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Abstract Context : Despite being beneficial for managing computing infras-
tructure at scale, Ansible scripts include security weaknesses, such as hard-
coded passwords. Security weaknesses can propagate into tasks, i.e., code con-
structs used for managing computing infrastructure with Ansible. Propagation
of security weaknesses into tasks makes the provisioned infrastructure suscep-
tible to security attacks. A systematic characterization of task infection, i.e.,
the propagation of security weaknesses into tasks, can aid practitioners and re-
searchers in understanding how security weaknesses propagate into tasks and
derive insights for practitioners to develop Ansible scripts securely.

Objective: The goal of the paper is to help practitioners and researchers
understand how Ansible-managed computing infrastructure is impacted by se-
curity weaknesses by conducting an empirical study of task infections in Ansible
scripts.

Methodology : We conduct an empirical study where we quantify the fre-
quency of task infections in Ansible scripts. Upon detection of task infections,
we apply qualitative analysis to determine task infection categories. We also
conduct a survey with 23 practitioners to determine the prevalence and sever-
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ity of identified task infection categories. With logistic regression analysis, we
identify development factors that correlate with presence of task infections.

Results: In all, we identify 1,805 task infections in 27,213 scripts. We iden-
tify six task infection categories: anti-virus, continuous integration, data stor-
age, message broker, networking, and virtualization. From our survey, we ob-
serve tasks used to manage data storage infrastructure perceived to have the
most severe consequences. We also find three development factors, namely age,
minor contributors, and scatteredness to correlate with the presence of task
infections.

Conclusion: Our empirical study shows computing infrastructure managed
by Ansible scripts to be impacted by security weaknesses. We conclude the
paper by discussing the implications of our findings for practitioners and re-
searchers.

Keywords ansible · configuration script · devops · devsecops · empirical
study · infrastructure as code · security

1 Introduction

Cloud service vendors, such as Amazon, provide multiple services to set up and
manage computing infrastructure, such as EC2 instances and Amazon Elastic
Container Service (ECS). These services are leveraged by organizations to
deploy software applications at scale. While using these services practitioners
need to provide necessary configurations and instructions on how to setup and
manage these computing infrastructure.

With the practice of infrastructure as code (IaC), practitioners can cre-
ate and manage computing infrastructure at scale (Humble and Farley, 2010).
Ansible is a popular tool to implement the practice of IaC (Rahman et al.,
2021b; Dalla Palma et al., 2022). Use of Ansible scripts have resulted in a lot
of benefits for organizations (RedHat, 2022b,a; Rahman et al., 2020b; Moham-
mad Mehedi and Rahman, 2022). For example, use of Ansible scripts was one
of the contributing factors for NetApp to reduce the software delivery time
from days to seconds (RedHat, 2022b). As another example, use of Ansible
scripts was one of the contributing factors for NEC to experience an increase in
revenue for its product called ‘NEC SDN Solution’, as it helped in automating
time consuming and labor-prone manual tasks (RedHat, 2022a).

On the one hand, Ansible scripts yield benefits for organizations in man-
aging computing infrastructure, but on the other hand, unmitigated security
weaknesses in Ansible scripts can be leveraged by malicious users to cause se-
rious consequences at scale. Researchers (Rahman et al., 2021b; Rahman and
Williams, 2021) have found Ansible scripts to include security weaknesses,
such as hard-coded passwords. For example, Rahman et al. (2021b) identified
1,074 hard-coded passwords in 14,253 open-source Ansible scripts.

The prevalence of such security weaknesses in Ansible scripts necessitates
an understanding of how security weaknesses affect Ansible-based infrastruc-
ture management. Organizations often use Ansible scripts to set up the com-
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puting infrastructure necessary to run their businesses. Existing security weak-
nesses in Ansible scripts can propagate into computing infrastructure, leav-
ing the provisioned computing infrastructure susceptible to security attacks.
While secure development of Ansible scripts has garnered interest amongst
researchers (Rahman et al., 2021b; Rahman and Williams, 2021; Hortlund,
2021; Rahman et al., 2021a), understanding how security weaknesses propa-
gate into tasks and impact Ansible-based infrastructure management remains
an under-explored area.

One approach to investigating the impact of security weaknesses on Ansible-
based infrastructure management is to understand how security weaknesses
propagate into tasks. A ‘task’ is a code construct that performs infrastructure
management operations (Opdebeeck et al., 2022; Ansible, 2020; Borovits et al.,
2022). With tasks, Ansible users can specify what configurations are required
to set up and manage necessary computing infrastructure and how such con-
figurations will be executed (Opdebeeck et al., 2022; Ansible, 2020; Borovits
et al., 2022). If a security weakness propagates into a task, then we can de-
termine that task to be impacted by that security weakness. We define the
phenomenon of security weaknesses propagating into a task as ‘task infection.’
The code snippet in Figure 1, which is obtained from an open source software
(OSS) repository (redhat performance, 2022), shows an example of task infec-
tion. We observe two security weaknesses: one hard-coded username and one
hard-coded password. The hard-coded user name sat user and the hard-coded
password sat pass propagate into a task called “Determine organization

ID”. In the figure, ‘satellite6’ is a hard-coded string but not a hard-coded se-
cret, as this hard-coded string is not used to set up usernames, user passwords,
or private tokens used for user authorization. We hypothesize that we can de-
tect and characterize such task infections in Ansible scripts through systematic
analysis. Such analysis can aid practitioners and researchers in understanding
the nature of task infections. Further, from our empirical study, we can derive
insights on how to develop Ansible scripts securely.

The goal of the paper is to help practitioners and researchers understand
how Ansible-managed computing infrastructure is impacted by security weak-
nesses by conducting an empirical study of task infections in Ansible scripts.

Accordingly, we answer the following research questions:

– RQ1 : How frequently do task infections occur in Ansible scripts?
Motivation: The motivation for answering this research question is to em-
pirically determine to what extent task infections exist in Ansible scripts.
This is the first step toward characterizing task infections.
Insight: We identify 1,805 of 49,898 tasks to experience task infection in
our dataset of 27,213 Ansible scripts.

– RQ2 : What categories of task infections appear for Ansible scripts?

Motivation: The motivation for answering this research question is to de-
velop a taxonomy for task infections. Such categorization can help the
Ansible community understand what are the typical infrastructure-related
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1sat_user: admin
2sat_pass: admin
3...
4tasks:
5- name: "Determine organization ID"
6 uri:
7 url: https://{{ groups['satellite6']|first

↪→ }}/katello/api/organizations
8 method: GET
9 user: "{{ sat_user }}"

10 password: "{{ sat_pass }}"
11 force_basic_auth: yes

Hard-coded user name

Hard-coded password

1

Fig. 1: An example to demonstrate task infection. Two hard-coded se-
crets namely, sat user and sat pass propagate into the task Determine

organization ID, causing a task infection.

tasks impacted by security weaknesses.
Insight: We identify six categories of task infections: antivirus, continuous
integration, data storage, message broker, networking, and virtualization.

– RQ3 : What are the practitioner perceptions of task infection cat-
egories for Ansible scripts?
Motivation: The motivation of answering this research question is to under-
stand the practitioner’s perceptions regarding the frequency and severity
of task infection. Such understanding can grow the science of secure An-
sible script development and also lay the groundwork for future research
studies.
Insight: We observe 50% of the survey participants to find data storage-
related tasks to be impacted severely.

– RQ4 : What development factors correlate with task infections in
Ansible scripts?
Motivation: The motivation for answering this research question is to help
practitioners in prioritizing inspection efforts by quantifying the correlation
between development activity metrics and task infections.
Insight: We identify 3 development activity metrics namely, age, minor
contributors, and scatteredness to show correlation with task infection in
Ansible scripts.

– RQ5 : How accurate is TIDAL in automatically identifying task
infections in Ansible scripts?
Motivation: The motivation for answering this research question is to de-
velop a technique to automatically detect task infections. Such technique
may aid practitioners in understanding the relevance of detected security
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weaknesses, as practitioners query about how security weaknesses that are
detected by static analysis tools are used within the code (Smith et al.,
2015)
Insight: We construct a tool called TIDAL that uses data flow analysis to
determine if a security weakness is used by a task. TIDAL’s precision and
recall to detect task infections is > 0.85 across all studied security weakness
categories.

We conducted an empirical study with 27,213 Ansible scripts mined from
OSS repositories. We construct Task Infection Detector for Ansible Scripts
(TIDAL) that we use to detect task infections and compute the frequency of
infected tasks. Next, with open coding (Saldaña, 2015), we categorize tasks
infected by security weaknesses. We also surveyed 23 practitioners to assess
their perceptions of the identified task infection categories. Finally, using lo-
gistic regression (Long and Freese, 2006) we quantify the correlation between
development factors and the presence of task infections in Ansible scripts. The
dataset and source code used in our empirical study are available online (Rah-
man, 2023).

Contributions: We list our contributions as follows:

– A categorization of task infections in Ansible scripts;
– An analysis of how frequently task infections appear in Ansible scripts;
– An evaluation of practitioner perceptions for identified categories of task

infections; and
– An empirical evaluation of what development factors correlate with task

infection.

Motivation of this research study in the context of existing related work : Se-
curity static analysis of IaC scripts has gained interest amongst researchers,
which in turn have generated multiple publications (Rahman et al., 2021b;
Rahman and Parnin, 2023). We build on top of existing research conducted
by Rahman et al. (2021b) which provided a taxonomy of security weaknesses
in Ansible scripts. They (Rahman et al., 2021b) further quantified the fre-
quency of detected security weaknesses with feedback from practitioners. We
take motivation from their (Rahman et al., 2021b) research and characterize
the propagation of security weaknesses in Ansible tasks, which we refer to as
‘task infections’. Such characterization is important for the following reasons:

– first, in Ansible tasks are pivotal to manage computing infrastructure, and
therefore with task infection characterization, we can understand if security
weaknesses propagate into Ansible-based infrastructure management with
tasks;

– second, in the case of static analysis, relevance, i.e., how detected alerts
are used in code is important to practitioners (Smith et al., 2015). While
Rahman et al. (2021b)’s paper provides a tool called SLAC to identify
security weaknesses, it does not report which tasks exactly use the detected
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security weaknesses. Hence, a systematic investigation is required to report
to the practitioners what tasks are being impacted by security weaknesses,
so that practitioners are motivated to take action on resolving reported
weaknesses; and

– third, development activity metrics have not been studied in the context of
secure Ansible script development. Existing research has not studied the
relationships between development activity metrics and task infections.
Our empirical study addresses this gap in IaC-related research.

– fourth, development of a new tool that will perform variable-aware syntax
analysis and data flow analysis in order to detect task infections. ‘SLAC’,
the tool developed by Rahman et al. (2021b), does not perform variable-
aware syntax analysis and data flow analysis.

To date, the paper authored by Rahman and Parnin (2023) is the first to
report security weaknesses propagation in the domain of IaC. In particular,
they studied how security weakness propagates into resources, which are used
to manage computing infrastructure with Puppet. One approach could have
been to directly use their provided taxonomy but there are differences between
Puppet and Ansible that necessitate systematic investigation to study security
weakness propagation in the context of Ansible scripts. These differences are:

– Agent requirements: In the case of Puppet, for each server an additional
agent needs to be installed. Ansible does not require the installation of
such agents.

– Execution order : For Puppet, the current code state provides a clear view
of what will be the configurations of the provisioned infrastructure. In the
case of Ansible, the execution order is important as specifying a different
order might provision the desired infrastructure incorrectly.

– Perceived maintenance: Practitioners (Yevgeniy Brikman, 2016) perceive
Ansible-based scripts to incur more maintenance overhead. The state of
the provisioned infrastructure might change constantly, and code written
a week ago might become unusable, and practitioners have to write more
code. In the case of Puppet, code represents the current state, and there
may not be a need to write new scripts to be consistent with the current
state.

– State reconciliation: In the case of Puppet state reconciliation is performed
with resources, whereas for Ansible it is task.

– Syntax : Ansible scripts follow a procedural style, whereas Puppet scripts
follow a declarative style.

All of these above-mentioned differences require a systematic investiga-
tion of how security weaknesses propagate into tasks for Ansible scripts. To
conduct this empirical investigation, we adopt a differentiated replication re-
search study (Krein and Knutson, 2010) of Rahman and Parnin (Rahman and
Parnin, 2023). A differentiated replication study is where researchers change
one or multiple aspects of the original study to answer similar research ques-
tions (Krein and Knutson, 2010). In any empirical science, replication is con-
sidered as a pivotal activity to develop new knowledge (Da Silva et al., 2014).
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Empirical software engineering is no different (Da Silva et al., 2014). In the
context of IaC, which is an under-explored research topic within software engi-
neering (Rahman et al., 2018b), replication studies similar to ours can establish
the scientific foundations required for secure IaC script development. The need
for replication studies is further necessary because of the varying technologies
used to implement the practice of IaC (Rahman et al., 2018b). As a hypo-
thetical example, if a research study only focuses on Puppet, then it will have
little to no relevance to Ansible users, as an organization that is using Ansible
already may not be interested in learning and using research products that
are focused solely on Puppet. Furthermore, the IaC technology usage trend is
changing: as shown in Figure 2, once Puppet was popular; however, in recent
times, Ansible is more popular than Puppet (Rahman et al., 2021b). As such,
empirical research needs to keep up with this change in trends. Therefore, a
replication of prior work (Rahman and Parnin, 2023) is not only necessary from
a theoretical standpoint with respect to generating new knowledge but also
from a practical standpoint, to respond to the changing IaC-related trends.
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Fig. 2: Interest trends for Ansible and Puppet as determined by Google Search
data.

We take motivation from Rahman and Parnin (2023) in our paper, where
we study the frequency of propagation, derive a taxonomy of task infections,
and obtain practitioner feedback for Ansible scripts. Unlike our TSE paper, we
also quantify the relationship between task infection metrics and source code
metrics, as well as development activity metrics. Furthermore, to conduct our
empirical study, we develop TIDAL, as TaintPup from prior research will not
be applicable to Ansible. TaintPup can only parse Puppet scripts using the
‘puppet parser dump’ utility (Labs, 2021), which can not be applied to Ansi-
ble. Furthermore, with respect to state reconciliation process and syntax, there
are differences between Ansible and Puppet that necessitates differences in un-
derstanding of how security weaknesses propagate into code snippets used for
state reconciliation. This understanding eventually informs the development
process of static analysis tools to detect task infections.

The above-mentioned discussion showcases the progressive nature of our
research, where we find gaps in existing research and address these gaps in
our paper. The differences between this paper and prior work from Rahman
et al. (Rahman and Parnin, 2023; Rahman et al., 2021b) can be further sum-
marized with Table 1.
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Table 1: Differences between this paper and recent related work
Characteristic This paper TSE

2023 (Rah-
man and
Parnin, 2023)

TOSEM
2021 (Rah-
man et al.,
2021b)

Dataset Timestamp 06/2022 10/2021 11/2018
Development Activity Metrics Yes No No
Impacted Task Taxonomy Yes No No
Propagation Frequency Yes Yes (Puppet) No
Propagation Perception Yes Yes (Puppet) No
Task-based Data Flow Analy-
sis

Yes No No

Variable-aware Parsing for An-
sible Scripts

Yes No No

Table 1 shows that as part of our replication study, we have investigated
task-based flow analysis, the impact of development activity metrics, charac-
terized impacted tasks, and constructed a tool that performs variable-aware
parsing of Ansible scripts. All of these contributions expand the science of IaC-
based infrastructure management, which can be further leveraged for future
quality assurance research in the domain of IaC. Development activity metrics
have been used as indicators of quality concerns for IaC in prior work (Rahman
et al., 2020b). From a practitioner standpoint, the implication using these in-
dicators is prioritizing quality assurance efforts, such as inspection and testing.
Prior research on IaC have not investigated the correlation between security
weakness presence and development activity metrics. We address this limita-
tion by quantifying the correlation between development activity metrics and
task infection presence. Identified development activity metrics can later be
used to prioritize inspection efforts for Ansible scripts for which task infection
appears.

There are similarities between our paper and the study we replicated (Rah-
man and Parnin, 2023). We have identified infrastructure categories that ap-
pear for both Ansible and Puppet: ‘continuous integration’, ‘data storage’,
‘networking’, and ‘virtualization’. Similar to prior work (Rahman and Parnin,
2023), surveyed practitioners from our study perceive data storage to have
the most severe impact if affected by security weaknesses. These insights
strengthen the empirical science of security weakness propagation as they
demonstrate that (i) yes, security weaknesses do propagate into provisioned
infrastructure, and (ii) data storage-related infrastructure is perceived to bear
the most severe consequences if affected by security weaknesses.

Along with confirmation of existing evidence in the context of Puppet, our
replication study also revealed new insights that are different from the study
that we have replicated. For example,

– We have identified new categories of impacted infrastructure, namely, ‘an-
tivirus’ and ‘message broker’.

– We find the most frequently occurring category to be ‘data storage’ for
Ansible scripts, whereas the most frequently occurring category for Puppet
is ‘continuous integration’.
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– Unlike Puppet scripts, we do not observe security weaknesses propagating
into infrastructure related to load balancers and communication platforms.

Therefore, our empirical study has derived results that are different from
the our original study Rahman and Parnin (2023). Shull et al. (2008) stated
“a replication that produces results different from those of the original experi-
ment can also be viewed as successful”. In short, our empirical study provides
support for Carver et al. (2010)’s observations: “one of the main benefits of an
experimental replication is that it provides to researchers the ability to confirm,
refute, or deepen the conclusions drawn from an earlier study.”

A brief conclusion of the above-mentioned discussion is:

– This paper is the first to quantify task infection frequency in Ansible
scripts;

– This paper has identified two new categories related to impacted infras-
tructure, namely, ‘antivirus’ and ‘message broker’;

– This paper has proposed an automated technique to detect task infections
by incorporating variable-aware parsing and data flow analysis;

– This paper is the first study to investigate the relationship between task
infections and development activity metrics;

– This paper shows that for Ansible scripts, the most frequently occurring
category related to impacted infrastructure is ‘data storage’ for Ansible
scripts, whereas the most frequently occurring category for Puppet scripts
is ‘continuous integration’;

– Unlike Puppet scripts, we do not observe security weaknesses to propagate
into infrastructure related to load balancers and communication platforms
in the case of Ansible scripts;

– This paper confirms the findings from Rahman and Parnin (2023): infras-
tructure categories that appear for both Ansible and Puppet scripts are:
‘continuous integration’, ‘data storage’, ‘networking’, and ‘virtualization’;
and

– This paper confirms survey-related findings from Rahman and Parnin (2023)
who observed data storage to have the most severe impact if affected by
security weaknesses.

We organize the rest of the paper as follows: we provide the methodology
of our empirical study in Section 2 with the necessary background. Then, we
describe our empirical findings in Section 3. Next, we discuss the implications
of the paper in Section 4 followed by a discussion of threats in Section 5. We
then briefly describe related work in Section 6. Finally, we conclude the paper
in Section 7.

2 Methodology

We describe the methodology of our empirical study in this section. An overview
of our methodology is presented in Figure 3.
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RQ1: Task Infection 
Frequency

RQ3: Task Infection 
Perception

RQ5: Accurate 
Detection of Task 

Infection 

Manual Analysis to
 Identify Task Infections

RQ4: Development 
Factors that Correlate 

with Task Infection

RQ2: Task Infection 
Categorization 

Repository Mining

Fig. 3: An overview of our methodology.

2.1 Methodology for RQ1

We answer RQ1 by describing our process of determining task infections in
our set of 27,213 scripts by first providing the necessary background.

2.1.1 Background

Background on Ansible Scripts: Ansible is a popular tool to implement the
practice of IaC (Rahman et al., 2021b). In Ansible, computing infrastructure
is managed with scripts written in YAML, which are sometimes colloquially
referred to as manifests. Following recent Ansible-related research (Rahman
et al., 2021b; Saavedra and Ferreira, 2023; Opdebeeck et al., 2023), we use the
term ‘scripts’ throughout the paper. We use Listing 1 to demonstrate the con-
tents of an example Ansible script. Using the hosts: all keyword, the script
specifies that all tasks specified in the script will apply to all applicable hosts.
The tasks keyword is used to list all the tasks executed as part of the script.
The script specifies two tasks namely, Add test user ‘test-user’ and Copy

file content. To perform these tasks the script leverages two built-in Ansi-
ble libraries namely, ansible.builtin.user and ansible.builtin.copy. A
collection of tasks can be executed as a ‘play’. An Ansible script with one or
more plays is called an Ansible playbook. Tasks can be automatically loaded
using roles. One role can refer to multiple tasks in order to reuse and share
Ansible code efficiently.

In the case of Ansible scripts, the identity of required computing infrastruc-
ture is specified using a hosts file developed in YAML or INI. With hosts:

all, Ansible executes all tasks specified in the script for all computing infras-
tructure specified by the hosts file. Listing 2 provides an example hosts file.
The file includes the IP addresses and necessary authorization information for
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1 ---

2 - name: An Example Ansible Script

3 hosts: all

4

5 tasks:

6 - name: Add test user 'test-user'

7 ansible.builtin.user:

8 name: test-user

9 comment: A test user

10 uid: 0007

11 - name: Copy file content

12 ansible.builtin.copy:

13 src: /tmp/myfiles/example.txt

14 dest: /home/example.txt

15 owner: test-user

Listing 1: An example Ansible script.

one local and two remote computing infrastructure for which both tasks in
Listing 1 will be executed. The command to execute the script along with the
hosts file is ansible-playbook -v example.yaml -i hosts.

Code snippets in Listing 1 and 2 showcase how tasks are pivotal to setup
and manage computing infrastructure. As part of our empirical study, we focus
on tracking the flow of a security weakness into a task, which we define as task
infection.

1 [server1]

2 3.230.71.200

3 ansible_ssh_user=ubuntu

4 ansible_ssh_private_key_file=<HIDDEN>/aws-private.pem

5

6 [server2]

7 10.230.71.300

8 ansible_ssh_user=ubuntu

9 ansible_ssh_private_key_file=<HIDDEN>/aws-private.pem

10

11 [server3]

12 19.20.71.250

13 ansible_ssh_user=ubuntu

14 ansible_ssh_private_key_file=<HIDDEN>/aws-private.pem

Listing 2: An example hosts file needed to execute the tasks listed in Listing 1.

Background on Ansible’s State-based Approach: Ansible uses a state-
based approach to manage computing infrastructure (Ansible, 2020). Ansible
uses a code element called ‘task’, which is used to perform necessary changes to
the relevant computing infrastructure (Opdebeeck et al., 2022). While execut-
ing a task, Ansible first queries about the state of the infrastructure, i.e., if the
necessary configurations specified in a task exist in the infrastructure (Opde-
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beeck et al., 2022). Ansible only makes changes if the state of the infrastructure
is different from the configurations specified in the task. Let us consider List-
ing 3, which shows a task to create a text file called ‘example.txt’. While
executing the task, Ansible will first query the computing instance of interest
to determine if the ‘example.txt’ file exists with three keys: ‘path’, ‘mode’, and
‘owner’. Each of these keys corresponds to a configuration for the file ‘exam-
ple.txt’. The path, mode, and owner are expected to be, respectively, ‘/temp’,
‘0755’, and ‘sample’. If ‘example.txt’ exists with the provided configurations,
then Ansible will not make any changes to the instance. Ansible will make
changes to the instance if the file does not exist or if the file exists, but the
configurations are not present.

1 - hosts: all

2 tasks:

3 #Task to create a file

4 - name: Create example.txt

5 file:

6 path: /temp

7 mode: 0755

8 owner: test

Listing 3: An example task to create ‘example.txt’ with the following config-
urations: path, mode, and owner.

A security weakness is an insecure coding pattern used by a code element.
In the context of Ansible scripts security weaknesses are recurring coding pat-
terns that are used by a task. As configurations specified in tasks determine
the desired configurations of the computing infrastructure, security weaknesses
that propagate in tasks will impact Ansible-based management of computing
infrastructures. We describe the phenomenon of propagation of security weak-
nesses into a task as task infection. According to our definition if at least one
security weakness propagates into a task then we identify that task to be in-
fected. A task into which at least one security weakness propagates is defined
as an infected task. One or multiple security weaknesses can propagate into
multiple tasks.

2.1.2 Dataset Construction

We use OSS repositories hosted on GitHub. As OSS repositories are suscepti-
ble to quality concerns, such as including personal projects, we use an existing
dataset curated by Hassan and Rahman (2022). Hassan and Rahman (2022)
systematically applied a set of filtering criteria where they used developer
count, the existence of Ansible tasks, and repository maturity to curate Ansi-
ble repositories mined from GitHub. From their dataset, we identify 56 repos-
itories. A breakdown of how the filtering criteria was applied to get the set of
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104 repositories is available in Table 2. Attributes of the repositories are avail-
able in Table 3. We observe that the count of tasks mined from our repositories
is 49,898.

Hassan and Rahman (2022) applied the following criteria to obtain the set
of 104 repositories:

– Criterion-1 : The repository includes Ansible scripts.
– Criterion-2 : The repository is not a clone of another repository.
– Criterion-3 : Count of developers is at least five.
– Criterion-4 : The repository has at least two commits per month.
– Criterion-5 : The lifetime of the repository is at least one month.
– Criterion-6 : Similar to prior work on IaC Rahman et al. (2019, 2021b,

2020a), the proportion of Ansible scripts is at least 10%.
– Criterion-7 : The repository must include at least one Ansible test script

developed in YAML.

We added another criterion along with these seven criteria where we filter
repositories with no active issues as of October 01, 2022. Use of issues is
a recognized criterion to identify active repositories (Agrawal et al., 2018;
Krishna et al., 2018; Rahman et al., 2018a) The dataset provided by Hassan
and Rahman (2022) was mined in November, 2020. Our assumption is that
some of the repositories may have become inactive, and thus we used this
additional criterion to filter such inactive repositories.

Table 2: Repository Filtering
Initial Count 3,405,303
Criterion-1 (Ansible Usage) 6,633
Criterion-2 (Not a Clone) 4,147
Criterion-3 (Contributor Count>3) 856
Criterion-4 (Commits/Month >=2) 770
Criterion-5 (Lifetime>1 month) 675
Criterion-6 (10% Ansible Scripts) 324
Criterion-7 (Existence of Ansible Test Scripts) 104
Criterion-8 (Active issue count > 0) 56

Table 3: Attributes of Dataset
Category Count
Repositories 56
Commits 264,478
Scripts 27,213
Scripts with Tasks 10,374
Total Lines of Code of Scripts 2,860,222
Distinct Tasks 49,898
Contributors 17,446
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2.1.3 Dataset Labeling

We use a first-year PhD student as a rater to label the mined 27,213 Ansi-
ble scripts from Section 2.1.2. The PhD student has 2 years of professional
experience in software engineering. The rater applies closed coding (Saldaña,
2015) where each script is mapped to one or multiple security weakness cate-
gories. The rater is provided with the definitions and examples for each security
weakness category, as well as the Ansible documentation to perform labeling.
Rahman et al. (2021b)’s paper contains examples and a description of the secu-
rity weakness categories, whereas the Ansible documentation provides details
on how configuration values are assigned and used in Ansible tasks.

Rahman et al. (2021b) provided six categories of security weaknesses:
empty password, hard-coded secret, no integrity check, suspicious comment,
unrestricted IP address, and use of HTTP without SSL/TLS. As part of the
dataset labeling activity, first, the PhD student applies pattern matching to
identify potential security weaknesses that belong to five categories: empty
password, hard-coded secret, use of HTTP without TLS, unrestricted IP ad-
dress binding, and no integrity check. We do not include suspicious comments
as this category is only applicable for comments in Ansible scripts and has no
way to propagate into tasks. For pattern matching the rater uses the patterns
provided by Rahman et al. (2021b) in their paper to identify security weak-
nesses. Upon completing this pattern-matching approach, the rater identifies
4,490 security weaknesses. A breakdown of these security weaknesses based on
categories is available in Table 4.

Table 4: Count of Security Weaknesses Identified with Pattern Matching
Category Count
Empty password 1
Hard-coded secret 3,199
No integrity check 9
Unrestricted IP address binding 482
Use of HTTP without TLS 799
Total 4,490

As pattern matching is prone to generating false positives the rater man-
ually inspected 1,802 scripts in which at least one security weakness appears.
While performing this inspection, the rater determined if the identified security
weakness fits the definition of the corresponding category and if the identified
security weakness is used within a script of a repository. If a security weak-
ness identified from pattern matching fits the above-mentioned criteria then
it is labeled as a true positive, i.e., a true positive instance of task infection.
Altogether, this manual activity took 225 hours to complete, where the rater
on average spent 7.5 minutes for one script.

The rater identifies 2,621 security weaknesses, as shown in Table 5. We
observe a reduction in security weaknesses for each category. Furthermore, the
only instance of an empty password is not used by a task and therefore is not
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included as a true positive instance. The student is not involved in the design
and construction of TIDAL. The student was informed by the first author that
the dataset will be eventually used to evaluate a tool called TIDAL. Upon
construction of TIDAL, we use the dataset to calculate its accuracy.

Table 5: Count of Security Weaknesses in Our Dataset
Category Count
Hard-coded secret 2,221
Use of HTTP without TLS 261
Unrestricted IP address binding 132
No integrity check 7
Total 2,621

Rater Verification: The rater is the paper’s second author who might intro-
duce bias while labeling the scripts. We mitigate this limitation by allocating
another rater who is not an author of this paper. The voluntary rater is a
third-year Ph.D. student in the department with three years of experience
in cybersecurity. The voluntary rater labels 400 randomly-selected Ansible
scripts. We randomly select 400 scripts to achieve a >= 95% confidence inter-
val from 27,213 Ansible scripts with a population proportion of 50%. While
labeling, both the PhD student and the volunteer who performed rater ver-
ification inspected two items: (i) if an identified security weakness through
pattern matching fits the definition of a security weakness category, and (ii) if
the identified security weakness propagates into one task. Therefore, the raters
inspect each task in each script to determine the presence of task infection.

We have computed the Cohen’s Kappa between the PhD student and the
voluntary rater for all task infections documented in the set of 400 Ansible
scripts. A breakdown of Cohen’s Kappa with interpretation based on Landis
and Koch’s observations (1977) is available in Table 6. We observe the overall
agreement between the PhD student and the voluntary rater to be ‘substan-
tial’, but it varies from one category to another because of disagreements. For
example, the voluntary rater disagreed with an instance of task infection for
a hard-coded secret, as the hard-coded username is used for setting up a user
ID, which the voluntary rater felt was incorrect. The ratings of the PhD stu-
dent and the voluntary rater is available in our replication package (Rahman,
2023).

Table 6: Cohen’s Kappa for Rater Verification
Category Kappa Interpretation
Hard-coded secret 0.65 ‘Substantial’
Insecure HTTP 0.63 ‘Substantial’
Invalid IP address 1.00 ‘Perfect’
None 0.67 ‘Substantial’
No integrity check 0.40 ‘Fair’
All 0.66 ‘Substantial’
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We also use another rater who do not participate any rater verification to
identify instances of false negatives. The rater inspected a set of 50 Ansible
scripts not used during rater verification to identify false negatives. The rater
did not identify any false negatives.

In their paper, Rahman et al. (2021b) reported 194 instances of missing in-
tegrity checks, whereas we reported 7 instances. Possible explanations include
(i) differences in datasets as we do not use the same set of Ansible scripts
similar to Rahman et al. (2021b); (ii) potential problematic implementations
of rules as acknowledged by Rahman et al. (2021b) themselves; and (iii) not
accounting for data flow analysis. We include instances of missing integrity
checks if they are used by a task.

2.1.4 Quantifying Task Frequency

We answer RQ1 with the identified task infections as determined from our
manual analysis. We compute three metrics: first, the count of tasks in each
Ansible script in which at least one security weakness propagates. Second, we
calculate the proportion of tasks with a metric called ‘Infected Task (%)’ using
Equation 1. The ‘Infected Task’ metric provides a quantitative summary on
average of how frequently security weaknesses propagate into tasks. Third,
we compute ‘Script-wise Task Infection (%)’ using Equation 2. This metric
computes the proportion of tasks within a script that are impacted by security
weaknesses. For example, in a script, if there are 4 tasks, of which security
weaknesses propagate into 2, then the Script-wise Task Infection (%) value
will be 50%. We repeat the calculation for all scripts with at least one task
infection.

Infected Task(%) =

# of tasks in which >= 1 security weaknesses propagate

total # of unique tasks in the dataset
∗ 100%

(1)

Script-wise Task Infection (%) =

# of tasks within a script in which >= 1 security weaknesses propagate

total # of unique tasks in a script with >= 1 task infection
∗ 100%
(2)

2.2 Methodology for RQ2

We answer RQ2 by identifying tasks into which security weaknesses propagate.
The name key is used to describe the changes that are made to computing in-
frastructures. Then, we apply open coding with the text obtained from the
values of the name key. A name is not mandatory for a task, and therefore, if
a task is missing a name, then we use the text content within the task and
use that content in our open coding analysis. Open coding is a qualitative
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Code Snippet Inital Code Initial Category Category

- name: Execute python dhcp check file

become: true

- name: ”Setup DHCP for nodes.”

template:

src: dhcp-host.j2

- name: ”Setup DNS address for nodes.”

template:

src: dns-address.j2

Execute python dhcp

check file

Setup DHCP

Setup DNS address

DHCP check with tasks

DHCP setup with tasks

DNS setup with tasks

Network manage-
ment with tasks

Fig. 4: An example to demonstrate our open coding process to derive cate-
gories.

analysis technique that groups similar text into categories (Saldaña, 2015).
We illustrate our open coding process using Figure 4. First from the code
snippets of tasks we obtain initial codes. For each initial code, we identify
the initial category. For example from the initial code ‘Execute python dhcp
check file’, we derive the initial category ‘DHCP check with tasks’ as the code
corresponds to using a Python file to check for DHCP, i.e., the dynamic host
configuration protocol, a network management protocol used on Internet Pro-
tocol networks to automatically assign IP addresses (Droms, 1999). Finally, we
merge the three initial categories into one category called ‘Network manage-
ment with tasks’ as all initial categories indicate network-related management
with Ansible tasks.

In our categorization one task can belong to multiple categories. Figure 5
shows one task to use a hard-coded username to manage authorization for
Jenkins and MySQL, tools respectively, used for continuous integration and
data storage. After deriving the categories, we quantify the proportion of tasks
that belong to specific categories using Equation 3.

Category-wise Infection (x, y%)

=
# of y-related tasks in which >= 1 weaknesses of category x propagate

total # of tasks in which >= 1 weaknesses of category x propagate

∗100%
(3)

Rater Verification: The open coding process is conducted by the first au-
thor making the open coding process susceptible to rater bias. We mitigate
this limitation by using another rater who is the last author of the paper. We
randomly select 350 tasks to achieve a >= 95% confidence interval from the
identified 1,805 tasks with a population proportion of 50%. As detailed in Sec-
tion 3.1, we obtain 1,805 tasks that are affected by >= 1 security weaknesses.
For the set of 350 tasks we observe a Cohen’s Kappa (Cohen, 1960) of 0.82,
indicating ‘almost perfect’ agreement (Landis and Koch, 1977).
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1sample_user: "root"
2sample_group: "root"
3mysql_root_password: "root"
4...
5# The Jenkins account needs a login shell because

↪→ Jenkins uses scp
6- name: Add the root user for Jenkins and MySQL setup
7 user: name={{ jenkins_user }} append=yes

↪→ group={{ jenkins_group }}
↪→ shell=/bin/bash

8 shell: >
9 mysql -u root -NBe

10 'CREATE USER "{{ sample_user }}"@"{{ item
↪→ }}" IDENTIFIED WITH
↪→ mysql_native_password BY "{{
↪→ mysql_root_password }}";'

11 with_items: "{{
↪→ mysql_root_hosts.stdout_lines|default([])
↪→ }}"

12 when: ((mysql_install_packages | bool) or
↪→ mysql_root_password_update) and
↪→ ('5.7.' in mysql_cli_version.stdout)

Hard-coded username

Hard-coded password

1

Fig. 5: An example where one task performs two types of infrastructure man-
agement tasks: continuous integration and data storage.

2.3 Methodology for RQ3

We answer RQ3 by conducting an online survey with practitioners who de-
velop Ansible scripts. We develop the survey by first asking practitioners about
their experience in Ansible script development. Next, we briefly describe the
identified task categories from Section 2.1.4. Then, we ask one question about
frequency and one question about severity. In particular, we ask “At what
frequency do you think the task categories listed below can be infected by secu-
rity weaknesses? ”. Next, we ask “What is the severity of the task categories
listed below?”. We follow Kitchenham and Pfleeger’s guidelines (Kitchenham
and Pfleeger, 2008) and explain the preservation of confidentiality of survey
respondents, describe the expected amount of time it might take to complete
the survey, provide explanations of the purpose of the study, and use five-item
Likert questions. We use a Likert scale to quantify perception because for per-
sonal opinion surveys where practitioners are asked to express their opinions,
the Likert scale is recommended (Kitchenham and Pfleeger, 2008).

The survey questionnaire is available in Table 7. The motivation for SQ1
in the survey is to quantify the experience of survey respondents in using
Ansible. The motivation for SQ2 is to compare practitioner perceptions with
empirical data obtained for RQ1 and identify similarities and differences. Ob-
served similarities will further substantiate empirical data, whereas differences
will provide nuanced perspectives on Ansible script development. The moti-
vation for SQ3 is to gain an understanding of what type of impacted tasks
are severe as per practitioner perceptions. Generated findings from this re-
search question will advance the science of security for Ansible and also lay
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the groundwork for further research investigations. For example, if practi-
tioners perceive data storage-related tasks to be impacted more severely than
others, then researchers can apply empirical analysis to support or refute their
perceptions.

Table 7: Questions Asked in the Survey
Index Question Text
SQ1 How long have you used Ansible in a professional setting?

[Options: 1-2 years, 3-4 years, 4-5 years, and > 5 years. ]
SQ2 At what frequency do you think the task categories listed be-

low can be infected by security weaknesses? [Options: Not
at all frequent, rarely frequent, somewhat frequent, frequent,
highly frequent.] The categories are: continuous integration
(CI), virtualization (VIRT), antivirus (ANTI VIRUS), mes-
sage broker (BROKER), data storage (STORAGE), and net-
working (NETWORK).

SQ3 What is the severity of the task categories listed below? [Op-
tions: Not at all severe, low severity, moderate severity, severe,
highly severe.] The categories are: continuous integration (CI),
virtualization (VIRT), antivirus (ANTI VIRUS), message bro-
ker (BROKER), data storage (STORAGE), and networking
(NETWORK).

We deploy the survey to practitioners via email. We sent out emails to
250 practitioners, whose emails we collected by mining the 56 repositories
obtained from Section 2.1.2. Following Smith et al. (2013)’s guidelines, we
offer a drawing of one 25 USD Amazon gift card as an incentive to participate
in the survey. We deploy the survey from March 2022 to September 2022. Prior
to deploying the survey, we obtain Internal Review Board (IRB) approval (IRB
#2356). According to our IRB approval process, we:

– Do not release any private and sensitive information of the survey partici-
pants;

– Do not commercially advertise any existing IaC-related research of the
research group;

– Do not use automation to send emails. We send email messages where we
made it clear that the purpose of the email is only to seek feedback on our
research;

– Explicitly mention that participation or lack thereof will not impact their
occupation;

– Provide full identity of the lead researcher who is conducting the survey;
and

– Seek approval from each participant via emails prior to sending the survey.

We apply Chi Squared test (Greenwood and Nikulin, 1996) to compare
if practitioner perception is significantly different for the task infection cate-
gories. The null and alternative hypotheses are:

– Null: There is no difference between the task infection categories with re-
spect to practitioner perceptions.
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– Alternate: There are differences between the task infection categories with
respect to practitioner perceptions.

2.4 Methodology for RQ4

With RQ4, we aim to identify development factors that correlate with the pres-
ence of task infections in Ansible scripts. Such correlation can help give practi-
tioners insights into managing their Ansible development process. We answer
RQ5 by first mining metrics and then by applying logistic regression (Long
and Freese, 2006) as discussed in the following subsections:

2.4.1 Mining Metrics

We answer RQ4 using two categories of metrics:

– Source code metrics: Metrics that are computed using the source code of
each Ansible script. In this case, we rely on prior work from Palma et
al. (2020) who have provided a list of 46 metrics that are related to quality
aspects of Ansible scripts. We do not use the metrics provided by Rahman
and Williams (2019) as these metrics are applicable for Puppet scripts, and
not Ansible scripts. The name and definition of each source code metric is
provided in Table 8.

– Development activity-related metrics: Metrics that are computed by syn-
thesizing development activity patterns for each Ansible script. The name
and definition of each development activity-related metric is provided in
Table 8. This category of metrics can be further divided into two groups:
– Generic metrics: We leverage prior work that has quantified relation-

ship between metrics related to development factors and quality for
generic software projects. We use the following metrics that are applica-
ble for generic software projects: age, commits, scatteredness, and minor
contributors. These metrics are reported in existing publications (Has-
san, 2009; Rahman and Devanbu, 2013; Nagappan and Ball, 2005; Bird
et al., 2011; Radjenović et al., 2013) that have quantified the correlation
between development activity metrics and software quality.

– Ansible-related: We also use metrics that are unique to Ansible. We
derive these metrics by analyzing Internet artifacts, such as blog posts
that have discussed development factors that are correlated with qual-
ity of Ansible scripts. We use Internet artifacts as practitioners often
express their opinions in Internet artifacts instead of peer-reviewed pub-
lications, such as conference and journal publications.
We analyze Internet artifacts by first curating Google search results ob-
tained from the search string ‘quality development of Ansible scripts’.
As part of this curation process, we collect the top 100 search results,
and exclude results that are not related to Ansible script development.
We obtain 11 artifacts from the set of 100 search results upon comple-
tion of the curation process. Second, from the curated search results
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we read each artifact to identify if a development factor is explicitly
mentioned to be related to quality. We identify two development fac-
tors namely, use of BASH commands instead of Ansible modules, and
not using Ansible roles to be related to quality Ansible script develop-
ment. As part of our analysis, we use two metrics called ‘Bash Envy’
and ‘IsRole’ that respectively, correspond to use of BASH commands
instead of Ansible modules, and not using Ansible roles to be related
to quality.

Altogether, we use 6 development activity-related metrics and 44 source
code-related metrics to answer RQ4. A list of source code-based metrics and
development activity-based metrics is provided respectively, in Table 8 and
Table 9 with names and definitions.

ki =
number of times line i is modified

number of commits for the script
(4)

Scatteredness = −
N∑
i=1

(kilog2ki) (5)

Table 8: Source Code Metrics Used to Answer RQ4
Name Definition

Average Play Size Lines of source code in playbooks divided by count of plays
Average Task Size Lines of source code in tasks divided by count of tasks
Blocks Count of block syntax occurrences
Commands Count of command, expect, psexec, raw, script, shell, and telnet syntax occur-

rences
Conditions Count of is, in, ==, ! =, >, >=, <, <= occurrences in when
Decisions Count of and, or, not syntax occurrences in when
Deprecated Keywords Count the occurrences of deprecated keywords
Deprecated Modules Count the occurrences of deprecated modules
Distinct Modules Count of distinct modules maintained by the community
Ensure count Count of “+.stat. + isdefined” regex matches in when
Error Handling Blocks Count of block-rescue-always section occurrences
Error Ignores Count of ignore errors syntax occurrences
External Modules Count occurrences of modules not maintained by the community
Fact Modules Count occurrences of fact modules
Files Count of file syntax occurrences
File Mode Count of mode syntax occurrences
Filters Count of — syntax occurrences inside ∗ expressions
Includes Count of include syntax occurrences
Keys Count of keys in the dictionary representing a playbook or tasks
Lines of code Count of lines in a script
Lines of blank Count of empty lines in a script
Lines of comments Count of statements that are comments
Lookups Count of lookup(∗) occurrences
Loops Count of loop and with ∗ syntax occurrences
Math Ops Count of +, −, /, //, %, ∗, ∗∗ syntax occurrences
name with variables Count of name occurrences matching the “. ∗ +.∗” regex
Parameters Count the keys of the dictionary representing a module
Paths Count of paths, src and dest syntax occurrences
Playbook Imports Count of import playbook syntax occurrences
Plays Count of hosts syntax occurrences
Regexes Count of regexp syntax occurrences
Role Imports Count of import role syntax occurrences
Role Includes Count of include role syntax occurrences
Role Size Total length of the roles section
SSH Authorized Keys Count of ssh authorized key syntax occurrences
Susp. Comments Count comments with TODO, FIXME, HACK, XXX, CHECKME, DOCME,

TESTME, or PENDING
Task Imports Count of import tasks syntax occurrences
Task Includes Count of include tasks syntax occurrences
Task Size Total length of the all tasks
Tokens Count the words separated by a blank space
Text Entropy Complexity of the script based on information content
Unique Names Count of name syntax occurrences with unique values
URLs Count of url syntax occurrences
User Interactions Count of prompt syntax occurrences
V ar Includes Count of include vars syntax occurrences
var Length Total length of all vars in all plays
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Table 9: Development Activity Metrics Used to Answer RQ4
Name Definition
Age Age of a script as measured by the difference between the last com-

mit timestamp and first author timestamp. Prior research (Radjen-
ović et al., 2013) has shown age to be correlated with software defects.
Therefore, we hypothesize that the probability of task infection pres-
ence is higher for older scripts. We compute this metric by measuring
the differences between the two timestamps and then converting the
difference into days.

BASH Envy Count of instances when the command or the shell module is used
to execute a BASH or BAT command. Practitioners perceive the
use of command or shell as a bad practice, which may introduce de-
fects (Davis, 2019). We hypothesize that the probability of task infec-
tion presence is higher for scripts that have higher BASH Envy values.

Commits Count of commits made for a script. Prior research (Nagappan and
Ball, 2005; Rahman and Devanbu, 2013) has shown commits to cor-
relate with the presence of software defects. We hypothesize that the
probability of task infection presence is higher for scripts that have
higher commits.

isRole This metric determines if a script is part of a role. Roles provide a
mechanism to group similar task properties, such as handlers and
vars to increase reusability (Ansible, 2020). If the script is part of a
role, we assign ‘1’, and ‘0’ if otherwise. Practitioners recommend use
of roles as a good practice Ansible (2022); Cozens (2022), which can
mitigate defects in Ansible scripts. We hypothesize the probability of
task infection presence is higher for scripts that are not part of a role.

Minor contrib-
utors

Count of developers who modify < 5% of the total lines of code for a
script. The 5% threshold is provided by Bird et al. (2011) in their pa-
per titled ‘Don’t Touch My Code! Examining the Effects of Ownership
on Software Quality’. Prior research (Rahman and Devanbu, 2013)
has shown a minor contributor count to correlate with the presence
of software defects. We hypothesize the probability of task infection
presence is higher for scripts that have higher minor contributors.

Scatteredness This metric computes if submitted code changes for a script are spread
out across the script or should be grouped together in a specific lo-
cation of a script. Based on findings from Hassan (Hassan, 2009), we
hypothesize that the probability of task infection presence is higher
for scripts that have higher scatteredness. In Equation 4, we calcu-
late ki, which we use in Equation 5 to quantify the scatteredness of a
script. For example, let us assume Script#A has ten lines of code and
six commits. Three modifications are made to lines #6 and 7 each.
According to Equation 5, the scatteredness score for Script#A is 0.8.

2.4.2 Applying Logistic Regression

We use logistic regression (Long and Freese, 2006) to quantify the correlation
between the presence of task infection and development metrics as well as the
correlation between task infection and source code metrics that we have listed
in Section 2.4.1. We do not use individual metric-based statistical test, such
as Mann Whitney U test (Mann and Whitney, 1947), as the metrics may have
a combined effect on the dependent variable, which we cannot account for by
applying Mann Whitney U test. We construct three logistic regression models:
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– Development activity-based model: A logistic regression model where all
independent variables are development activity-based metrics. The depen-
dent variable is the presence of task infection in an Ansible script. The
independent variables are age, BASH Envy, commits, isRole, minor con-
tributors, and scatteredness. Except for ‘isRole‘, all metrics are numeric.

– Source code-based model: A logistic regression model where all independent
variables are the 46 source code-based metrics. The dependent variable
is the presence of task infection in an Ansible script. All 46 metrics are
numeric.

– Combined model: A logistic regression model where all development activity-
based and source code-based metrics are included as independent variables.
The dependent variable is the presence of task infection in an Ansible script.

In each of the three logistic regression models, the dependent variable is
the presence of at least one task infection in an Ansible script. The dependent
variable can be any of two possible values: 1 and 0, respectively, indicating the
presence and absence of task infections.

Before applying the logistic regression, we apply the following recommended
practices: (i) apply log transformation to reduce heteroscedasticity (Cohen
et al., 2014); and (ii) test if multi-colinearity exists between the independent
variables using variable influence factor (VIF) (Gelman and Hill, 2006), where
VIF > 5 is the threshold to determine whether or not a metric exhibits multi-
colinearity (Menard, 2002).

For each of our constructed logistic regression models, we report:

– p − value for each independent variable. Following Cramer and Howitt’s
observations (Cramer and Howitt, 2004), we determine a metric to correlate
with the presence of task infection if the p−value for that metric is < 0.01;
and

– coefficients, deviance, odds ratio, and the sum of square errors for each
independent variable (Hosmer Jr et al., 2013; Long and Freese, 2006).

2.5 Methodology for RQ5: Task Infection Detector for Ansible Scripts
(TIDAL)

Manual identification of task infections is not practical for a practitioner who
develops and manages multiple Ansible scripts. A practitioner may prefer a
tool that automatically identifies security weaknesses in Ansible scripts and
reports which tasks are affected by security weaknesses. Especially, considering
the fact that practitioners seek information on how reported static analysis
alerts are used in the code base (Smith et al., 2015), it is pivotal to not only
report the security weaknesses but also report which tasks are being impacted
by security weaknesses. To that end, we focus on developing an automated
technique that can identify task infections.
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Table 10: Rules Obtained from Rahman et al. (2021b) to Detect Security
Weakness

Weakness Name Rule

Hard-coded secret

(isKey(k) ∧ length(k.value)>0) ∧
(isUser(k) ∨ isPassword(k) ∨ isPrivateKey(k))

Insecure HTTP ( isKey(k) ∧ isHTTP (k.value) )

No integrity check

(isKey(k) ∧ (isIntegrityCheck(x) == False ∧
isDownload(x.value)) )

Unrestricted IP address (isKey(k) ∧ isUnrestrictedBind(k.value))

2.5.1 Step-1: Syntax Analysis

We describe the construction of TIDAL by discussing how TIDAL identifies
security weaknesses by detecting task infections. TIDAL leverages Ansible’s
state-based approach to detect security weaknesses in Ansible scripts. TIDAL
detects task infections as follows:

TIDAL performs syntax analysis using the following steps:

– Key value pair extraction: TIDAL uses PyYaml 1 to extract keys and their
corresponding values as key-value pairs.

– Identifying keys with hard-coded configuration values: Upon key-value pair
extraction, TIDAL identifies keys with values that are hard-coded and with
values specified by variables. For example, password: ‘sat pass’ is a key
with a hard-coded configuration value. On the other hand, password: ’’{{
ironic db password }}’’, is a key where value is inherited from another
variable ironic db password.

2.5.2 Step-2: Security Weakness Identification

TIDAL identifies potential security weaknesses using the keys with hard-coded
configuration values. TIDAL does not ignore variables that store values in a
key-value format. For example, variables, such as password: ‘‘ ironic db

password ’’ obtain data from another key-value pair defined in another An-
sible script. TIDAL performs rule matching to identify potential security weak-
nesses in Section 2.5.1. TIDAL uses a set of rules provided by Rahman et
al. (2021b) to identify four categories of security weaknesses. The rules are
listed in Table 10. The patterns used by each of these rules are listed in Ta-
ble 11. With the rules in Table 10, TIDAL identifies security weaknesses.

2.5.3 Step-3: Data Dependence Graph

TIDAL constructs data dependence graphs (DDGs) to detect task infections.
In each DDG, two categories of nodes exist a taint node and a sink node. A
taint node is a key of key-value pair that is identified as a security weakness

1 https://pyyaml.org/
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Table 11: String Patterns Used for Functions in Rules Presented in Table 10

Function String Pattern
isDownload() ‘http[s]?://(?:[a-zA-Z]|[0-9]|[$- @.&+]|[!*,]|(?:%[0-9a-

fA-F][0-9a-fA-F]))+.[dmg|rpm|tar.gz|tgz|zip|tar]’
isHTTP () ‘http:’
isUnrestrictedBind() ‘0.0.0.0’
isIntegrityCheck() ‘gpgcheck’, ‘check sha’, ‘checksum’, ‘checksha’
isPassword() ‘pwd’, ‘pass’, ‘password’
isPrivateKey() ‘[pvt|priv]+*[cert|key|rsa|secret|ssl]+’
isUser() ‘user’

# Satellite
sat_pass: admin
sat_email: root@localhost
sat_org: Default Organization

1

a

sat pass

1

b

- name: "Sync RHEL without async"
command:
hammer -p "{{ sat_pass }}" repository synchronize

↪→ --organization-id 1 --product "{{
↪→ content_rhel_name }}" --name "{{
↪→ content_rhel_name }}"

1

c

sat pass

name:command

1

d

Fig. 6: An example to demonstrate TIDAL’s DDG construction process.

from Step 2. A sink node is a key used as part of specifying configurations
within a task. An edge exists between a taint node and a sink node if the taint
node is reachable from the sink node. A taint node reaches a sink node if the
value of the key identified from the taint node is not changed and used by the
key identified by the sink node. We use def-chain analysis (Aho et al., 1986) to
determine reachability. Upon construction of a DDG, TIDAL queries the DDG
to determine if a path exists between the taint and the sink node. If a path
exists, TIDAL determines that corresponding security weakness identified by
the taint node as a true positive.

Example to demonstrate TIDAL’s execution process: We provide a running
example to demonstrate the construction of a DDG. In Figure 6a, we observe
an Ansible script with a hard-coded password (sat pass: admin). The key-
value pair is < sat pass, admin >. As shown in Figure 6b, the taint node is
sat pass, as sat pass is the key in the identified hard-coded password. From
Figure 6c, we observe that sat pass is used in a task with the command key:
hammer -p ‘‘ sat pass ’’ repository synchronize --organization-id

1 --product ‘‘ content rhel name ’’ --name ‘‘ content rhel name ’’.
Therefore, according to our DDG construction process command is a sink node
as shown in Figure 6d. The constructed DDG is shown in Figure 6d.

TIDAL accurately detects an instance of task infection only if both these re-
quirements are satisfied, i.e., a detected pattern is, in fact, a security weakness,
and the detected security weakness propagates into a task. TIDAL is capable
of detecting two categories of task infections: (i) task infections that occur
within a manifest where the location of security weaknesses and tasks are in
the same script, and (ii) task infections that occur in different scripts where
the security weakness is in one script, which propagates into a task located
in a different script. Figure 7 shows an example of a task infection that oc-
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1ironic_db_password: aSecretPassword473z
2ironic_user: admin
3- name: "Create ironic user in RabbitMQ"
4 rabbitmq_user:
5 user: "{{ ironic_user }}"
6 password: "{{ ironic_db_password }}"
7 force: yes
8 state: present
9 configure_priv: ".*"

10 write_priv: ".*"
11 read_priv: ".*"
12 no_log: true

Hard-coded password

Hard-coded username

1

Fig. 7: An example of a task infection that occurs within a script.

1port_range_min: 22
2port_range_max: 22
3remote_ip_prefix: 0.0.0.0/0

Invalid IP
address

1

a Invalid IP address in
‘playbooks/defaults/healthchecks-
vars.yml’ script

1- name: Create security group rules
2 os_security_group_rule:
3 cloud: default
4 interface: internal
5 verify: "{{ keystone_service_internaluri_insecure

↪→ | ternary(false, true) }}"
6 security_group: "{{ security_group.name }}"
7 protocol: "{{ item.protocol }}"
8 port_range_min: "{{ port_range_min }}"
9 port_range_max: "{{ port_range_max }}"

10 remote_ip_prefix: "{{ remote_ip_prefix }}"
11 state: present
12 with_items: "{{ security_group.rules }}"

Use of invalid IP address in task

1

b Usage of invalid IP address in
‘playbooks/healthcheck-openstack.yml’ script

Fig. 8: An example of how TIDAL can detect task infections where the source
of the security weakness is one script, and the task that is being affected is in
another script.

curs within a script. Figure 8 shows an example where an invalid IP address
is located in a script called ‘playbooks/defaults/healthchecks-vars.yml’. The
security weakness propagates into a task called ‘Create security group rules’
in the script ‘playbooks/healthcheck-openstack.yml’.

Our construction process of TIDAL’s similar to recent work published by
Opdebeeck et al. (2023). They constructed GASEL that incorporates three
properties: Ansible-aware parsing, incorporation of data flow analysis, and
control flow analysis that captures variable precedence. Out of these three
properties, TIDAL incorporates two: Ansible-aware parsing and incorporation
of data flow analysis. TIDAL’s parser incorporates Ansible-aware parsing so
that a variable usage, e.g., ‘‘ username ’’ is not treated as a hard-coded
secret. SLAC (Rahman et al., 2021b) does not differentiate between a variable
usage and a configuration value and generates a false positive by identifying ‘‘
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username ’’ as a hard-coded secret. Unlike SLAC, TIDAL also applies data
flow analysis by constructing DDGs. However, unlike GASEL, TIDAL does
not incorporate control flow analysis that captures variable precedence. As a
result, TIDAL is susceptible to identifying task infections that do not occur due
to variable precedence.

2.5.4 Step-4: Evaluation of TIDAL with Metrics

We use the dataset created from Section 2.1 to evaluate TIDAL’s detection
accuracy. For evaluating TIDAL we use three metrics: precision, recall, and F-
measure. Precision refers to the fraction of correctly identified instances among
the total identified security weaknesses, as determined by TIDAL. Recall refers
to the fraction of correctly identified instances retrieved by TIDAL over the
total amount instances. F-measure is the harmonic mean of precision and
recall (Tan et al., 2005).

3 Empirical Findings

We provide answers to our research questions as follows:

3.1 Answer to RQ1

In this section, we answer RQ1: How frequently do task infections oc-
cur in Ansible scripts? by reporting the frequency of task infections. We
use Table 12 to report the frequency of task infections. Altogether, we identify
2,621 security weaknesses to propagate into 1,805 tasks (3.6% of 49,898). The
‘Impacted Task (%)’ column in Table 12 shows the proportion of tasks into
which >= 1 security weaknesses propagate. The ‘Script-wise Task Infection
(%)’ column in Table 12 shows the distribution of task proportion for a single
script in which >= 1 security weaknesses propagate. For example, on average,
6.4% of all tasks within a single script are impacted by >= 1 security weak-
nesses. Altogether, 1,847 Ansible scripts include at least one task into which
at least one security weakness propagates.

Table 12: Answer to RQ1: Frequency of Task Infection

Category Impacted Task (%) Script-wise Task Infection (%)
(Avg. Std. Dev.)

Hard-coded secret 3.2 (6.1, 16.3)
No integrity check 0.002 (25.0, 0.0)
Unrestricted IP address bind-
ing

0.13 (8.9, 16.6)

Use of HTTP without TLS 0.29 (6.7, 20.0)

Combined 3.6 (6.4, 16.9)



28 Rahman et al.

In Table 13, we report the minimum, median, maximum, average, and
standard deviation of task count for a script into which >= 1 security weakness
propagates. We observe that a security weakness can propagate into as many
as 76 distinct tasks. The average task per script varies between 0.4 and 1.0
across four categories.

Table 13: Answer to RQ1: Task Frequency (Minimum, Median, Maximum,
Average, Std. Dev.)

Category Min, Median, Max, Avg., Std. Dev.
Hard-coded secret 1, 1, 76, 0.6, 3.3
No integrity check 1, 1, 1, 1, 0.0
Unrestricted IP address binding 1, 1, 12, 0.4, 0.8
Use of HTTP without TLS 1, 1, 20, 0.4, 1.9

Total 1,1,76, 0.6, 3.2

Answer to RQ1: We identify 1,805 of 49,898 tasks to experience task
infection in our dataset of 27,213 Ansible scripts.

3.2 Answer to RQ2

In this section, we answer RQ2: What categories of task infections ap-
pear for Ansible scripts? by first describing the resource categories, which
are listed in Figure 9. Next, we report the frequency of resource categories.
A mapping of initial categories and the obtained categories is available in
Table 14.

Table 14: Mapping of Initial Categories and Final Categories
Initial Category High-level Category
Cron job for anti-virus, Setup antivirus user name Antivirus-related tasks
Authenticate user for Jenkins, Setup Jenkins port, Setup Jenk-
ins protocol

Continuous integration

Manage AWS Elastic Beanstalk, Setup MySQL user account,
Authenticate MongoDB user account

Data storage

Check for private keys needed to access RabbitMQ, Monitor
RabbitMQ-related traffic

Message broker

DHCP check with tasks, DHCP setup with tasks Networking
Manage AWS IAM policies, Setup AWS S3 buckets, Manage
AWS Virtual Private Controllers, Authenticate users for LXC
containers, Manage certificates for container registries, Man-
age user configurations for Kubernetes

Virtualization
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Fig. 9: Task infection categories.

3.2.1 Description of Task Infection Categories

We identify six categories of task infections. We describe each category with
examples as follows.

I-Antivirus: Tasks used to manage anti-virus software, i.e., software used to
detect and remove computer viruses.

Example: In Figure 10, we observe an instance of a hard-coded username
to propagate into a task, which is used to manage packages related to setting
up antivirus software. The hard-coded username antivirus user specified in
line#2 is used to create an account needed to set up a user for the antivirus
software.

1antivirus_app_dir: /edx/app/antivirus
2antivirus_user: "antivirus"
3...
4- name: create antivirus scanner user
5 user: >
6 name="{{ antivirus_user }}"
7 home="{{ antivirus_app_dir }}"
8 createhome=no
9 shell=/bin/false

Hard-coded username

1

Fig. 10: An example of a hard-coded user name propagating into a task used
to setup antivirus.

II-Continuous integration (CI): Tasks used to manage the infrastructure
needed to implement the practice of continuous integration (CI), with tools,
such as Jenkins (Jenkins, 2022). CI is the practice of integrating code changes
by automatically compiling, building, and executing test cases upon submis-
sion of code changes (Duvall et al., 2007).

Example: In Figure 11, we observe an instance of a hard-coded username
to propagate into a task, which is used to set up Jenkins, a popular CI tool.
The hard-coded username jenkins user specified in line#2 is used to create
an account needed to set up a Jenkins shell.
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1jenkins_home: /home/jenkins
2jenkins_user: "jenkins"
3jenkins_group: "jenkins"
4...
5# roles/jenkins_worker/tasks/system.yml
6# The Jenkins account needs a login shell because

↪→ Jenkins uses scp
7- name: Add the jenkins user to the group and

↪→ configure shell
8 user: name={{ jenkins_user }} append=yes

↪→ group={{ jenkins_group }}
↪→ shell=/bin/bash

Hard-coded username

1

Fig. 11: An example of a hard-coded user name propagating into a task used
to set up a Jenkins shell.

III-Data storage : Tasks used to manage the software that is used to store
data, such as MongoDB and MySQL.

Example: In Figure 12, we observe an instance of a hard-coded username
and an instance of a hard-coded password to propagate into a task, which is
used to set up a MySQL user account. The hard-coded username and password
is respectively, mysql root username (line #3) and mysql root password

(line #4).
IV-Message broker : Tasks used to implement the practice of message broker,
which is used to translate messages written in one formal specification as
determined by the sender, to another formal specification as determined by
the receiver (Banavar et al., 1999).

Example: In Figure 13, we observe an instance of insecure HTTP to be
used by an Ansible task (rabbitmq pkg url) to set up RabbitMQ, a message
broker software in line# 7.
V-Networking : Tasks used to manage networking-related functionalities, such
as setting up and managing firewalls, virtual local area networks (VLANs) and
virtual private networks (VPNs).

Example: In Figure 14, we observe an instance of an unrestricted IP address
(rock mgmt nets = [‘‘0.0.0.0/0’’]), which is used to set up a firewall in
line# 12.
VI-Virtualization : Tasks used to manage virtualization technologies, such
as containers and virtual computing clusters.

Example: Figure 15 shows how a hard-coded username and a hard-coded
password propagate into three tasks to set up Red Hat Enterprise Linux
(RHEL) products for a virtual computing cluster. The hard-coded username
is sat user and the hard-coded password is sat pass, which are later used by
three tasks: ‘Create Sat Tools product’, ‘Create Sat Tools repo in the product’,
and ‘Sync RHEL via async’. This example shows that a hard-coded secret may
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1# Hard-coded user name and hard-coded password
2mysql_root_home: /root
3mysql_root_username: root
4mysql_root_password: root
5...
6- name: Update MySQL root password for localhost root

↪→ account (5.7.x).
7 shell: >
8 mysql -u root -NBe
9 'ALTER USER "{{ mysql_root_username }}"@"{{ item

↪→ }}" IDENTIFIED WITH mysql_native_password BY
↪→ "{{ mysql_root_password }}";'

10 with_items: "{{
↪→ mysql_root_hosts.stdout_lines|default([]) }}"

11 when: ((mysql_install_packages | bool) or
↪→ mysql_root_password_update) and ('5.7.' in
↪→ mysql_cli_version.stdout)

Hard-coded username

Hard-coded password

1

Fig. 12: An example of a hard-coded user name propagating into a task used
to update a MySQL account.

1rabbitmq_pkg_url:
↪→ "http://files.edx.org/rrabbitmq-server_3.2.3-1_all.deb"

2rabbitmq_pkg: "rabbitmq-server"
3rabbitmq_package_checksum_sha256:

↪→ "e3c377e585c123e06c88422248915f32216641d6f7dfab50d124535c8e93010d"
4...
5- name: fetch the rabbitmq server deb
6 get_url: >
7 url={{ rabbitmq_pkg_url }}
8 dest=/var/tmp/{{ rabbitmq_pkg_url|basename }}

Insecure
HTTP

1

Fig. 13: An example of an insecure HTTP propagating into a task to set up
RabbitMQ, a message broker.

reside in one Ansible script and later used in another script. The source of the
hard-coded user name and hard-coded password is in an Ansible script called
‘conf.sat.perf.yaml’, whereas the tasks are listed in a different Ansible script
called ‘rhel-setup.yaml’.

3.2.2 Frequency of Task Infection Categories

The percentage of the task infection categories is listed in Figure 16. Each
column adds up to 100%, showing the proportion of tasks infected by a partic-
ular security weakness and mapped to a task category. For example, the total
count of tasks infected by security weaknesses is 1,805, of which 26.8% are
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1# Example of invalid IP address
2rock_mgmt_nets: [ "0.0.0.0/0" ]
3...
4- name: Configure firewall ports
5 firewalld:
6 port: "{{ item[1].port }}"
7 source: "{{ item[0] }}"
8 permanent: yes
9 state: enabled

10 immediate: yes
11 with_nested:
12 - "{{ rock_mgmt_nets }}"
13 - { port: "22/tcp" }

Invalid IP address

1

Fig. 14: An example of invalid IP address propagating into a task to set up a
firewall daemon.

used for virtualization. As another example, 144 tasks are infected by insecure
HTTP instances, of which 43.0% of tasks are related to virtualization.

Our findings show that computing infrastructure managed with Ansible
tasks is frequently infected by security weaknesses, making them susceptible
to attacks. We observe hard-coded secrets to propagate into all six categories
of tasks.

Answer to RQ2: We identify six categories of task infections: antivirus,
continuous integration, data storage, message broker, networking, and
virtualization.

3.3 Answer to RQ3: Practitioner Perception

In this section, we answer RQ3: What are the practitioner perceptions
of task infection categories for Ansible scripts? From our survey, we
obtain 23 responses in total. The reported experience in Ansible development is
provided in Table 15. In Figures 17 and 18, we report practitioner perceptions
for the frequency and severity of the identified task infection categories. The
x and y-axis present the percentage of survey participants and task infection
categories. For example, from Figure 17, we observe 25% of the total survey
respondents to identify continuous integration as a task infection category that
frequently or highly frequently appears.

From Figure 17, we observe that the survey respondents perceive networking-
related tasks as the most frequent task infection category, where 25% of the
total participants found network-related infrastructure to occur frequently or
highly frequently. The least frequently perceived task category is anti-virus for
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1# Hard-coded secrets specified in an Ansible manifest
↪→ ('conf.satperf..yaml')

2...
3sat_version: "6.3"
4sat_user: admin
5sat_pass: admin
6sat_email: root@localhost
7sat_org: Default Organization
8sat_orglabel: Default_Organization
9sat_orgid: 1

10...
11# Configuration values used in an Ansible manifest

↪→ with tasks
12 - name: "Create Sat Tools product"
13 command:
14 hammer -u "{{ sat_user }}" -p "{{ sat_pass }}"

↪→ product create --organization-id "{{
↪→ sat_orgid }}" --name "{{
↪→ content_sattools_name }}"

15 - name: "Create Sat Tools repo in the product"
16 command:
17 hammer --username "{{ sat_user }}" --password "{{

↪→ sat_pass }}" repository create
↪→ --content-type yum --label "{{
↪→ content_sattools_label }}" --name "{{
↪→ content_sattools_name }}" --organization-id
↪→ "{{ sat_orgid }}" --product "{{
↪→ content_sattools_name }}" --url "{{
↪→ content_sattools_url }}"

18
19 - name: "Sync RHEL via async"
20 command:
21 hammer -u "{{ sat_user }}" -p "{{ sat_pass }}"

↪→ repository synchronize --organization-id 1
↪→ --product "{{ content_rhel_name }}" --name
↪→ "{{ content_rhel_name }}" --async

22 when: "sat_repos_sync == 'async'"

Hard-coded user name

Hard-coded password

1

Fig. 15: An example of a hard-coded password and a hard-coded username
propagating into a task used to set up RHEL products and tools for a virtual
computing cluster.

which only 10% of the total participants found anti-virus-related infrastruc-
ture management to be frequent or highly frequent. From our survey analysis,
we observe practitioners’ perceptions related to frequency to be incongruent
with presented data in Section 3.2.2. According to Figure 16, tasks used to
manage data storage is the most frequently infected task category.

The purpose of surveying practitioners was to examine to what extent
practitioner perceptions compare to that of mined empirical data. In empiri-
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Fig. 16: Answer to RQ2: Percentage of Task Infections for Identified Categories.

Table 15: Survey Respondents’ Experience

Experience Respondent count
1− 2 years 1
3− 4 years 5
4− 5 years 7
> 5 years 10

cal software engineering, this is a common approach in mixed methods stud-
ies (Easterbrook et al., 2008) The insights that we obtain contribute to the
existing body of IaC-related knowledge. We observe that similar to mined data,
practitioners also perceive task infection to occur infrequently. Practitioners
also find data storage-related tasks to be impacted more severely compared to
other categories.

According to Figure 18, we observe 50% of the survey participants to find
storage-related tasks to be impacted severely or with high severity. Tasks used
to manage CI and networking are perceived to be the second most severe
category where 40% of the survey participants found CI and networking to be
impacted severely or with high severity.

We also conduct Chi-Squared (χ2) tests (Greenwood and Nikulin, 1996)
for both perceived frequency and perceived severity. In the case of perceived
frequency, we observe the χ2 value to 49.0, with 10 degrees of freedom. The p-
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Fig. 17: Answer to RQ4: Perceptions related to the frequency of task infection
categories.
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Fig. 18: Answer to RQ4: Perceptions related to the severity of task infection
categories.

value is 4×10−07 indicating the relationship between task infection categories
and the perceived frequency of the survey participants.

In the case of perceived frequency, we observe the χ2 value to 56.7, with 10
degrees of freedom. The p-value is 2×10−08 indicating the relationship between
task infection categories and the perceived severity of the survey participants.

Answer to RQ3: We observe 50% of the survey participants to find
storage-related tasks to be impacted severely.

3.4 Answer to RQ4

In this section, we answer RQ4: What development factors correlate
with task infections in Ansible scripts? We present the results of our
logistic regression models in Table 16, where we report the co-efficient esti-
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Table 16: Answer to RQ4: Development Metrics and Their Correlation with
Task Infection Presence

Metric Coeff.
Esti-
mate

Error p-value Deviance Odds Ratio VIF

(Intercept) -6.23
Age 0.16 0.01 < 2× 10−16 153.2 1.2 2.7
Bash envy 0.07 0.06 0.25 1.3 1.0 1.1
Commits 0.05 0.07 0.42 33.7 1.0 3.4
IsRole 2.75 3.56 0.44 0.57 1.5 1.0
Minor Con-
trib.

0.55 0.10 1.9× 10−07 6.0 1.1 2.1

Scatteredness 2.63 0.15 < 2× 10−16 397.1 1.4 1.2

mate, standard error, p − value, deviance, odds ratio, and VIF. We observe
a VIF of < 5 for all independent variables that show multi-colinearity does
not exist between the independent variables. The McFadden R2 value for the
development activity-based model is 0.05, indicating an ill-fitted model.

The metrics for which we observe correlation with the presence of task
infection are age, minor contributors, and scatteredness. We observe the coef-
ficient estimate for age, minor contributors, and scatteredness to be positive,
which indicates that an increase in any of these metrics will increase the prob-
ability of task infection. The odds ratio for scatteredness is 1.4, which means
increasing scatteredness by one unit raises the probability of the presence of
task infection by a factor of 1.4. For age and minor contributors, the odd ratio
is respectively, 1.2 and 1.1. Furthermore, the deviance value is highest for the
scatteredness followed by age, and then minor contribuors. Therefore, based
on deviance and odds ratio, we observe scatteredness showing more correlation
with task infection compared to age and minor contributors.

We further provide descriptive statistics in Table 17 for the three met-
rics that correlate with task infection presence. The statistic of each metric
is presented as a tuple, where each tuple represents the minimum, median,
average, and maximum value for each metric. The ‘Infection’ column provides
the statistics of each metric for scripts in which at least one task infection ap-
pears. The ‘Neutral’ column provides the statistics of each metric for scripts
in which there is no task infection. For all metrics we observe the mean to be
higher for scripts with at least task infection, compared to that of scripts with
no task infection. The average age, minor contributor count, and scatteredness
of scripts with >= 1 task infections are respectively, 1.05, 1.25, and 1.19 times
higher than that of scripts with no task infections.

In Table 18 we provide statistics for the source code-based model. The
model excludes the following metrics because of their VIF being > 5: ‘depre-
cated modules’, ‘distinct modules’, ‘keys’, ‘lines of code’, ‘lines of blank’, ‘math
ops’, ‘parameters’, ‘plays’, ‘tokens’, ‘task size’, and ‘unique names’. The Mc-
Fadden R2 value is 0.21 indicating a well-fitted model. The metrics for which
p−value < 0.01 is highlighted in green. The source metrics that correlate with



An Empirical Study of Task Infections in Ansible Scripts 37

Table 17: Descriptive Statistics of Age, Minor Contributors, and Scatteredness

Metrics Infection Neutral
(Min, Med., Avg., Max) (Min, Med., Avg., Max)

Age (1.0, 131.9, 331.3, 2527.0) (1.0, 1.0, 313.8, 2486.2)
Minor contributors (0.0, 0.0, 0.5, 11.0) (0.0, 0.0, 0.4, 37.0)
Scatteredness (0.0, 3.7, 3.7, 6.7) (0.0, 3.2, 3.1, 7.4)

task infection presence are: ‘average play size’, ‘average task size’, ‘blocks’,
‘commands’, ‘conditions’, ‘deprecated keywords’, ‘ensure count’, ‘error han-
dling blocks’, ‘error ignores’, ‘fact modules’, ‘file mode’, ‘includes’ , ‘name
with variables’, ‘playbook imports’, ‘role imports’, ‘role includes’, ‘SSH autho-
rized keys’, ‘suspicious comments’, ‘text entropy’, ‘URLs’, ‘V ar includes’, and
‘var length’. The minimum, median, and maximum value for each source code
metric for scripts with and without task infections is presented in Table 19.

Table 18: Answer to RQ4: Correlation of Source Code Metrics with Task In-
fection

Metric Coeff.
Esti-
mate

Error p-value Deviance Odds Ratio VIF

(Intercept) -14.1

Average Play
Size

0.18 0.03 1.9 × 10−08 10.5 1.19 1.5

Average Task
Size

0.49 0.07 3.3 × 10−11 71.3 1.64 1.6

Blocks 0.71 0.14 1.0 × 10−06 0.47 2.04 1.5

Commands 0.43 0.06 4.1 × 10−11 21.5 1.54 1.7
Conditions -0.24 0.07 0.00067 20.4 0.78 3.9
Decisions -0.06 0.07 0.44 48.5 0.94 3.2
Deprecated
Keywords

-2.76 0.73 0.0001 49.1 0.06 1.0

ensure count -0.32 0.12 0.005 21.5 0.72 1.9
Error Han-
dling Blocks

-1.16 0.43 0.007 20.9 0.31 1.1

Error Ignores 0.50 0.43 1.7 × 10−07 16.8 1.65 1.3
External
Modules

-0.09 0.07 0.20 21.6 0.91 1.5

Fact Modules -0.95 0.15 4.7 × 10−10 29.2 2.58 1.2
Files 1.57 0.68 0.02 0.06 4.81 1.0
File Mode 0.38 0.12 0.001 1.1 1.46 1.9
Filters 0.02 0.05 0.58 2.77 1.02 1.5

Includes 0.92 0.13 1.4 × 10−11 19.5 2.50 1.1
Lines of com-
ments

0.01 0.03 0.96 15.9 1.00 1.3

Lookups 0.06 0.10 0.56 1.4 1.06 1.1
Loops 0.08 0.06 0.20 7.3 1.08 1.5

name with
variables

0.44 0.06 5.1 × 10−14 45.2 1.56 1.2

Paths -0.12 0.07 0.06 10.5 0.88 2.2

Playbook Im-
ports

0.77 0.11 4.7 × 10−11 20.7 2.15 1.1

Regexes -0.73 0.28 0.01 4.5 0.48 1.0
Role Imports -0.55 0.17 0.001 30.8 0.57 1.1

Role Includes 0.96 0.14 7.3 × 10−12 28.1 2.63 1.1
Role Size 0.03 0.11 0.75 0.01 1.03 1.4
SSH Autho-
rized Keys

2.21 0.65 0.0006 13.5 9.16 1.0

Susp. Com-
ments

-1.29 0.24 1.1 × 10−07 26.7 0.27 1.1

Task Imports -0.43 0.18 0.01 9.2 0.64 1.0
Task Includes -0.15 0.10 0.12 3.9 0.85 1.1

Text Entropy 6.43 0.43 < 2.0 × 10−16 590.7 21.7 2.6

URLs 1.43 0.13 < 2.0 × 10−16 94.0 4.18 1.1
User Interac-
tions

-1.65 1.02 0.10 4.5 0.19 1.0

V ar Includes -1.57 0.42 0.0002 17.7 0.20 1.0

var Length -0.91 0.05 < 2.0 × 10−16 186.5 0.40 1.9
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In Table 20 we provide statistics for the combined model. The combined
model includes development activity-based metrics and source code-based met-
rics. The model excludes the following metrics because of their VIF being
> 5: ‘average play size’, ‘BASH envy’, ‘commands’, ‘deprecated modules’,
‘distinct modules’, ‘keys’, ‘lines of code’, ‘lines of blank’, ‘math ops’, ‘param-
eters’, ‘plays’, ‘scatteredness’, ‘text entropy’, ‘tokens’, ‘task size’, and ‘unique
names’. The McFadden R2 value is 0.17 indicating a well-fitted model. The
metrics for which p − value < 0.01 is highlighted in green. According to the
combined model, the metrics that correlate with the presence of task infection
are: ‘age’, ‘average task size’, ‘blocks’, ‘decisions’, ‘error handling blocks’, ‘fact
modules’, ‘includes’, ‘lookups’, ‘loops’, ‘name with variables’, ‘playbook im-
ports’, ‘role includes’, ‘role size’, ‘SSH authorized keys’, ‘suspicious comments’,
‘task imports’, ‘text entropy’, ‘URLs’, ‘var includes’, and ‘var length’.

Table 19: Descriptive Statistics of Correlating Source Code Metrics
Metrics Infection Neutral

(Min, Med., Avg., Max) (Min, Med., Avg., Max)
Average Play Size (0.0, 0.0, 171.0) (0.0, 0.0, 220.0)
Average Task Size (0.0, 7.0, 221.0) (0.0, 5.0, 177.0)
Blocks (0.0, 0.0, 6.0) (0.0, 0.0, 13.0)
Commands (0.0, 0.0, 56.0) (0.0, 0.0, 34.0)
Conditions (0.0, 1.0, 123.0) (0.0, 0.0, 118.0)
Deprecated Keywords (0.0, 0.0, 1.0) (0.0, 0.0, 21.0)
ensure count (0.0, 0.0, 20.0) (0.0, 0.0, 72.0)
Error Handling Blocks (0.0, 0.0, 3.0) (0.0, 0.0, 10.0)
Error Ignores (0.0, 0.0, 24.0) (0.0, 0.0, 20.0)
Fact Modules (0.0, 0.0, 8.0) (0.0, 0.0, 21.0)
File Mode (0.0, 0.0, 13.0) (0.0, 0.0, 28.0)
Includes (0.0, 0.0, 20.0) (0.0, 0.0, 24.0)
name with variables (0.0, 0.0, 46.0) (0.0, 0.0, 75.0)
Playbook Imports (0.0, 0.0, 12.0) (0.0, 0.0, 11.0)
Role Imports (0.0, 0.0, 30.0) (0.0, 0.0, 115.0)
Role Includes (0.0, 0.0, 17.0) (0.0, 0.0, 16.0)
SSH Authorized Keys (0.0, 0.0, 2.0) (0.0, 0.0, 23.0)
Susp. Comments (0.0, 0.0, 3.0) (0.0, 0.0, 7.0)
Text Entropy (2.8, 5.7, 8.1) (1.9, 5.0, 7.9)
URLs (0.0, 0.0, 21.0) (0.0, 0.0, 38.0)
var Includes (0.0, 0.0, 2.0) (0.0, 0.0, 24.0)
var Length (0.0, 1.0, 58.0) (0.0, 1.0, 171.0)

A summary of our logistic regression analysis is listed as follows:

– The three development activity metrics that show correlation with task
infection presence are: age, minor contributors, and scatteredness.

– Amongst all selected development activity metrics scatteredness shows the
most correlation.

– 21 source code metrics show correlation with task infection presence of
which text entropy shows the highest correlation.

– Considering only source code metrics, with respect to correlation strength,
text entropy is the most sensitive source code metric, as an unit increase



An Empirical Study of Task Infections in Ansible Scripts 39

Table 20: Answer to RQ4: Correlation of Source Code and Development Ac-
tivity Metrics with Task Infection

Metric Coeff.
Esti-
mate

Error p-value Deviance Odds Ratio VIF

(Intercept) -3.92

Age 0.14 0.02 2.8 × 10−11 49.2 1.14 2.8

Average Task
Size

0.68 0.07 < 2.0 × 10−16 182.7 1.97 1.5

Blocks 0.48 0.14 0.0008 0.08 1.62 1.4
Commits 0.21 0.08 0.01 165.3 1.23 3.9
Conditions 0.13 0.06 0.04 6.9 1.14 3.5
Decisions -0.28 0.07 0.0001 51.2 0.75 3.1
Deprecated
Keywords

-1.71 0.71 0.0157 21.5 0.18 1.0

Ensure count -0.11 0.12 0.36 1.8 0.72 2.0
Error Han-
dling Blocks

-1.37 0.45 0.002 21.3 0.25 1.1

Error Ignores 0.85 0.09 < 2.0 × 10−16 53.4 2.34 1.2
External
Modules

0.10 0.07 0.15 0.48 1.11 1.5

Fact Modules 1.20 0.15 7.6 × 10−15 68.2 3.33 1.2
Files 2.13 0.68 0.02 2.2 8.43 1.0
File Mode 0.30 0.12 0.013 4.8 1.34 2.0
Filters 0.12 0.04 0.012 5.4 1.12 1.5

Includes 0.73 0.13 7.4 × 10−08 19.5 2.07 1.1
isRole 2.14 1.51 0.15 1.7 8.51 1.0
Lines of com-
ments

0.05 0.03 0.14 1.9 1.05 1.3

Lookups 0.28 0.10 0.008 15.3 1.32 1.1
Loops 0.19 0.06 0.004 10.8 1.20 1.5
Minor Con-
tributors

-3.92 0.16 0.27 98.8 0.02 2.0

name with
variables

0.41 0.06 8.9 × 10−12 38.5 1.50 1.3

Paths 0.05 0.07 0.42 0.83 1.05 2.3

Playbook Im-
ports

1.02 0.11 < 2.0 × 10−16 75.2 2.77 1.2

Regexes -0.47 0.28 0.09 2.6 0.62 1.0
Role Imports -0.25 0.16 0.12 5.9 0.78 1.2

Role Includes 0.95 0.13 2.8 × 10−12 28.1 2.59 1.1

Role Size 0.51 0.10 5.8 × 10−07 23.1 1.66 1.3
SSH Autho-
rized Keys

1.85 0.64 0.004 9.9 6.35 1.0

Susp. Com-
ments

-1.22 0.25 1.9 × 10−06 17.1 0.29 1.1

Task Imports -0.53 0.18 0.002 13.0 0.58 1.0
Task Includes -0.14 0.09 0.15 3.9 0.86 1.1

URLs 1.77 0.13 < 2.0 × 10−16 154.7 5.90 1.1
User Interac-
tions

-1.97 1.08 0.06 4.7 0.14 1.0

var Includes -1.41 0.42 0.0009 17.7 0.24 1.0

var Length -0.58 0.05 < 2.0 × 10−16 124.8 0.55 1.8

in text entropy will increase the probability of task infection presence by a
factor of 21.7, which is higher than any other source code metric.

– Based on McFadden R2 value, the source code-based model is a better
fit for task infection compared to that of the development activity-based
model.

– When source code metrics are used in combination with development ac-
tivity metrics, both development activity and source code metrics show
correlation with task infection presence.

Answer to RQ4: We identify 3 development activity metrics and 21
source code metrics to show correlation with task infection in Ansible
scripts.
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Table 21: Precision, Recall and F-measure of TIDAL to Detect Task Infections
for Four Security Weakness Categories

Category Precision Recall F-measure
Hard-coded secret 0.93 0.98 0.96
Insecure HTTP 0.96 1.00 0.98
No Integrity Check 0.86 0.86 0.86
Unrestricted IP Address Binding 0.91 1.00 0.95

Average 0.91 0.96 0.94

3.5 Answer to RQ5

In this section, we answer RQ5: How can we automatically task infec-
tions in Ansible scripts? by reporting the precision, recall, and F-measure
for TIDAL. We report the detection accuracy of TIDAL in Table 21. We observe
the precision and recall to detect task infections is > 0.85 across all four cate-
gories. The average precision and recall is > 0.90 which gives us the confidence
that TIDAL is effective in detecting task infections.

Answer to RQ5: TIDAL’s precision and recall to detect task infections
is > 0.85 across all four categories.

4 Discussion

We discuss our findings in the following subsections:

4.1 Actionability-related Implications

Our empirical study has implications related to practitioner actionability, i.e.,
whether or not practitioners will take action for the detected security weak-
nesses. In prior work, Smith et al. (2013) observed that when detecting the
relevance of security weaknesses by static analysis tools, practitioners inspect
if other portions of the code base use the detected weaknesses. TIDAL not only
detects security weaknesses in Ansible scripts, but also identifies the tasks
into which security weaknesses propagate. In this manner, TIDAL can help
practitioners determine the relevance of detected security weaknesses and take
necessary actions.

4.2 Implications Related to Code Inspection

Findings from Section 3.4 show age and scatteredness to be correlated with
task infections. While performing code inspections, practitioners can leverage
this finding to prioritize inspection efforts. For example, scripts with high age,
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minor contributor count, or scatteredness can be prioritized for review, as these
scripts are more likely to include task infections. For example, we observe the
median age to be 131.9 times for scripts with task infections higher than that
of scripts with no task infection. Practitioners can use this data as a heuristic
to organize their development process of Ansible scripts.

Other source code metrics that show a correlation with task infection pres-
ence can also be used to prioritize code inspection efforts. For example, from
Table 19, we observe the average task size to be 1.4 times for scripts with task
infections compared to that of scripts with no task infections.

The count of affected tasks is dependent on task infections, i.e., whether
or not security weaknesses propagate into tasks. If security weaknesses do not
propagate into tasks, then the task is not affected. The fact that the affected
tasks are smaller in count compared to the count of scripts has implications
with respect to the prioritization of inspection efforts. As a smaller set of tasks
are infected, with the help of TIDAL, the practitioner can focus first on tasks
into which security weaknesses propagate.

4.3 Perceptions of Practitioners

From Figure 17, we observe >= 50% of the surveyed practitioners perceive
task infection as not frequent. Such perceptions held by practitioners can po-
tentially lead to unmitigated security weaknesses in Ansible scripts, making
the provisioned computing infrastructure susceptible to security attacks. For
example, if a practitioner perceives that the hard-coded secrets do not im-
pact tasks used to set up CI servers, hard-coded secrets may remain unmit-
igated, allowing malicious users to conduct malicious attacks. Such attacks,
unfortunately, are common: for example, hard-coded secrets were leveraged
to gain unauthorized access to Uber’s servers, which resulted in data expo-
sure for 57 million customers and 600,000 Uber drivers (Miller, 2019; Schwarz,
2019). Recent research (Rahman et al., 2019; Meli et al., 2019) shows hard-
coded secrets is wide-spread concern in software artifacts. To account for this
concern, researchers and industry experts have advocated for the usage of se-
cret management tools, such as Hashicorp Vault 2, by applying recommended
best practices Rahman et al. (2021a) for secret management. Adoption of
secret management tools can prevent exposure of hard-coded secrets in Ansi-
ble scripts. Furthermore, as organizations rely on Ansible scripts to automate
their software supply chain (Ryan, 2022), unmitigated security weaknesses in
Ansible scripts can lead to security attacks against an Ansible-based software
supply chain.

One approach to inform practitioners about task infection is using TIDAL.
With TIDAL, practitioners can detect what security weaknesses are propagating
into tasks, and affecting computing infrastructure managed by these tasks.

2 https://www.vaultproject.io/
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4.4 Future Research

Our findings lay the groundwork for future research related to the secure de-
velopment of Ansible scripts, which we discuss below:

– Language Agnostic Detection of Security Weaknesses: TIDAL is language-
dependent as it uses Ansible-specific code constructs to detect security weak-
nesses. One possible approach could be developing an intermediate repre-
sentation (IR)-based technique that can not only detect security weaknesses
in Ansible scripts but also for IaC scripts developed in other programming
languages, such as Chef and Puppet. As mentioned in Section 6, recent work
from Saavedra and Ferreira (2023) is a right step in this direction.

– Enhanced Source Specification: Currently, TIDAL uses key-value pairs for the
detection of security weaknesses. However, security weaknesses can propa-
gate into tasks from other sources, e.g., from a Jinja template (Opdebeeck
et al., 2022) while executing Ansible scripts. Future work can extend TIDAL

in a manner so that it can detect security weaknesses that may originate
from sources that are not key-value pairs, such as Jinja templates (Opde-
beeck et al., 2022). The incorporation of practitioner feedback might also
be helpful in this regard. For example, practitioners can be surveyed to
understand what other sources of security weaknesses could be for Ansible
tasks.

– Socio-technical Factors in Ansible-based Infrastructure Management: Find-
ings reported in Section 3.4 show the development factors, such as age and
scatteredness to correlate with the presence of task infections. We advocate
for including other socio-technical factors, such as developer knowledge in
software development, developer knowledge in secure coding, and contextual
team factors, to investigate development factors related to task infections.

– Differences in Impacted Infrastructure for Ansible and Puppet: In Section 1,
we have discussed differences with respect to impacted infrastructure be-
tween Ansible and Puppet. We posit three possible explanations: (i) the
differences can be due to the studied sample projects; (ii) the differences
can be due to the domain of the IaC technology in which IaC is being ap-
plied; and (iii) the differences can be due to the fact that there might be
syntactic advantages for one IaC language over another, when it comes to
provisioning computing infrastructure, which leads to the differences in the
impacted infrastructure categories. Future research can empirically validate
to what extent these explanations are substantial.

– Dynamic Analysis: While recent research has investigated static source code
analysis of Ansible scripts, there is a lack of investigation on how to apply
dynamic analysis of Ansible scripts. Our conjecture is that through the ap-
plication of dynamic analysis, detection of security weaknesses will improve
for Ansible scripts. Curating a set of Ansible playbooks that can be executed
automatically is a first step towards that direction.



An Empirical Study of Task Infections in Ansible Scripts 43

5 Threats to Validity

We discuss the limitations of our empirical study below:

Conclusion Validity : Our findings are limited to the task infections identified
by TIDAL, which leverages def-use chains (Aho et al., 1986). We acknowledge
that TIDAL may not capture all types of information flow in Ansible scripts.
One type of flow that TIDAL is unable to detect is when secrets are provided
from the command line using the ansible command. An example usage of this
command is ansible all -m ping -u ubuntu --ask-pass, where a user-
name ‘ubuntu’ is provided from the command line. Another type of flow is
when hard-coded secrets are inherent in a value for the shell module. An
example usage of this particular module would be shell: > mysql -u root

-NBe. TIDAL accounts for one type of data flow where a detected security
weakness propagates into a task. There could be other sources of security
weaknesses that TIDAL does not account for, therefore, when applied TIDAL’s
precision and recall may drop for those types of scripts. For example, ‘- u root’
is a hard-coded secret, which TIDAL will miss, eventually reducing TIDAL’s re-
call.

Our empirical evaluation of task infection category derivation could be
limited by the tasks that we mined from our set of 56 repositories. Also,
our analysis is limited to TIDAL: application of another tool can identify task
infections that we have not identified. Currently, TIDAL only considers data
flow analysis, which is limiting and can bias the results of RQ2. TIDAL does
not account for variable precedence with control flow analysis, which can lead
to instances of false positives and false negatives. Future work can investigate
if GASEL (Opdebeeck et al., 2023), which accounts for control flow analysis
along with data flow analysis, can aid in better task infection detection.

Security weakness categories determined by TIDAL are limited to Rahman
et al. (2021b)’s paper. Another limitation of our paper is not distinguishing
between Ansible scripts that are used in deployment and scripts that are not
deployment-related. We mitigate this limitation by using a dataset provided
by prior research (Mohammad Mehedi and Rahman, 2022), which has been
systematically curated.

Construct Validity : When constructing the dataset, the rater may have implicit
biases that could have affected the labeling process described in Section 2.1.3.
Similarly, the open coding process to derive task infection categories is also
susceptible to rater bias. We mitigate both of these limitations by performing
rater verification. In the case of rater verification for dataset construction and
task infection category, Cohen’s Kappa is, respectively, 0.78 and 0.82. Also,
Reis et al. (2023) observed that practitioners do not find all security weakness
categories, such as hard-coded user names to be relevant. As such, TIDAL’s
precision may reduce when applied to a dataset, which is based on practitioner
perceptions, even if the security weakness categories are valid.

Our use of names for tasks in the open coding process is limiting, as IaC
scripts, such as Ansible scripts, are susceptible to linguistic inconsistencies.
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Also, our use of task content when the name is not available can limit the
category derivation process.
External Validity : Our empirical study is susceptible to external validity as
our analysis is limited to datasets collected from OSS repositories. TIDAL can
generate false positives and false negatives for datasets not used in the paper,
which in turn can influence results presented in Sections 3.5, 3.2, 3.3, and 3.4.
The dataset labeling process used for RQ1 is susceptible to generating false
negatives that can influence the results of our empirical study. We mitigate
this limitation by using another rater who inspected a set of 50 Ansible to
identify false negatives. The rater did not identify any false negatives. Fur-
thermore, as TIDAL does not consider variable presence there is the possibility
of security weaknesses being replaced with values that are overwritten, which
in turn converting the detected security weaknesses as false positives. These
false positive instances will be irrelevant even if the variable propagates into
a task. In such cases, TIDAL will generate false positives. Our paper is suscep-
tible to external validity with respect to survey analysis as we have analyzed
survey responses from 23 practitioners. A larger survey respondent population
could have improved the generalizability of our survey-related findings.

6 Related Work

Our paper is related to prior research investigating code elements pertinent
to the quality assurance for Ansible scripts. Dalla Palma et al. (2020) pro-
posed a suite of 46 metrics that include code properties of Ansible scripts
that can be used to identify defective Ansible scripts. In another paper, unlike
for projects that use general-purpose programming languages (Rahman and
Devanbu, 2013), Dalla Palma et al. (2022) found code metrics to outperform
development activity metrics for predicting defects in Ansible scripts. Opde-
beeck et al. (2022) identified code smells that can cause defects in Ansible
scripts. Hassan and Rahman (2022) derived the taxonomy of defects observed
in Ansible test scripts. Kokuryo et al. (2020) identified execution of external
scripts as a quality concern in Ansible scripts. Specific categories of defects,
such as security defects, have also garnered interest. Rahman et al. (2021b)
derived a taxonomy of security weaknesses in Ansible scripts and constructed
a tool called SLAC to detect security weaknesses in Ansible scripts auto-
matically. Rahman et al. (2021b)’s paper was replicated by Hortlund (2021),
who reported the security weakness density to be less than that reported by
Rahman et al. (Rahman et al., 2021b), due to false positives generated by
SLAC. Rahman et al. (2021a) in another paper further built upon their prior
work (Rahman et al., 2021b) to identify best practices to remove security
weaknesses in Ansible scripts, such as hard-coded secrets. Findings from Rah-
man et al. (Rahman et al., 2021b)’s paper was integrated into course curricu-
lum by educators (2022), who observed a learning approach called authentic
learning (Lombardi and Oblinger, 2007) to be useful for educating students
about security weaknesses in Ansible scripts. Saavedra and Ferreira (2023) con-
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structed an intermediate representation to improve security weakness detection
for Ansible scripts. Reis et al. (2023) incorporated practitioner feedback into
an existing security linter for Puppet and found such incorporation to improve
security weakness detection for Puppet scripts. Opdebeeck et al. (2023) argued
the need for incorporating control and data flow analysis for security weakness
detection in Ansible scripts. Hu et al. (2023) characterized static analysis alerts
for Terraform manifests. Our paper is different from these publications in the
following aspects: (i) we study the phenomenon of task infection in Ansible
scripts that have not been investigated before; (ii) we categorize and quan-
tify task infections in Ansible scripts that have not been investigated before;
and (iii) we quantify empirical evidence that demonstrates the relationship
between task infection presence and development activity metrics as well as
task infection presence and source code metrics.

From the aforementioned discussion, we observe a lack of research that has
systematically investigated task infection in Ansible scripts, which we address
in our paper.

7 Conclusion

As practitioners use Ansible scripts for managing computing infrastructure at
scale, unmitigated security weaknesses in Ansible scripts can allow malicious
users to conduct security attacks. We hypothesize that we can identify security
weaknesses accurately by detecting task infection, i.e., propagation of security
weaknesses into tasks. We construct TIDAL to detect and characterize task
infections in Ansible scripts. With TIDAL we identify 1,805 task infections in
27,213 scripts. We identify six categories of task infections, amongst which
tasks used to manage data storage infrastructure are the most frequent. From
our survey with 23 practitioners, we observe tasks used to manage data storage
to be perceived as the most severe. Also, we observe age and scatteredness to
correlate with task infections.

Based on our findings, we recommend the detection of task infections for
security static analysis of Ansible scripts because it provides information on
how detected security weaknesses are impacting the computing infrastructure
that is managed with Ansible. We hope our paper will help future research in
the area of secure Ansible script development.
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