA) Award # H98230-21-1-0175. We thank Farzana Ahamed Bhuiyan for her help
in creating the sampled dataset. We also thank Anceito Rivera for his help in conducting rater
verification. This work has benefited from Dagstuhl Seminar 23181 “Empirical Evaluation of
Secure Development Processes.”

Declarations - Funding and/or Conflicts of interests/Competing inter-
ests

Funding and/or Conflicts of interests/Competing interests We, the au-
thors have no conflict of interest. This research was partially funded by the U.S.
National Science Foundation (NSF) Award # 2247141, Award # 2312321, and the
U.S. National Security Agency (NSA) Award # H98230-21-1-0175.

References

Julia joins petaflop club. https://www.hpcwire.com/off-the-wire/julia-joins-
petaflop-club/, 2017.

Julia: come for the syntax, stay for the speed. https://www.nature.com/articles/
d41586-019-02310-3, 2019.

The Julia language. https://docs.julialang.org/en/v1/, 2022.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques. Addison
wesley, 7(8):9, 1986.

S. M. Alnaeli, M. Sarnowski, M. S. Aman, K. Yelamarthi, A. Abdelgawad, and
H. Jiang. On the evolution of mobile computing software systems and c/c++
vulnerable code: Empirical investigation. In 2016 IEEE 7th Annual Ubiqui-
tous Computing, Electronics & Mobile Communication Conference (UEMCON),
pages 1–7. IEEE, 2016.

Pre-
prin

t

36 Zhang et al.

aviatesk. aviatesk/jet.jl, 2023. URL https://juliapackages.com/p/jet.

V. Axillus. Comparing Julia and Python: An investigation of the perfor-
mance on image processing with deep neural networks and classification,
2020. URL https://www.diva-portal.org/smash/record.jsf?pid=diva2\%
3A1389123\&dswid=5389.

E. Baker. Guideline for Using Cryptographic Standards in the Federal Gov-
ernment: Cryptographic Mechanisms. 03 2020. doi: https://doi.org/10.6028/
NIST.SP.800-175Br1.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65–98, 2017. URL https://
epubs.siam.org/doi/10.1137/141000671.

J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek, and
L. Zoubritzky. Julia: Dynamism and performance reconciled by design. Pro-
ceedings of the ACM on Programming Languages, 2:1–23, 2018a. URL https:
//dl.acm.org/doi/abs/10.1145/3276490.

J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek, and
L. Zoubritzky. Julia: Dynamism and performance reconciled by design. Proc.
ACM Program. Lang., 2(OOPSLA), Oct. 2018b. doi: 10.1145/3276490. URL
https://doi.org/10.1145/3276490.

F. A. Bhuiyan, S. Prowell, H. Shahriar, F. Wu, and A. Rahman. Shifting left
for machine learning: An empirical study of security weaknesses in super-
vised learning-based projects. In 2022 IEEE 46th Annual Computers, Soft-
ware, and Applications Conference (COMPSAC), pages 798–808, 2022. doi:
10.1109/COMPSAC54236.2022.00130.

D. Boxler. Static taint analysis tools to detect information flows. 2018.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray. Deep learning based vulnera-
bility detection: Are we there yet? IEEE Transactions on Software Engineering,
48(9):3280–3296, 2022. doi: 10.1109/TSE.2021.3087402.

V. V. R. Churavy. Transparent distributed programming in Julia. PhD thesis,
Massachusetts Institute of Technology, 2019. URL https://dspace.mit.edu/
handle/1721.1/122755.

J. Cohen. A coefficient of agreement for nominal scales. Educational and Psy-
chological Measurement, 20(1):37–46, 1960. doi: 10.1177/001316446002000104.
URL http://dx.doi.org/10.1177/001316446002000104.

J. Computing. Julia computing celebrates 10 years with retrospec-
tive, 2022. URL https://www.hpcwire.com/off-the-wire/julia-computing-
celebrates-10-years-with-retrospective/.

cvedetails. Vulnerability details : Cve-2021-4048. https://www.cvedetails.com/
cve/CVE-2021-4048/, 2021. [Online; accessed 19-June-2024].

I. Dogaru and R. Dogaru. Using Python and Julia for efficient implementation
of natural computing and complexity related algorithms. In 2015 20th Inter-
national Conference on Control Systems and Computer Science, pages 599–

Pre-
prin

t

Security Weaknesses in Julia 37

604. IEEE, 2015. URL https://ieeexplore.ieee.org/abstract/document/
7168488.

E. Farhana, N. Imtiaz, and A. Rahman. Synthesizing program execution time
discrepancies in julia used for scientific software. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 496–500,
2019.

M. Fu and C. Tantithamthavorn. Linevul: A transformer-based line-level vulnera-
bility prediction. In Proceedings of the 19th International Conference on Mining
Software Repositories, pages 608–620, 2022.

L. Gazzola, D. Micucci, and L. Mariani. Automatic software repair: A survey.
IEEE Transactions on Software Engineering, 45(1):34–67, 2019. doi: 10.1109/
TSE.2017.2755013.

J. Gibson. The julia programming language: the future of scientific comput-
ing. APS, pages L39–011, 2017. URL https://ui.adsabs.harvard.edu/abs/
2017APS..DFDL39011G/abstract.

J. Gmys, T. Carneiro, N. Melab, E.-G. Talbi, and D. Tuyttens. A comparative
study of high-productivity high-performance programming languages for parallel
metaheuristics. Swarm and Evolutionary Computation, page 100720, 2020. URL
https://www.sciencedirect.com/science/article/abs/pii/S22106.

M. A. Heroux, J. M. Willenbring, and M. N. Phenow. Improving the develop-
ment process for cse software. In 15th EUROMICRO International Conference
on Parallel, Distributed and Network-Based Processing (PDP’07), pages 11–17,
2007. doi: 10.1109/PDP.2007.51.

E. Heymann, B. P. Miller, A. Adams, K. Avila, M. Krenz, J. R. Lee, and
S. Peisert. Guide to securing scientific software, June 2023. URL https:
//doi.org/10.5281/zenodo.8137009. This document is a product of Trusted
CI. Trusted CI is supported by the National Science Foundation under Grant
#1920430. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

G. Hickey and C. Kipping. A multi-stage approach to the coding of data from
open-ended questions. Nurse researcher, 4(1):81–91, 1996.

D. Hin, A. Kan, H. Chen, and M. A. Babar. Linevd: Statement-level vulnerability
detection using graph neural networks. In Proceedings of the 19th international
conference on mining software repositories, pages 596–607, 2022.

N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and P. Tonella.
Taxonomy of real faults in deep learning systems. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 1110–1121,
2020. doi: 10.1145/3377811.3380395.

M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah,
and W. Tebbutt. A differentiable programming system to bridge machine
learning and scientific computing. CoRR, abs/1907.07587, 2019. URL

Pre-
prin

t

38 Zhang et al.

https://deepai.org/publication/a-differentiable-programming-system-
to-bridge-machine-learning-and-scientific-computing.

T. Januszek and M. Pleszczyński. Comparative analysis of the effi-
ciency of Julia language against the other classic programming lan-
guages. Silesian Journal of Pure and Applied Mathematics, 8, 2018.
URL https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-
c4339453-4519-4b92-a673-307638a50cb1.

JLHUB. Julia manual - function list and reference. https://www.jlhub.com/
julia/manual/en/, 2024. [Online; accessed 19-July-2024].

Julia. Parallel supercomputing for astronomy, 2017. URL https://
juliacomputing.com/case-studies/celeste.html.

Julia. Programming languages: Developers reveal what they love and loathe, and
what pays best, 2020. URL https://www.zdnet.com/article/programming-
languages-developers-reveal-what-they-love-and-loathe-and-what-
pays-best/.

Julia. Discourse, 2021a. URL https://discourse.julialang.org/.

Julia. The julia programming language, 2021b. URL https:
//docs.julialang.org/en/v1/base/c/\#Base.unsafe_convert.

Julia, 2021c. URL https://docs.julialang.org/en/v1/base/c/
\#Base.unsafe_convert.

julia. Julia Documentation, 2024. URL https://web.mit.edu/julia_v0.6.2/
julia/share/doc/julia/html/en/index.html.

julia-vscode. julia-vscode/staticlint.jl, 2023. URL https://github.com/julia-
vscode/StaticLint.jl/tree/master.

D. Kelly, R. Sanders, et al. Assessing the quality of scientific software. In First
International Workshop on Software Engineering for Computational Science and
Engineering. Citeseer, 2008.

D. Kelly, S. Smith, and N. Meng. Software engineering for scientists. Computing
in Science & Engineering, 13(05):7–11, 2011.

J. R. Landis and G. G. Koch. The measurement of observer agreement for cate-
gorical data. Biometrics, 33(1):159–174, 1977. ISSN 0006341X, 15410420. URL
http://www.jstor.org/stable/2529310.

R. Milewicz, J. Carver, S. Grayson, and T. Atkison. A secure future for open-source
computational science and engineering. Computing in Science and Engineering,
24(4):65–69, 2022. doi: 10.1109/MCSE.2022.3221877.

MITRE. Cwe-311: Missing encryption of sensitive data, 2021a. URL https:
//cwe.mitre.org/data/definitions/311.html.

MITRE. Cwe-319: Cleartext transmission of sensitive information, 2021b. URL
https://cwe.mitre.org/data/definitions/319.html.

MITRE. Cwe-321: Use of hard-coded cryptographic key, 2021c. URL https:
//cwe.mitre.org/data/definitions/321.html.

Pre-
prin

t

Security Weaknesses in Julia 39

MITRE. Cwe-327: Use of a broken or risky cryptographic algorithm, 2021d. URL
https://cwe.mitre.org/data/definitions/327.html.

MITRE. Cwe-396: Declaration of catch for generic exception, 2021e. URL https:
//cwe.mitre.org/data/definitions/396.html.

MITRE. Cwe-546: Suspicious comment, 2021f. URL https://cwe.mitre.org/
data/definitions/546.html.

MITRE. Cwe-78: Improper neutralization of special elements used in an os com-
mand (’os command injection’), 2021g. URL https://cwe.mitre.org/data/
definitions/78.html.

MITRE. Cwe-798: Use of hard-coded credentials, 2021h. URL https://
cwe.mitre.org/data/definitions/798.html.

MITRE. Cwe-94: Improper control of generation of code (’code injection’), 2021i.
URL https://cwe.mitre.org/data/definitions/94.html.

MITRE. Common weakness enumeration, 2021j. URL https://cwe.mitre.org/.

MITRE. Cwe-754: Improper check for unusual or exceptional conditions, 2023.
URL https://cwe.mitre.org/data/definitions/754.html.

H. Mohammad Mehedi and A. Rahman. As code testing: Characterizing test
quality in open source ansible development. In 2022 15th IEEE Conference on
Software Testing, Verification and Validation (ICST), Los Alamitos, CA, USA,
apr 2022. IEEE Computer Society. URL https://akondrahman.github.io/
publication/icst2022.

C. Morris. Some lessons learned reviewing scientific code. In Proc 30th Intl Con-
ference Software Eng (iCSE08), 2008.

N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan. Curating GitHub for en-
gineered software projects. Empirical Software Engineering, pages 1–35, 2017.
ISSN 1573-7616. doi: 10.1007/s10664-017-9512-6. URL http://dx.doi.org/
10.1007/s10664-017-9512-6.

J. Murphy, E. T. Brady, S. I. Shamim, and A. Rahman. A curated dataset of
security defects in scientific software projects. In Proceedings of the 7th Sym-
posium on Hot Topics in the Science of Security, HotSoS ’20, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450375610. doi:
10.1145/3384217.3384218. URL https://doi.org/10.1145/3384217.3384218.

NIST. Special publication 800-63c conformance criteria, 2021a. URL
https://www.nist.gov/system/files/documents/2021/04/27/800-63C\%
20Conformance\%20Criteria_042621.pdf.

NIST. Source code security analyzers, 2021b. URL https://www.nist.gov/itl/
ssd/software-quality-group/source-code-security-analyzers.

R. Opdebeeck, A. Zerouali, and C. De Roover. Smelly variables in ansible infras-
tructure code: Detection, prevalence, and lifetime. In 2022 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 2022.

Pre-
prin

t

40 Zhang et al.

OpenAI. ChatGPT: Optimizing Language Models for Dialogue. https://
openai.com/blog/chatgpt/, 2022. [Online; accessed 12-July-2023].

OWASP. Command injection, 2021a. URL https://owasp.org/www-community/
attacks/Command_Injection.

OWASP. Testing for weak encryption, 2021b. URL
https://owasp.org/www-project-web-security-testing-
guide/latest/4-Web_Application_Security_Testing/09-
Testing_for_Weak_Cryptography/04-Testing_for_Weak_Encryption.

OWASP. Source code analysis tools, 2021c. URL https://owasp.org/www-
community/Source_Code_Analysis_Tools.

J. M. Perkel. Julia: come for the syntax, stay for the speed. 2019.

A. Rahman and L. Williams. Different kind of smells: Security smells in in-
frastructure as code scripts. IEEE Security Privacy, 19(3):33–41, 2021. doi:
10.1109/MSEC.2021.3065190.

A. Rahman, E. Farhana, and N. Imtiaz. Snakes in paradise?: Insecure python-
related coding practices in stack overflow. In 2019 IEEE/ACM 16th Inter-
national Conference on Mining Software Repositories (MSR), pages 200–204,
2019a. doi: 10.1109/MSR.2019.00040.

A. Rahman, C. Parnin, and L. Williams. The seven sins: security smells in infras-
tructure as code scripts. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), pages 164–175. IEEE, 2019b.

A. Rahman, C. Parnin, and L. Williams. The seven sins: Security smells in in-
frastructure as code scripts. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), pages 164–175, 2019c. doi: 10.1109/
ICSE.2019.00033.

A. Rahman, M. R. Rahman, C. Parnin, and L. Williams. Security smells in ansible
and chef scripts: A replication study. ACM Trans. Softw. Eng. Methodol., 30(1),
Jan. 2021a. ISSN 1049-331X. doi: 10.1145/3408897. URL https://doi.org/
10.1145/3408897.

A. Rahman, R. Rahman, C. Parnin, and L. Williams. Security smells in ansible and
chef scripts: A replication study. ACM Transactions on Software Engineering
and Methodology, 30:1–31, 01 2021b. doi: 10.1145/3408897.

A. Rahman, D. B. Bose, R. Shakya, and R. Pandita. Come for syntax, stay
for speed, understand defects: An empirical study of defects in julia programs.
Empirical Software Engineering, 28(93):33, 2023a.

A. Rahman, S. I. Shamim, D. B. Bose, and R. Pandita. Security misconfigurations
in open source kubernetes manifests: An empirical study. ACM Trans. Softw.
Eng. Methodol., 32(4), may 2023b. ISSN 1049-331X. doi: 10.1145/3579639. URL
https://doi.org/10.1145/3579639.

A. Rahman, Y. Zhang, and J. Murphy. Verifiability package for paper. https://
figshare.com/s/0e2c77afd8215cbd3be2, 2023c. [Online; accessed 15-Oct-2023].

Pre-
prin

t

Security Weaknesses in Julia 41

M. R. Rahman, A. Rahman, and L. Williams. Share, but be aware: Se-
curity smells in python gists. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 536–540, 2019d. doi:
10.1109/ICSME.2019.00087.

S. Reis, R. Abreu, M. d’Amorim, and D. Fortunato. Leveraging practitioners’ feed-
back to improve a security linter. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’22, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9781450394758. doi:
10.1145/3551349.3560419. URL https://doi.org/10.1145/3551349.3560419.

J. Ruohonen, K. Hjerppe, and K. Rindell. A large-scale security-oriented static
analysis of python packages in pypi. In 2021 18th International Confer-
ence on Privacy, Security and Trust (PST), pages 1–10, 2021. doi: 10.1109/
PST52912.2021.9647791.

N. Saavedra and J. a. F. Ferreira. Glitch: Automated polyglot security smell detec-
tion in infrastructure as code. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’22, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN 9781450394758. doi:
10.1145/3551349.3556945. URL https://doi.org/10.1145/3551349.3556945.

J. Saldaña. The coding manual for qualitative researchers. Sage, 2015.

A. Sedgewick, M. Souppaya, and K. Scarfone. Guide toApplicationWhitelisting.
10 2015. doi: http://dx.doi.org/10.6028/NIST.SP.800-167.

R. Sells. Julia programming language benchmark using a flight simula-
tion. In 2020 IEEE Aerospace Conference, pages 1–8, 2020. doi: 10.1109/
AERO47225.2020.9172277.

M. I. Shamim, F. A. Bhuiyan, and A. Rahman. Xi commandments of ku-
bernetes security: A systematization of knowledge related to kubernetes se-
curity practices. In 2020 IEEE Secure Development (SecDev), pages 58–64,
Los Alamitos, CA, USA, sep 2020. IEEE Computer Society. doi: 10.1109/
SecDev45635.2020.00025.

M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer. Todo or to bug:
Exploring how task annotations play a role in the work practices of software
developers. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, page 251–260, New York, NY, USA, 2008. Association
for Computing Machinery. ISBN 9781605580791. doi: 10.1145/1368088.1368123.
URL https://doi.org/10.1145/1368088.1368123.

A. Sweeney, K. E. Greenwood, S. Williams, T. Wykes, and D. S. Rose. Hearing
the voices of service user researchers in collaborative qualitative data analysis:
the case for multiple coding. Health Expectations, 16(4):e89–e99, 2013.

L. Tan, D. Yuan, and Y. Zhou. Hotcomments: How to make program comments
more useful? 01 2007.

M. Tomasi and M. Giordano. Towards new solutions for scientific computing: the
case of Julia. arXiv preprint arXiv:1812.01219, 2018. URL https://arxiv.org/
abs/1812.01219.

Pre-
prin

t

42 Zhang et al.

M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and A. K. Motlagh. An
empirical study of c++ vulnerabilities in crowd-sourced code examples. IEEE
Transactions on Software Engineering, 48(5):1497–1514, 2022. doi: 10.1109/
TSE.2020.3023664.

B. Wallace. Compromising an entire julia cluster, 2016. URL https:
//blogs.blackberry.com/en/2016/05/compromising-an-entire-julia-
cluster.

F. Zappa Nardelli, J. Belyakova, A. Pelenitsyn, B. Chung, J. Bezanson, and
J. Vitek. Julia subtyping: a rational reconstruction. Proceedings of the ACM on
Programming Languages, 2:1–27, 2018.

H. Zhang, S. Wang, H. Li, T.-H. Chen, and A. E. Hassan. A study of c/c++ code
weaknesses on stack overflow. IEEE Transactions on Software Engineering, 48
(7):2359–2375, 2022. doi: 10.1109/TSE.2021.3058985.

Q. Zheng, P. Zhao, D. Zhang, and H. Wang. Mr-dcae: Manifold regularization-
based deep convolutional autoencoder for unauthorized broadcasting identifica-
tion. International Journal of Intelligent Systems, 36(12):7204–7238, 2021.

Q. Zheng, P. Zhao, H. Wang, A. Elhanashi, and S. Saponara. Fine-grained mod-
ulation classification using multi-scale radio transformer with dual-channel rep-
resentation. IEEE Communications Letters, 26(6):1298–1302, 2022.

Q. Zheng, X. Tian, Z. Yu, Y. Ding, A. Elhanashi, S. Saponara, and K. Kpalma.
Mobilerat: A lightweight radio transformer method for automatic modulation
classification in drone communication systems. Drones, 7(10):596, 2023.

Q. Zheng, S. Saponara, X. Tian, Z. Yu, A. Elhanashi, and R. Yu. A real-time con-
stellation image classification method of wireless communication signals based
on the lightweight network mobilevit. Cognitive Neurodynamics, 18(2):659–671,
2024.

Pre-
prin

t

