
Noname manuscript No.
(will be inserted by the editor)

Come for Syntax, Stay for Speed, Understand
Defects: An Empirical Study of Defects in Julia
Programs

Akond Rahman · Dibyendu Brinto
Bose · Raunak Shakya · Rahul Pandita

Received: date / Accepted: date

Abstract Julia has emerged as a popular programming language to develop
scientific software, in part due to its flexible syntax akin to scripting languages
while retaining the execution speed of a compiled language. Similar to any pro-
gramming language, Julia programs are susceptible to defects. However, a sys-
tematic characterization of defects in Julia programs remains under-explored.
A systematic analysis of defects in Julia programs will act as a starting point
for researchers and toolsmiths in building developer tools to improve the qual-
ity of Julia programs. To this end, we conduct an empirical study with 742
defects that appear in Julia programs by mining 30,494 commits and 3,038 is-
sue reports collected from 112 open-source Julia projects. From our empirical
analysis, we identify 9 defect categories and 7 defect symptoms. We observe
certain defect categories to be Julia-specific, e.g., type instability and world
age defects. We also survey 52 developers to rank the identified categories
based on perceived severity. Based on our empirical analysis, we provide spe-
cific recommendations for researchers and toolsmiths.

Keywords categorization · defects · empirical study · julia · quality

Akond Rahman
Auburn University
E-mail: akond@auburn.edu

Dibyendu Brinto Bose
Virginia Tech
E-mail: brintodibyendu@gmail.com

Raunak Shakya
Mineral Worths
E-mail: rkshakya99@gmail.com

Rahul Pandita
GitHub
E-mail: rahulpandita@github.com

Pre-
prin

t

2 Rahman et al.

1 Introduction

Scientific software is typically developed in scripting languages, such as Python
and R due to ease in iterative and exploratory development (Bezanson et al.,
2018). However, to increase program execution speed, scientific software de-
veloped in such scripting languages is often migrated to compiled languages,
such as C and Fortran as they provide more predictable mapping to under-
lying hardware that in turn results in optimal speed of execution (Bezanson
et al., 2018). These migrations are accompanied with a development and main-
tenance overhead (Bezanson et al., 2018). Julia was designed to address this
issue by providing programming syntax similar to scripting languages, without
sacrificing program execution speed (Jul, 2019; Bezanson et al., 2018); often
colloquially referred to as “come for the syntax, stay for the speed”.

Ever since its inception in 2012 Julia has experienced a steady increase
in popularity (jul, 2022) as more scientific software developers are migrating
from scripting languages, such as Python to Julia (jul, 2020c). According to a
survey of Stack Overflow users in 2020, Julia is one of the “top-10 most loved
programming languages” by developers (jul, 2020b). As of March 2022, Julia
has been downloaded more than 34.8 million times (jul, 2022). Practitioners
typically use Julia for large-scale scientific data analysis, e.g., Julia was used in
Celeste (Jul, 2022a; jul, 2017), a software used in astronomy research. The use
of Julia yielded a performance improvement by a factor of 1,000 for Celeste,
compared to prior implementation (Jul, 2022a).

Despite reported benefits, Julia programs are susceptible to defects similar
to other software systems. For instance, consider Listing 1, where we present
an example of a defect downloaded from an OSS repository (jayschwa, 2014).
The defect is due to incorrect type usage while returning type predicate of
generated functions. Because of incorrect type usage, a crash occurred. The
defect was repaired by using the correct type (VegaMarkFrom). Listing 1 shows
an example of how a incorrect type usage can result in defects, and therefore,
needs to be avoided.

Due to relative nascence of the ecosystem, a systematic investigation of
defects in Julia programs is an under-explored area. Such investigation will
be beneficial for the Julia community as such a study has the potential to
yield insights on why defects in Julia programs appear, and derive actionable
recommendations to mitigate such defects. Specifically, these recommendations
will benefit (i) researchers: in developing an understanding of the nature of
defects in Julia programs, and (ii) toolsmiths: to construct tools to improve
the quality of Julia programs.

Contributions: We list our contributions as the following:

– A list of 9 defect categories for Julia programs;
– A list of 7 symptoms for defects in Julia programs;
– An evaluation of how frequently identified defect categories and symptoms

occur; and
– An evaluation of how developers perceive identified defect categories.

Pre-
prin

t

Empirical Study of Defects in Julia Programs 3

1 (:name, String, nothing),

2 (:description, String, nothing),

3 - (:from, Dict{Any, Any}, nothing),

4 + (:from, VegaMarkFrom, nothing),

5 (:properties, VegaMarkProperties, nothing),

6 (:key, String, nothing),

Listing 1: An example of a defect in a Julia program.

We organize the rest of the paper as follows: we list our research ques-
tions in Section 2. We provide background and related work in Section 3. We
provide the methodology in Section 4. We answer RQ1, RQ2, and RQ3 in
Sections 5, 6, and 7, respectively. We discuss our findings in Section 8. We
provide the limitations of the paper in Section 9, and conclude the paper in
Section 10.

2 Research Questions

In our empirical study, we answer the following research questions:

– RQ1 [Categorization]: What categories of defects exist in Julia programs?
– RQ2 [Symptoms]: What are the symptoms of defects in Julia programs?
– RQ3 [Perception]: How do developers perceive the identified defect cate-

gories for Julia programs?

By answering these research questions we will accomplish the goal of help-
ing researchers and toolsmiths. Through this empirical study, we aim to help
researchers by giving them a taxonomy of defects, showcasing exemplars for
each defect category, and reporting which of the identified defect categories
are applicable for other software systems. We also aim to help toolsmiths, who
will develop tools for practitioners who use the Julia programming language.
We aim to highlight the areas that need attention from toolsmiths so that
practitioners get the support they need.

Two factors motivate us the conduct our empirical study. First, Julia is
perceived to solve the ‘two language problem’, which allows practitioners to
write computer programs that have good performance but can be written
in scripting manner. This requires designing programming language features
that are unique to Julia. Our hypothesis is that Julia’s unique features can lead
us to discovery of defect categories unique to Julia, and not observant other
software systems. Results reported in Table 4 showcases that certain defect
categories are unique to Julia programs. Second, our empirical study should
adopt a methodology generic enough that so that can still identify defects
unique to Julia but the adopted methodology can be applied other emerging
programming languages. Along with identifying unique defect categories, from

Pre-
prin

t

4 Rahman et al.

Table 4 we also find defect categories that are applicable for other software
systems, such as deep learning projects (Humbatova et al., 2020) and Puppet
manifests (Rahman et al., 2020).

Furthermore, Julia is gaining in prominence amongst practitioners from
academia, government, and industry typically use Julia for large-scale scien-
tific data analysis (julia, 2021). For example: (i) the Los Alamos National
Laboratory uses Julia for optimization of critical infrastructure to mitigate
extreme events related to electricity delivery (Jul, 2022b); and (ii) the U.S.
Federal Aviation Administration uses Julia to model airborne collision avoid-
ance (Jul, 2022c). A defect categorization study can aid practitioners from all
of these diverse domains.

We conduct an empirical study with 742 defects that appear in Julia pro-
grams by mining 30,494 commits and 3,038 issue reports from 112 open-source
software (OSS) Julia projects. Using open coding (Saldaña, 2015), we derive
defect categories and defect symptoms for Julia programs. We also survey 52
developers to analyze developer perception related to identified defect cate-
gories, as well as the perceived frequency and severity of the defect categories.
Datasets used in our paper are publicly available online (Rahman, 2022).

Our empirical study is an example of a mixed methods approach (Easter-
brook et al., 2008) where quantitative and qualitative data sources are used
and investigated to get diverse perspectives on the conducted research. To that
end, we have derived defect categories and symptoms using qualitative anal-
ysis, and also conducted survey to quantitively determine the frequency and
severity of identified defect categories. The implications of identifying defect
categories is related to generating research in an emerging domain, as well as
provide recommendations for toolsmiths on what tools could be beneficial to
Julia users. The implications of identifying defect symptoms is that it show-
cases what are the consequences of identified defect categories. For example,
from Section 5 we have identified that certain defect categories can lead to
incorrect calculations. Incorrect calculations are particularly relevant for the
Julia user base, as practitioners use Julia to develop scientific software. Our
survey analysis provides insight on what defect categories are perceived as
severe. For example, we observe 65% of practitioners to identify type-related
defects as severe or most severe. Further, we can compare and contrast the
practitioner perceptions and the results reported in Section 7.

3 Background and Related Work

We provide necessary background information related to scientific software,
the Julia programming language, and discuss related work.

3.1 Background

We provide background information as follows:

Pre-
prin

t

Empirical Study of Defects in Julia Programs 5

3.1.1 Background on Scientific Software

According to Carver (2009) scientific software is software that is used to inves-
tigate “complex scientific problems”. Furthermore, according to Carver (2009)
there are differences between scientific software and non-scientific software,
such as

– Scientific software is dedicated to explore unknown science, which makes
it difficult, if not impossible to derive a concrete set of requirements be-
forehand.

– Successful scientific software often revolves around it optimization to the
machine architecture. Such pursuit related to optimization can incur more
efforts than efforts necessary for software implementation.

– Execution of scientific software often requires powerful computing resources.

These differences were acknowledged by Howison and Herbsleb (2011) who
stated for scientific software “what is needed, as we see it, is to understand
scientific software as an independent production system”.

3.1.2 Background on the Julia Programming Language

While conducting large-scale scientific experiments, performance is pivotal for
researchers so that they can obtain scientific experiment results in a timely
manner. Julia allows practitioners to develop programs in a scripting manner,
and also at the same time provide utilities to write performant programs. We
conduct this empirical study to understand the defects that occur in Julia
programs.

Julia is designed to provide programming syntax similar to that of script-
ing languages, with the program execution speed of compiled languages, which
have low-level memory access (Jul, 2019; Bezanson et al., 2018). According to
Perkel (2019), “Julia circumvents that two-language problem because it runs
like C, but reads like Python”. Julia supports just-in-time compilation, multi-
ple dispatch, annotations, and meta-programming (Bezanson et al., 2018; Jul,
2022d). All of Julia’s types are organized hierarchically. ‘Any’ is at the top
of the hierarchy, and has 221 immediate subtypes, e.g., ‘BigFloat’, ‘BigInt’,
‘Complex’ etc. (Jul, 2022d; Poulding and Feldt, 2017).

Listing 2 is an instance of Julia program. ‘ precompile ()’ signals the
Julia compiler to enable pre-compilation for the ‘Example’ module. With pre-
compilation, the Julia compiler loads the ‘Sample.jl’ dependency once, and
stores it in a cache. In the future, every time the ‘Example’ is executed, contents
of ‘Sample.jl’ will be retrieved from the cache instead of loading ‘Sample.jl’
from the persistence.

3.2 Related Work

This work is related to prior research that have investigated Julia programs
and defect categorization:

Pre-
prin

t

6 Rahman et al.

1 __precompile__()

2 module Example

3 # Include a package dependency

4 include("Sample.jl")

5 println("Hello World")

6 # Function to multiply and add two values

7 function mul_and_add(a, b)

8 m = a*b

9 a = a+b

10 m, a

11 end

Listing 2: An annotated example of a Julia program.

3.2.1 Research Related to Julia

Since its inception in 2012, Julia has garnered tremendous interest amongst
researchers. Quality issues in Julia programs and the Julia compiler have been
investigated, for example, Paulding and Feldt (2017) applied random testing to
find defects in 9 functions provided by the Julia compiler. Churavy (2019) con-
structed a debugging tool called ‘Cthulhu’ that uses static and dynamic anal-
ysis to help developers find defects in array abstractions. Nardelli et al. (2018)
used formal specification to verify the correctness of the Julia compiler’s sub-
type system. Productivity and performance issues have also been investigated:
Gibson (2017) argued that Julia has multiple benefits over general-purpose
programming languages with respect to graphic rendering capabilities, user
experience, and program execution time. Januszek et al. (2018) compared the
performance of five programming languages with O(n3) algorithms, and ob-
served superior computational efficiency for Julia programs compared to that
of Wolfram, R, Python, and C# programs. For parallel programming, Gmys
et al. (2020) found Julia programs to outperform C programs with respect to
program execution speed.

From the work mentioned above, we observe a lack of research in the do-
main of defect categorization for Julia programs. We address this research gap
in our paper.

3.2.2 Research Related to Defect Categorization

Our paper is also related to prior research that has investigated defect cate-
gories for software systems. In 1992, Chillarege et al. (1992a) proposed the
Orthogonal Defect Classification (ODC) technique that included eight de-
fect categories. Categories proposed by Chillarege et al. (1992a) were used
by Cinque et al. (2014) to categorize defects for air traffic control software.
Later in 2008, Seaman et al. (2008a) extended ODC to derive 7 categories
of requirements defects, 10 categories of design and source code defects, and
7 categories of test plan defects. Use of existing defect categorization frame-

Pre-
prin

t

Empirical Study of Defects in Julia Programs 7

works, such as ODC and Seaman et al. (2008a)’s work, may be inadequate for
Julia, as prior research (2020; 1984) has reported pre-defined defect catego-
rization frameworks to be inappropriate for nascent programming languages
and ecosystems. As an example, defect categories mentioned in ODC will not
capture Julia-specific defects, such as defects related to type stability as shown
in Listing 1.

In contrast, researchers have also constructed bottom-up defect taxonomies
for domain-specific software systems. For example, Islam et al. (2019) studied
2,716 SO posts to categorize defects in deep learning libraries, such as Keras
and Tensorflow. Humbatova et al. (2020) mined GitHub issues and SO posts to
derive a fault taxonomy for software projects that use deep learning. Makhshari
and Mesbah (2021) mined 5,565 defect reports to derive a defect taxonomy
for the internet of things (IoT) software projects. Rahman et al. (2020) used
open coding with commits to derive defect categories for Puppet scripts. Chen
et al. (2021) used SO posts to derive a taxonomy of defects for deep learning-
based deployment in mobile apps. In short, defect categorization has been
an active research area, where researchers have focused on deriving defect
categories for domain-specific software systems, such as deep learning, IoT
development, and Puppet development. Our work is similar in spirit as we
also systematically investigate defect categories for Julia programs.

4 Methodology

In this section, we describe the methodology to conduct our empirical study,
which is summarized in Figure 1.

4.1 Repository Mining for Identifying Defects in Julia Programs

We identify defects by mining GitHub repositories. We use GitHub reposito-
ries, as it is the most popular social coding website where practitioners host
their OSS projects (2018). We posit that by mining repositories from GitHub
we will obtain artifacts that describe representative defects in the general Julia
ecosystem.

The Julia programming language’s design, corresponding compiler 1, and
the Julia package manager 2 is hosted on GitHub. As the core components
of Julia are hosted on GitHub our hypothesis is that we can find software
repositories with sufficient enough of Julia program files by mining open-
source GitHub repositories. Empirical data attests to this: we inspected an-
other source code hosting website called GitLab. We observe 60 repositories to
contain Julia program files compared to GitHub’s 6,474 repositories as shown
in Table 1.

1 https://github.com/JuliaLang/julia
2 https://github.com/JuliaLang/Pkg.jl

Pre-
prin

t

8 Rahman et al.

In prior work (Rahman et al., 2018; Agrawal et al., 2018; Krishna et al.,
2018; Munaiah et al., 2017), researchers have leveraged a set of attributes to
identify repositories that are reflective of professional software development.
These attributes include but are not limited to count of certain file types (Rah-
man et al., 2020; Murphy et al., 2020), count of commits per month (Munaiah
et al., 2017), count of issue reports (Rahman et al., 2018; Agrawal et al., 2018),
and count of contributors (Agrawal et al., 2018; Krishna et al., 2018). These
attributes provide motivation for our criteria to curate Julia repositories:

– Criterion-1: At least 10% of the files in the repository must be Julia source
code files. The 10% threshold is used as a heuristic to identify repositories
that contain sufficient amount of Julia program files. Our assumption is that
using this threshold we can identify repositories with sufficient Julia source
code files. We do not label a repository exclusively as a ‘Python repository’
or a ‘Julia repository’. Instead, we aim to focus on identifying repositories
with sufficient Julia source code files. By using a cutoff of 10% we seek to
collect repositories that use Julia.
This criterion focuses on identifying repositories with sufficient Julia source
code files with the ‘.jl’ extension. From our initial exploration of Julia-related
repositories we observe repositories that include Julia source code files also
include other categories of file types, such as Python files, Makefiles, and
JSON files. Our objective is to separate out defects that occur in Julia source
code files, and using the threshold of at least 10% we assume that we will
identify repositories with decent amount of Julia source code files.
Let us consider the ‘Cxx.jl’ repository 3 in this regard. The repository in-
cludes Julia source code files along with C and C++ source code files. Our
objective is to identify defect categories for Julia source code files but not
for C and C++ source code files. According to our criterion we will include
this repository as it contains sufficient amount of Julia source code files.

– Criterion-2: The repository must be available for download.
– Criterion-3: The repository is not a clone to avoid duplicates. Here, cloning

refers to forking a repository without modifying repository content.
– Criterion-4: The repository must have >= 2 commits per month. Munaiah

et al. (2017) previously used the threshold of >= 2 commits per month to
determine which repositories have enough software development activity.
We use this threshold to filter repositories with little activity.

– Criterion-5: The repository has >= 10 contributors. Our assumption is
that the criterion of >= 10 contributors may help us to filter out irrelevant
repositories, such as repositories used for personal use. Prior research (Hum-
batova et al., 2020) has also used the threshold of at least 10 contributors.

– Criterion-6: The repository has >= 10 issue reports. Issue reports are
indicative of an active repository where software development happens col-
laboratively (Agrawal et al., 2018). Using this criterion we assume to filter
out repositories used for personal usage.

3 https://github.com/JuliaInterop/Cxx.jl

Pre-
prin

t

Empirical Study of Defects in Julia Programs 9

GitHub Julia Repositories Julia Program Defects Defect Categorization

Symptom
Categorization

Survey Analysis

Filter Mining Open Coding Open Coding

Online Survey

Fig. 1: An overview of our research methodology.

4.1.1 Defect Identification

Using the filtering criteria we identify 112 repositories. A breakdown of the
filtering process is provided in Table 1. From the 112 repositories we mine all
commits and issue reports to collect defect-related data. Attributes of the 112
repositories is provided in Table 2.

Table 1: OSS Repositories Satisfying Criteria

Initial Repo. Count 3,405,303

Criteria-1 (10% Julia files) 6,474
Criteria-2 (Available) 6,474
Criteria-3 (Not a clone) 3,872
Criteria-4 (Commits/Month ≥ 2) 1,173
Criteria-5 (Contributors ≥ 10) 253
Criteria-6 (Issue reports ≥ 10) 112

Final Repo Count 112

Table 2: Attributes of Repositories

Attribute Value
Count of repositories 112
Count of Julia files 3,668
Count of commits 280,287
Count of Julia-related commits 30,494
Count of contributors 2,566
Count of issue reports 3,038
Count of stars 24,391
Duration 01/2014-01/2022
Julia-related size (Total SLOC) 1,156,608

First, we apply a keyword search to identify commit messages and issue
reports that reports a defect in a Julia program. We apply the keyword search
for 30,494 commit messages, and the titles, descriptions, and comments for
each of the 3,038 issue reports. We use the following keywords, which also
have been used in prior defect categorization research (Garcia et al., 2020;

Pre-
prin

t

10 Rahman et al.

Rahman et al., 2020): ‘bug’, ‘defect’, ‘error’, ‘fault’, ‘fix’, ‘flaw’, ‘incorrect’,
‘issue’, and ‘mistake’. Using our keyword search we identify 7,689 commits
and 1,492 issue reports.

Second, we apply qualitative analysis to identify defects from the collected
7,689 commits and 1,492 issue reports. Our keyword-based approach can gen-
erate false positives, which necessitates application of qualitative analysis. We
use 2 types of artifacts to identify defects: (i) messages and corresponding diffs
from the set of 7,689 commits, and (ii) entire content of each of the 1,492 issue
reports. For each of these 2 types of artifacts, 2 raters individually identify if
one or multiple Julia-related defects appear in the artifact. To identify defects,
both raters use the IEEE definition: “an imperfection or deficiency in the code
that needs to be repaired”. For defect identification, the raters inspected (i) if
problematic code exists in the artifact, (ii) if problematic code leads to an im-
mediate incorrect or undesired consequence upon execution that is explicitly
expressed by a developer, and (iii) if the problematic code was repaired.

The first and second authors acted as raters. The first and second authors
respectively have 10 and 2 years of experience in software development. Upon
completion of the inspection process, we calculate Krippendorff’s α (2018) to
quantify agreement, similar to prior work in software engineering (Antinyan
et al., 2017; Raulamo-Jurvanen et al., 2019; Friess, 2019; Catolino et al., 2019).
The Krippendorff’s α is 0.53, indicating ‘unacceptable’ agreement (Krippen-
dorff, 2018). Both raters discussed their disagreements and identified the cause
of disagreements to the perception of features or defects. Upon discussion, both
raters conduct the inspection process again. After completing the inspection
process, we calculate Krippendorff’s α to be 1.0, indicating ‘perfect’ agree-
ment (Krippendorff, 2018). We use Krippendorff’s α instead of Cohen’s κ, be-
cause Krippendorff’s α: (i) emphasizes disagreement leading to more reliability
on the achieved agreement rate, and (ii) handles multiple categories (Krippen-
dorff, 2018). Furthermore, qualitative analysis experts have advocated for the
use of Krippendorff’s α over Cohen’s κ (Krippendorff and Fleiss, 1978; Lom-
bard et al., 2010).

In all, we identify 742 defects from 740 commits and 52 issue reports. Out
of 740 commits, 52 commits had a mapping to 52 issue reports, from which we
identify 52 defects. Rest of the 690 defects were obtained from 690 commits.
On average we identify 6.6 defects per repository (min, median, max = 1.0,
5.0, 98).

4.2 RQ1: Defect Categorization

We answer “RQ1: What categories of defects exist in Julia programs?”
by applying qualitative analysis to categorize the 742 defects identified from
Section 4.1.1. We use open coding, a qualitative analysis technique that sum-
marizes the underlying theme from unstructured text (Saldaña, 2015). We ap-
ply a multi-phase open coding process with two phases following prior work on
fault categorization (Chen et al., 2021). According to researchers, multi-phase

Pre-
prin

t

Empirical Study of Defects in Julia Programs 11

1 - if regime_switching

2 + if haskey(get_settings(m), :time_varying_trends) && get_setting(m,

:time_varying_trends)↪→

3 + start_date = get(get_setting(m, :shockdec_startdate))

4 + end_date = max(prev_quarter(date_forecast_start(m)),

date_forecast_end(m))↪→

5 + return (ndraws, nvars, DSGE.subtract_quarters(end_date,

start_date)+1)↪→

6 + elseif regime_switching

Listing 3: An example of a commit message for which raters disagreed during
synchronized open coding.

coding is pivotal to gain multiple perspectives, ensure rater reliability, and
achieve rater consensus for qualitative analysis (Sweeney et al., 2013; Hickey
and Kipping, 1996).

4.2.1 Synchronized Open Coding

In the case of synchronized open coding, two raters identify defect categories
together. The two raters are the first and second authors of the paper. They
apply open coding on randomly selected 370 commits and 26 issue reports
that correspond to 371 defects identified from Section 4.1.1. Both raters read
each artifact in its entirety to understand the context of defects and assign
each artifact with initial codes.

Next, both raters group similar codes into categories. The grouping process
is iterative where both raters went back and forth to reach an agreement.
Upon completion, both raters reached an agreement with respect to defect
categorization on all but 10 defects, for which the third author acted as the
resolver. The third author is a professional software engineer with 3 years of
experience in Julia. The resolver’s decision is final for the 10 disagreements.
Krippendorph’s α was 0.84, indicating an ‘acceptable’ agreement.

Disagreement example: As shown in Listing 3, for the commit message
fix dimension mismatch in trends forecasting the raters disagreed, as
one rater identified this commit message to be related with array, whereas the
other rater labeled the defect as a conditional defect. The defect was resolved
as a conditional defect as the code changes displayed changes in if-else, i.e.,
conditional statements.

4.2.2 Independent Open Coding

In this phase, the two raters independently apply open coding. Similar to the
synchronized open coding phase, the two raters are the first and second authors
of the paper. They apply open coding on the remaining 370 commits and
26 issue reports that correspond to 371 defects identified from Section 4.1.1.
Similar to the synchronized open coding phase, for each artifact, both raters

Pre-
prin

t

12 Rahman et al.

1 - ccall(:memcpy, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}, UInt), pr_p, v,

nnz*sizeof(V))↪→

2 + copyto!(unsafe_wrap(Array, pr_p, (nnz,)), v)

Listing 4: An example of a commit message for which raters disagreed during
independent open coding.

read all content to understand the context of defects and assign each artifact
with initial codes to identify the category of the defect.

Upon completion of this phase, we record a Krippendorff’s α of 0.87, indi-
cating an ‘acceptable’ agreement. The raters disagree on the defect categories
for 11 defects that are resolved using the resolver, i.e., the third author of the
paper. The resolver’s decision is final on the disagreed upon defects.

Disagreement example: As shown in Listing 4, for the commit message
fix segfault due to memcpy (#155) fixes failing tests on linux and

osx the raters disagreed, as one rater identified this commit message to be
polyglot-related, whereas the other rater labeled the defect as an array defect.
The defect was resolved as a polyglot defect as the code changes showcased
the characteristics of a polyglot defect.

4.3 RQ2: Defect Symptoms

We answer “RQ2: What are the symptoms of defects in Julia pro-
grams?” by identifying defect symptoms for each of the defect categories in
two steps: first, for each category we separate defects that map to that cate-
gory. Second, following prior work (Zhang et al., 2018a; Di Franco et al., 2017)
we identify incorrect or undesired results due to the defect expressed in the
commit message or the issue report, as a symptom. Third, from the associated
artifacts for each defect in the category we apply open coding in two phases.
In the first phase, the two raters apply synchronized open coding, whereas
in the second phase the raters apply independent open coding. In the case of
synchronized open coding, we use 50% of the defects that belong to each defect
category identified from Section 4.2. The rest of the 50% defects are used for
independent open coding. While conducting open coding both rater identify
and categorize defect symptoms, i.e., consequences of defects as described in
the artifact of interest. We repeat the process for all defect categories.

Upon completion of this phase, we record a Krippendorff’s α of 0.92, in-
dicating an ‘acceptable’ agreement. The raters disagree on the symptom cate-
gories for 7 defects that are resolved using the resolver who is the third author
of the paper. The resolver’s decision is final on all disagreements.

Disagreement example: For the commit message fix segfault during

finalization (#615) ∗ fix typo the raters disagreed on the symptom, as
one rater reported to consequence for this commit messages, whereas the other
rater reported ‘crash’ as a consequence. The symptom was resolved as a crash
as segfaults or segmentation faults lead to a crash.

Pre-
prin

t

Empirical Study of Defects in Julia Programs 13

4.4 RQ3: Perceptions of Defect Categories

We answer “RQ3: How do developers perceive the identified defect
categories for Julia programs?” by conducting an online survey with de-
velopers who write Julia programs. In the survey, we first ask developers about
their experience in writing Julia programs. Next, we describe each of the iden-
tified defect categories with definitions. We then ask questions related to per-
ceived frequency and severity: first, we ask “How frequently do the identified
defect categories occur in Julia programs?”. Survey participants used a five-
item Likert scale to answer this question: ‘Not at all frequent’, ‘Rarely’, ‘Some-
what frequently’, ‘Frequently’, and ‘Highly frequent’. Second, we ask “What
is the severity of the identified defect categories” To answer this question, sur-
vey participants used the following five-item Likert scale: ‘Not at all severe’,
‘Low severity’, ‘Moderately severe’, ‘Severe’, and ‘Highly severe’. We use a
five-item Likert scale for both questions following Kitchenham and Pfleeger’s
guidelines (2008). Furthermore, following Kitchenham and Pfleeger (2008)’s
advice we apply the following actions before deploying the survey: (i) add ex-
planations related to the purpose of the study, (ii) add instructions on how to
complete the survey, (iii) add explanations related to preservation of confiden-
tiality, (iv) provide an estimate of completion time, and (v) conduct a pilot
survey to get initial feedback. From the feedback of the pilot survey, we add
an open-ended text box so that survey respondents can provide more context
for their responses. The survey questionnaire is included in our verifiability
package (Rahman, 2022).

We select our participants by collecting email addresses of practitioners
who have developed Julia programs in our collection of 112 OSS repositories.
In all, we deploy our survey to randomly-selected 200 practitioners via e-
mails. We offer a drawing of one 50 USD Amazon gift card 4 as an incentive
for participation following Smith et al. (2013)’s recommendations. We conduct
the survey from November 2021 to March 2022 following the Internal Review
Board (IRB) protocol #2234.

According to our IRB approval process, we made sure that we did:

– Not release any private and sensitive information of the survey participants;
– Seek approval from each participant via prior to sending the survey;
– Not commercially advertise any existing Julia-related research of the re-

search group;
– Not use automation to send emails. Instead, we send personalized email

messages where we made it clear that the purpose of the email is only to
seek feedback on our research;

– Provide full identify of the lead researcher who is conducting the survey;
and

– Explicitly mention that participation or lack thereof will not impact their
occupation.

4 https://www.amazon.com/gift-cards

Pre-
prin

t

14 Rahman et al.

As part of setting up and configuring a GitHub repository if a GitHub
user wants to keep their email address private they will select the “Keep my
email addresses private” feature (github, 2023), which prevent exposure of the
developer’s email in the Git logs. The availability of the developers’ emails in
the Git logs is an indication of a developer not explicitly opting for the “Keep
my email addresses private” feature.

5 Answer to RQ1: Defect Categorization

As summarized in Figure 2, we identify 9 defect categories that we describe
next alphabetically:

Fig. 2: Defect categories for Julia programs.

I. Array: Defects that occur due to incorrect usage of arrays in Julia programs.
We further identify two sub-categories:
Ia. Broadcasting: Defects that occur when using broadcasting with arrays. In
Julia, broadcasting is the feature of performing element-by-element operations
on arrays, e.g., adding a vector to each column of matrix (Jul, 2022d). Broad-
casting enables developers to perform such operations without replicating the
vector to the size of the matrix.

Example: As shown in Listing 5, a developer incorrectly applied array
broadcasting by missing the ‘.’ operator (tknopp, 2018). Because of this defect
the implementation of sampling density was incorrect. Sampling density is a
metric that measures the count of recorded samples per unit distance when an
analog signal is being converted to a digital signal (Merchant and Castleman,
2005).
Ib. Slicing: Defects that occur when a sub-array is extracted from an array
in a Julia program. Defects related to array slicing are manifested in form of
unwanted memory allocations.

Example: A Julia program used to simulate a Markov Chain was erro-
neous (amckay, 2016) included a defect related to array slicing. A Markov

Pre-
prin

t

Empirical Study of Defects in Julia Programs 15

1 for i in 1:iters

2 - p.tmpVec[:] = 0.0

3 + p.tmpVec[:] .= 0.0

4 convolve_adjoint!(p, weights, p.tmpVec)

5 ...

Listing 5: An example of an array broadcasting defect in a Julia program.

Chain is a stochastic model that describes a a sequence of possible events
where the probability of each event depends on the state recorded in the pre-
vious event (Gagniuc, 2017). The defect was repaired by accurately extracting
the sub-array, as shown in Listing 6.

1 for i in 1:k

2 for t in 1:ts_length-1

3 - X[t+1, i] = draw(P_dist[X[t]])

4 + X[t+1, i] = draw(P_dist[X[t,i]])

5 end

6 end

Listing 6: An example of an array slicing defect in a Julia program.

II. Conditionals: Defects that appear because of incorrect conditional logic
in a Julia program. Incorrect conditional logic either corresponds to providing
incorrect values, incorrect operators, or a combination of both.

Example: Listing 7 shows an example of a conditional defect, which results
in incorrect calculation of reservoir sampling (Drvi, 2020). Reservoir sampling
is a collection of randomized algorithms for choosing a simple random sample
without replacement (Vitter, 1985).

1 j = rand(1:o.n)

2 - if j < length(o.value)

3 + if j <= length(o.value)

4 o.value[j] = y

5 end

Listing 7: An example of a conditional defect.

III. Deprecation: Defects that occur for using Julia language constructs
that have been deprecated, and needs to be avoided. Since its inception in

Pre-
prin

t

16 Rahman et al.

2012, the Julia programming language has undergone a series of changes. As a
result of these changes, code constructs that were previously compatible with
the Julia compiler, no longer work. As of February 2022, Julia is using version
1.7, and for any code construct that is older than 1.6, the Julia compiler will
generate a warning message. For example, Uint64 was allowed in Julia 0.3,
but in Julia 1.7, UInt64 must be used to avoid a deprecation warning (Julia,
2021). According to the Julia documentation “a deprecated function internally
performs a lookup in order to print a relevant warning only once. This extra
lookup can cause a significant slowdown, so all uses of deprecated functions
should be modified as suggested by the warnings” (Jul, 2022d).

Example: In Listing 8 we observe a developer to use the outdated syntax
for Symbol, which resulted in a compiler warning (yuyichao, 2016). In Julia,
Symbol is used for meta-programming, which allows the Julia compiler to
represent its own code as a data structure of the language itself. In Listing 9, we
provide another example that we have categorized as a deprecation defect. We
observe a practitioner to modify a code snippet Base.REPL.run interface(),
which is outdated, and later replaced with REPL.run interface().

1 for T in (:Date, :DateTime, :Delta)

2 ...

3 - f = symbol(string("Py", T, "_Check"))

4 + f = Symbol(string("Py", T, "_Check"))

5 @eval $f(o::PyObject) = pyisinstance(o, $t)

6 end

Listing 8: An example of a deprecation defect.

1 - Base.REPL.run_interface(Base.active_repl.t,

Base.LineEdit.ModalInterface([panel]))↪→

2 + REPL.run_interface(Base.active_repl.t,

Base.LineEdit.ModalInterface([panel]))↪→

Listing 9: Example of another deprecation defect.

IV. Hardware Compatibility: Defects that occur due to hardware-related
compatibility issues. Not all hardware devices are compatible with Julia, which
can lead to program failures.

Example: In an issue report (JuliaLang/IJulia.jl, 2017), we document an
example of a hardware compatibility defect. A developer describes how a Julia
program crashed when trying to run the program on a Raspberry Pi device.

Pre-
prin

t

Empirical Study of Defects in Julia Programs 17

The defect occurred due to (i) not allocating a swap space, and (ii) not al-
locating a RAM of 1.3GB on the Raspberry Pi device. While Julia provides
support for x86 and ARM processors, we observe developers to face challenges
when executing Julia programs on Raspberry Pi devices.

V. I/O Operation: Defects that occur when working with input/output
(I/O) streams and objects. We identify two sub-categories:

Va. Streams: Defects related to I/O streams in Julia programs that occur due
to incorrect application of stream-related code constructs.

Example: We document a stream-related defect for ‘MentaLiST’, a Julia-
based project developed to analyze pathogen outbreak (WGS-TB, 2021b).
As shown in Listing 10, not closing a stream using close() resulted in a
crash (WGS-TB, 2021a).

1 function read_alleles(fastafile, ids)

2 ...

3 -

4 + close(fh)

5 return alleles

6 end

Listing 10: An example of a stream defect.

Vb. Path: Defects related to specification of paths for files and directories upon
which the execution of a Julia program is dependent.

Example: Incorrect specification of a file path created a crash (JuliaLang,
2017). Listing 11 shows the defect, which we document for ‘IJulia’, a notebook
interpreter for developing Julia programs (JuliaLang, 2021).

1 for problem in problems

2 ...

3 - include(joinpath(nlpmodels_path, "$problem_s.jl"))

4 + include(joinpath(nlpmodels_path, "problems", "$problem_s.jl"))

5 nlp = CUTEstModel(uppercase(problem_s))

6 adnlp = eval(Meta.parse("$(problem)_autodiff"))()

Listing 11: An example of a stream defect.

VI. Polyglot: Defects that occur when developers incorrectly use Julia-provided
utilities to interface with programs written in non-Julia languages, such as C
and Fortran. Julia includes utilities, such as @ccall to interface with functions

Pre-
prin

t

18 Rahman et al.

written in C and Fortran (Jul, 2022d). The Julia documentation provides in-
structions on how to correctly use these utilities, which developers do not abide
by and introduce defects in their programs.

Example: A polyglot defect is shown in Listing 12. According to the is-
sue report (JuliaSmoothOptimizers/CUTEst.jl, 2015), the developer directly
called @ccall, which resulted in a crash. The correct approach is to indirectly
call @ccall with @dlsym (abelsiqueira, 2015).

1 function bar!(nlp, goth, x, v)

2 ...

3 - @eval ccall(("cutest_uhprod_", $(nlp.libname)), Void,

4 + ccall(@dlsym(:cutest_cfn_,mylib), Void, ...

5 return nlp.Hv

6 end

Listing 12: An example of a polyglot defect.

VII. Pre-compilation: Defects that occur due to incorrect usage of Julia’s
pre-compilation feature. Julia provides the option of using precompile()

so that external Julia packages specified as dependencies can be loaded only
once and stored in a cache. When the Julia program is executed again, the
Julia compiler will fetch contents from the cache, and use the cached content
to execute the program. In this manner, Julia does not need to compile the
external Julia dependencies every time the program is being executed.

Example: We observe a pre-compilation defect in an OSS repository to
generate Vega-based visualizations. Vega is used to implement grammars for
graphics, similar to that of ggplot2 (Satyanarayan et al., 2016). As shown in
Listing 13, by enabling pre-compilation with precompile the developer
reported four times performance improvement (randyzwitch, 2015).

1 -

2 +VERSION >= v"0.4-" && __precompile__()

3 module Vega

4 using JSON, ColorBrewer, KernelDensity, NoveltyColors, StatsBase,

Parameters, Missings↪→

5 import Base: print, show

Listing 13: An example of a pre-compilation defect.

VIII. Type: Defects that occur due to incorrect use of types. We identify the
following sub-categories:

Pre-
prin

t

Empirical Study of Defects in Julia Programs 19

VIIIa. Conversion: Defects that occur when a developer either attempts to
convert one type to another, or uses an incorrect type, which necessitates
conversion to the correct type.

Example: As documented in an issue report (JuliaSmoothOptimizers, 2019),
a crash occurred because of multiplying a Float64 matrix to a ComplexFloat64
array. As shown in Listing 14 the defect was fixed by using type promotion,
the feature of converting values of mixed types to a single common type (Jul,
2022d).

VIIIb. Instability: Defects that occur when a Julia program is not type stable.
Type stability refers to the property of a Julia program where the type of
every variable does not vary at runtime (Jul, 2022d). The Julia compiler has
to support any of the 221 subtypes for variables whose types vary during
runtime. This results in unnecessary memory allocation. Writing type stable
code is considered as a “key to performant Julia code, allowing the compiler
to optimize” (Bezanson et al., 2018). Type stability allows the Julia compiler
to determine the type of a variable at compile, and is strongly recommended
for rapid execution of Julia programs.

Example: As shown in Listing 15, type instability occurred due to not spec-
ifying the types of n explicitly. This allows for the variable n to have varying
types during runtime, leading to type instability. The defect was repaired by
explicitly providing the type for n with ::Int (simonster, 2014).

VIIIc. String: Defects that occur when using String data types in Julia pro-
grams. We identify two sub-categories: (i) character extraction defects: defects
that occur while extracting one or a sequence of characters from a string,

1 - X = reshape(convert(Vector{T}, x), p, m)

2 + S = promote_type(T, eltype(x))

3 + X = reshape(convert(Vector{S}, x), p, m)

4 return Matrix(B * X * transpose(A))[:]

5 end

6 function tprod(x)

Listing 14: An example of a type conversion defect.

1 function read_array(obj::JldDataset, dtype::HDF5Datatype, T::Type,

dspace_id::HDF5.Hid)↪→

2 ...

3 - n = prod(dims)

4 + n = prod(dims)::Int

5 h5sz = sizeof(dtype)

6 out = Array(T, dims)

Listing 15: An example of a type instability defect.

Pre-
prin

t

20 Rahman et al.

1 @render i::Inline x::AbstractString begin

2 - Row(span(".syntax--string", c("\"", render(i,

Text(escape_string(x[1:chr2ind(x, 500)]))))),↪→

3 + Row(span(".syntax--string", c("\"", render(i,

Text(escape_string(join(x[1:min(length(x),500)])))))),↪→

4 Text("..."))

5 end

Listing 16: An example of a character extraction defect.

and (ii) regex defects: defects that occur when using regular expressions with
strings.

Example: Character extraction: As shown in Listing 16, a character ex-
traction defect occurred when a developer used chr2ind to iterate over the
characters by obtaining their byte indices instead of character indices. The de-
fect, which resulted in incorrect rendering was repaired by obtaining character
indices with length(x) (MikeInnes, 2017).

Regular expression (Regex): We document a regex defect in a commit (MOSEK,
2018) shown in Listing 17, which provided the wrong pattern that needs to be
matched using regular expressions. The defect resulted in a build error.

1 txt = readstring(`$bindir/$mosekbin`)

2 - m = match(r"\s*MOSEK Version ([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)",txt)

3 + m = match(r"\s*MOSEK Version ([0-9]+\.[0-9]+\.[0-9])",txt)

4 if txt == nothing

5 return nothing

6 else

Listing 17: An example of a regex defect.

VIIId. Union: Defects that occur due to inadequate use of type unions. With
the Union keyword, Julia allows developers to create a custom abstract type
that includes objects as specified by its argument types. Unions could be
useful to declare nullable types, which allows to set a special value NULL,
for example as done in the Structured Query Language (SQL) (Mauny and
Vaugon, 2014).

Example: We document a union defect for an OSS repository used to im-
plement data structures, such as red-black trees. In Listing 18 we document a
defect where the developer incorrectly declared a nullable type, which was
repaired with Union(K, Nothing) (eulerkochy, 2020).

IX. World Age: Defects that occur when the world age principle of Julia
is violated. In Julia, world age is defined as a mechanism that determines

Pre-
prin

t

Empirical Study of Defects in Julia Programs 21

1 mutable struct RBTreeNode{K}

2 color::Bool

3 - data::K

4 + data::Union{K, Nothing}

5 ...

6 RBTreeNode{K}(d::K) where K = new{K}(true, d, nothing, nothing, nothing)

7 end

Listing 18: An example of a Union defect.

the set of method definitions that are reachable from the currently executing
method (Belyakova et al., 2020). With world age, the Julia compiler assigns
each method definition an age, and for each function call, the compiler checks
if the world age for the program is greater than the age of the method that
is about to be invoked (Belyakova et al., 2020). If the age of a method defi-
nition is greater than the world age, the program fails. World age helps the
Julia compiler to facilitate dynamic code loading as well as perform program
optimizations (Belyakova et al., 2020).

Example: In an OSS repository, we document evidence of a world age de-
fect, which manifested in a program failure (pfitzseb, 2017). As shown in List-
ing 19, for the Atom.connect method, the Julia compiler detected a violation
of world age stating “The applicable method may be too new: running in world
age 21578, while current world is 21595 ”. For the Atom.connect() method the
age is 21595, which is higher than that of the world age (21578). The defect
was repaired by using eval(), which decreased the age of Atom.connect (pfitzseb,
2017).

1 function connect(args...; kws...)

2 activate()

3 - Atom.connect(args...; kws...)

4 + eval(:(Atom.connect($args...; $kws...)))

5 return

6 end

Listing 19: An example of a world age defect.

Frequency: We report the frequency of each defect category in Table 3. Each
cell presents the defect count for each category. ‘Total’ represents the total for
each category. Type is the most frequent defect category.

For types, conversion defects are dominant: of the identified type-related
defects, 209, 21, 11, and 1 are respectively, conversion, instable, string, and
Union defects. Of the 11 string defects, 2 are regex and 2 are extraction defects.

Pre-
prin

t

22 Rahman et al.

Table 3: Frequency of Defect Categories in Julia Programs

Category Defect Count
Array 114
Conditionals 103
Deprecation 210
Hardware Compatibility 1
I/O Operation 45
Polyglot 21
Pre-compilation 5
Type 242
World Age 1
Total 742

Of the identified 114 array defects, 8 and 106 are respectively, broadcasting
and slicing defects. Of the identified 45 I/O operation defects, 3 and 42 are
respectively, file stream and path defects.

We also compare the defect categories identified for Julia programs with
existing taxonomies. We review prior work on defect categorization and identi-
fied if one or multiple defect categories identified from our qualitative analysis
also appear for other software systems. We select a set of papers that include
defect taxonomies for non-Julia software systems. By reviewing these papers,
we assume to identify defect categories that are applicable to other software
systems. The papers that we reviewed are:

– “A Comprehensive Study of Autonomous Vehicle Bugs” (Garcia et al.,
2020)

– “An Empirical Study on TensorFlow Program Bugs” (Zhang et al., 2018b)
– “Bug characteristics in open source software” (Tan et al., 2014)
– “Defect Categorization: Making Use of a Decade of Widely Varying His-

torical Data” (Seaman et al., 2008b)
– “Gang of Eight: A Defect Taxonomy for Infrastructure as Code Scripts” (Rah-

man et al., 2020)
– “IoT Bugs and Development Challenges” (Makhshari and Mesbah, 2021)
– “Not All Bugs Are The Same: Understanding, Characterizing, and Classi-

fying Bug Types” (Catolino et al., 2019)
– “Orthogonal Defect Classification: A Concept for In-process Measurements

” (Chillarege et al., 1992b)
– “Taxonomy of Real Faults in Deep Learning Systems” (Humbatova et al.,

2020)

The papers related to defect categorization can be divided into two groups:

– Generic software systems: the defect taxonomies presented in the following
papers, “Orthogonal Defect Classification: A Concept for In-process Mea-
surements” (Chillarege et al., 1992b), “Not All Bugs Are The Same: Un-
derstanding, Characterizing, and Classifying Bug Types” (Catolino et al.,
2019), “Bug characteristics in open source software” (Tan et al., 2014),
and “Defect Categorization: Making Use of a Decade of Widely Varying

Pre-
prin

t

Empirical Study of Defects in Julia Programs 23

Historical Data” (Seaman et al., 2008b) are applicable for generic software
projects. Amongst these three publications, the two papers namely, “Or-
thogonal Defect Classification: A Concept for In-process Measurements” (Chillarege
et al., 1992b), “Bug characteristics in open source software” (Tan et al.,
2014), and “Defect Categorization: Making Use of a Decade of Widely
Varying Historical Data” (Seaman et al., 2008b) are seminal publications
with high impact in the domain of software engineering research. Our hy-
pothesis is that if Julia-related defect categories are generic then identified
defect categories will overlap with the defect categories reported in these
publications.

– Specialized software systems: the defect taxonomies presented in the fol-
lowing papers “IoT Bugs and Development Challenges”, “Gang of Eight:
A Defect Taxonomy for Infrastructure as Code Scripts”, “A Comprehen-
sive Study of Autonomous Vehicle Bugs”, “Taxonomy of Real Faults in
Deep Learning Systems”, and “An Empirical Study on TensorFlow Pro-
gram Bugs” respectively, present defect categories for IoT, infrastructure
as code, autonomous vehicles, deep learning software, and Tensorflow. All
of these software systems serve a unique purpose. Our hypothesis is that
as these papers are recent and address relatively novel software systems,
there might be some Julia-related defect categories that overlap with one
or multiple of these five software systems.

By considering representative publications from these two groups we aim
to gain a foundational understanding of the existing defect categories, which
further enable us to compare our derived Julia-related defect categories to that
with existing defect categories for previously studied software systems.

We report the defect categories of other non-Julia software systems in
Table 4. We observe three defect categories that have not been reported in
prior software systems: polyglot, pre-compilation, and world age.

Sanity Check: Our defect-related keyword search is susceptible to con-
clusion validity as it might miss commit messages for which unreported defect
categories exist but are not identified. We mitigate this limitation by determin-
ing if new defect categories appear for commit messages that are not identified
through our keyword search process. We use a sample with 95% confidence in-
terval, 5% margin of error, and 50% population proportion from the set of
22,806 commits. We end up with a sample of 378 commits. For this set of
commits the first author apply independent open coding to determine if any
defect categories are identified that are not reported in Section 5. For perform-
ing open coding the first author inspected the commit message, corresponding
code diff, and any referenced issue.

From the set of 378 commits we identify four defect-related commits, of
which three can be labeled as type-related defects, and one can be labeled as
a conditional defect. We list these commit messages below with appropriate
references.

Pre-
prin

t

24 Rahman et al.

Table 4: Appearance of Defect Categories in Previously-studied Software Sys-
tems

Category Previously-studied Software System
Array Deep Learning Projects (Humbatova et al., 2020; Zhang et al.,

2018b), Linux Kernel (Tan et al., 2014)
Conditionals IBM Proprietary Software (Chillarege et al., 1992b), NASA

Software Projects (Seaman et al., 2008b), Autonomous Vehi-
cle (Garcia et al., 2020), Puppet Manifests (Rahman et al.,
2020), Linux Kernel (Tan et al., 2014)

Deprecation Deep Learning Projects (Humbatova et al., 2020; Zhang et al.,
2018b), Eclipse Projects (Catolino et al., 2019)

Hardware Compatibil-
ity

IoT Software (Makhshari and Mesbah, 2021)

I/O Operations IBM Proprietary Software (Chillarege et al., 1992b), NASA
Software Projects (Seaman et al., 2008b), Linux Kernel (Tan
et al., 2014)

Polyglot Not reported for prior software systems
Pre-compilation Not reported for prior software systems
Type Not reported for prior software systems
World age Not reported for prior software systems

– update to latest type inference: this commit 5 is a conditional de-
fect.

– explicitly convert from cuint to cint: this commit 6 is related to
type conversion.

– Correct return type of hwloc topology destroy: this commit 7 is re-
lated to type conversion.

– get rid of type instabilities: this commit 8 is a type instability de-
fect.

6 Answer to RQ2: Defect Symptoms

We identify 7 symptoms, which we present next alphabetically:

I. Build Failure: This symptom refers to failures during a build, i.e., the
process of converting Julia programs into executable software artifact.

II. Crash: This symptom refers to a Julia program’s execution being termi-
nated abruptly.

III. Incorrect Calculation: This symptom occurs when a Julia program
executes but provides incorrect calculations. Examples of consequences in-
clude but are not limited to (i) consequences of defects that result in incorrect
statistical models, such as fixed effects, generalized linear models (GLMs),
and interaction effects; (ii) consequences of defects that result in incorrect

5 https://github.com/JunoLab/Atom.jl/commit/4650266b3c2a74d2f6db61e8710ae5b2cd8593a9
6 https://github.com/JuliaParallel/Hwloc.jl/commit/cdcf861c5ab5fa9de876344c7e2271ec69e9b916
7 https://github.com/JuliaParallel/Hwloc.jl/commit/65781b7c08ee0349ccf7db6c629730beb87e8625
8 https://github.com/JunoLab/Atom.jl/commit/080609b34d4c06dfb13950f9cdd375495d25c7f5

Pre-
prin

t

Empirical Study of Defects in Julia Programs 25

Table 5: Frequency of Defect Symptoms in Julia Programs

Category Build
Failure

Crash Incorrect
Calcula-
tion

Incorrect
Render

Speed
Reduc-
tion

Test Fail-
ure

Warning

Array 0 1 111 0 1 1 0
Conditionals 1 0 69 15 2 16 0
Deprecation 1 2 0 0 2 4 201
Hardware 0 1 0 0 0 0 0
I/O Operation 9 17 2 2 0 15 0
Polyglot 0 13 3 4 0 0 1
Pre-
compilation

0 3 0 0 2 0 0

Type 6 103 26 33 36 37 1
World Age 0 0 0 0 1 0 0

Total (Symp-
tom)

17 140 211 54 44 73 203

matrix-related computations; and (iii) consequences of defects that result in
an incorrect simulation of circuit elements, such as resistors and diodes.
IV. Incorrect Rendering: This symptom occurs when a Julia program ren-
ders strings or colors in user interfaces, which does not meet end-user expec-
tations.
V. Speed Reduction: This symptom occurs when a program’s execution
speed is reduced due to a defect.
VI. Test Failure: This symptom refers to test failures due to defects in Julia
programs.
VII. Warning: This symptom refers to compiler-generated warning messages
for Julia programs.

Symptom Frequency : We quantify the frequency of the identified symp-
toms in Table 5. Each cell represents the count of defects for which the con-
sequence appears. For example, according to Table 5 the consequence of one
array-related defect is a crash. We observe incorrect calculations to be the
most frequently occurring symptom.

We acknowledge that the identified defect symptoms are applicable for
other software systems. However, by identifying these defect symptoms we can
understand what categories of defects is related with symptom categories. Such
understanding can help us contextualize the consequences of the identified
defect categories both generic, as well as unique to Julia programs.

7 Answer to RQ3: Perceptions of Identified Defect Categories

We answer RQ3 by providing results related to developer perceptions on the
frequency and severity of the identified defect categories. We obtain 52 re-
sponses in total. The median reported experience in Julia is 4.5 years. In
Figures 3 and 4 we respectively, report developer perceptions for frequency
and severity of the identified defect categories. The x and y-axis respectively

Pre-
prin

t

26 Rahman et al.

presents the percentage of survey participants and defect categories. For exam-
ple, from Figure 3 we observe 48% of the total survey respondents to identify
array manipulation as a ‘frequently’ or ‘highly frequent’ defect category. From
Figures 3 and 4, we observe developers to perceive type-related defects to be
the most frequent and the most severe defect category.

In response to our question related to unidentified defect categories, one
survey respondent mentioned ‘wrong dispatch’. Dispatching refers to Julia’s
multiple dispatch feature: Julia allows functions to have multiple definitions
as long as each definition uses a combination of arguments that are different
from one function to another (Jul, 2022d). According to the survey respondent,
developers use Julia’s multiple dispatch feature incorrectly, which leads to de-
fects. One respondent mentioned defects in LLVM (Lattner and Adve, 2004),
which is leveraged by the Julia compiler to generate intermediate represen-
tations. The survey respondent stated: “Julia uses LLVM as an intermediate
representation, and LLVM itself has a few defects”.

From the open-ended textbox, we also observe survey respondents provide
reasons on why they agree with the identified defect categories. One respon-
dent agreed with all identified defect categories stating all identified categories
to “seem reasonable”. The respondent was referring to the fact that they agree
that all identified defect categories are in fact Julia-related, but the frequency
can vary. One respondent agreed with polyglot defects stating referring to C
code from Julia with callbacks is challenging: “Tons of issues trying to make
a C library binding in Julia which uses callback functions that take user point-
ers. Specifically, I’m getting segfaults or undefined behavior when the callback
is called. The library we are writing the wrapper for, also supports calling
callbacks in separate threads, but that seems nearly impossible to do safely in
Julia”. Another respondent reflected on the experience with hardware:“Most
Julia defects I’ve encountered stem from odd setups. Hardware defects that
only show themselves in the presence of some instructions emitted by Julia,
e.g., AVX instructions on specific CPU/motherboard combinations.”. In the
case of pre-compilation defects, one respondent mentioned how it can cause
delays when deployed to cloud-based instances “I’ve also experienced a lot of
difficulty trying to build executable packages or Julia system images from our
code to deploy on cloud instances to remove startup time”.

In Table 6 we report how many of the practitioners perceive the combi-
nation of defect categories to be ‘Frequent’ or ‘Highly Frequent’. For space
constraints we report >= 5% of the practitioners who found combination of
categories to be frequent. The full table is available in our replication pack-
age (Rahman, 2022). From Table 6 we observe 42.3% of the survey respon-
dents to agree that both array and conditional defects frequently occur. We
also observe 38.4% of the survey respondents to perceive array, conditional,
and type-related defects to be frequent. We observe no practitioner to find all
defect categories to be equally frequent.

Pre-
prin

t

Empirical Study of Defects in Julia Programs 27

27%

42%
46%

75%

88%
79%

88%
92%

92%
65%

54%
48%

19%

10%
10%

8%
8%

4%
8%

4%
6%

6%

2%
12%

4%
0%

4%WORLD_AGE

TYPE

PRE_COMPIL

POLYGLOT

I/O

HARDWARE

DEPRECAT

CONDITION

ARRAY

0 25 50 75 100
Percentage

Response NOT_AT_ALL RARELY SOMEWHAT FREQUENTLY HI_FREQ

Fig. 3: Perceived frequency of identified defect categories.

31%

44%
56%

81%

83%
87%

83%

85%

94%

65%

40%
35%

12%

12%
8%

8%

6%

4%

4%

15%
10%

8%

6%
6%

10%

10%

2%

WORLD_AGE

TYPE

PRE_COMPIL

POLYGLOT

I/O

HARDWARE

DEPRECAT

CONDITION

ARRAY

0 25 50 75 100
Percentage

Response NOT_AT_ALL LOW MODERATE SEVERE HI_SEVERE

Fig. 4: Perceived severity of identified defect categories.

8 Discussion

We discuss the findings of our empirical study as follows:
Symptom-related Implications: Symptom categories reported in Section 8
demonstrates the importance of identified defect categories. For example, we
observe crashes to be commonplace for Julia-specific categories, as well as for
categories applicable for other languages. The existence of incorrect-calculation
symptoms shows unmitigated array and conditional defects have serious con-
sequences for scientific computing and statistical modeling—areas that the
Julia community engages with. Also, problems related to program execution
speed show developers to not obtain the desired benefits from Julia-provided
utilities.
Came for Syntax and Speed, Now Need Help—–Implications for
Toolsmiths: Our results presented in Section 5 provide directions on how
to improve tooling for Julia programs:
Automated detection of Julia anti-patterns: Our findings show that develop-
ers violate recommended coding practices provided by the Julia documenta-
tion. Not adopting these recommended practices can introduce defects, such

Pre-
prin

t

28 Rahman et al.

Table 6: Practitioner-reported Frequency for Defect Category Combinations

Category Combination Practitioner (%)
Array, Conditional 42.3%
Array, Type 40.4%
Conditional, Type 40.4%
Array, Conditional, Type 38.4%
Conditional, Deprecation 13.5%
Deprecation, Pre-compilation 13.4%
Array, Deprecation 11.5%
Array, Conditional, Deprecation 11.5%
Conditional, Deprecation, Type 11.5%
Array, Deprecation, Type 11.5%
Array, Conditional, Deprecation, Types 11.5%
Polyglot, Type 9.6%
Array, Hardware 7.7%
Conditional, Hardware 7.7%
Hardware, Type 7.7%
I/O Operation, Type 7.7%
Conditional, Hardware, Type 7.6%
Array, Hardware, Type 7.6%
Array, Conditional, Hardware 7.6%
Array, Conditional, Hardware, Type 7.6%
Deprecation, Hardware 5.8%
Array, Conditional, Deprecation, Hardware 5.7%
Array, Deprecation, Hardware 5.7%
Array, Deprecation, Hardware, Type 5.7%
Conditional, Deprecation, Hardware, Type 5.7%
Conditional, Deprecation, Hardware 5.7%
Deprecation, Hardware, Type 5.7%
Pre-compilation, Type 5.7%

as type insatiability defects. Based on our findings, we conjecture that auto-
mated detection of anti-patterns, i.e., violation of recommended practices, can
help developers to write better quality Julia code. Julia-based parsers, such
as CSTParser (julia vscode, 2022), can be used for automated detection of
Julia anti-patterns. Such anti-pattern detection tools could also be integrated
as plugins in mainstream IDEs, such as Visual Studio Code.

Automated repair of Julia programs: Our findings provide the groundwork
to repair defects automatically in Julia programs. One option is to leverage
patterns from the defect fix examples for each defect category. Our dataset
can be helpful in this regard as the dataset provides a mapping of what code
elements are needed to fix defects in Julia programs. Researchers can leverage
this mapping to extract patterns needed to generate necessary repairs.

Identified Defect Categories - Differences and Similarities: While cer-
tain categories described in Section 5 apply for generic software, we have iden-
tified other categories unique to Julia. Let us consider pre-compilation defects.
For pre-compilation, Julia uses a specific directive, unique to the language
itself. In the case of polyglot defects, the manifestation is entirely dependent
on Julia-provided utilities, such as ccall. Similar argument applies for world

Pre-
prin

t

Empirical Study of Defects in Julia Programs 29

age defects as well. World age is unique to Julia’s design and violation of this
principle can lead to defects.

Findings reported in Section 5 also show similarities between identified
defect categories for Julia and existing defect categories documented in prior
work. One such category is conditional defects, which has been reported in
generic defect taxonomies (Chillarege et al., 1992a; Seaman et al., 2008a), as
well as in domain-specific software, such as for autonomous vehicles (Garcia
et al., 2020), Puppet development (Rahman et al., 2020), and deep learning
libraries (Islam et al., 2019). Deprecation defects are also commonplace: for
example, deprecation is identified as a defect category for deep learning li-
braries, such as Keras and Tensorflow (Islam et al., 2019; Humbatova et al.,
2020; Zhang et al., 2018a), as well as for Apache and Eclipse projects (Catolino
et al., 2019). Zhang et al. (Zhang et al., 2018a) reported how changes in the
Tensorflow API can lead to defects, which was further confirmed by Hum-
batova et al. (Humbatova et al., 2020), who documented the existence of
‘deprecated API’ defects for projects that use deep learning libraries, such as
Keras and Tensorflow. Hardware compatibility defects have been documented
by Makhshari and Mesbah (Makhshari and Mesbah, 2021) for IoT develop-
ment, where they discussed how compatibility issues related to Raspberry Pi
causes defects. We also have documented a compatibility-related defect in a
Julia program when executed on a Raspberry Pi device in Section 5. In the case
of I/O operation defects, prior work has documented evidence for generic (Sea-
man et al., 2008a) and domain-specific software projects, such as autonomous
vehicles (Garcia et al., 2020). In the case of type defects, we observe common-
alities with respect to regex defects and conversion defects. Use of wrong types
that necessitate conversion to the correct type is common in deep learning-
based projects (Humbatova et al., 2020). Regex defects are also commonplace
in software engineering (Wang et al., 2020).
Developer Perception and Empirical Evidence: In an online forum (jul,
2020a), we observe developers to ask about defect categories in Julia programs:
“Defect types in Julia: what types of defects in Julia programs have you ex-
perienced?” In response, forum participants mentioned type-related defects.
Developer-reported perceptions related to defects in software can lack sub-
stantiation (Devanbu et al., 2016), which is subject to empirical validation.
Along with type-related defects, we have identified 8 more defect categories,
which further highlights the importance of our empirical study.

Our findings from Section 7 provide nuanced perceptions of developers re-
lated to the frequency and severity of identified defect categories. Based on
developer response, type-related defects are most frequent, which is congruent
with results presented in Table 3. Despite agreements with respect to fre-
quency, survey respondents’ perceptions related to severity are incongruent
with that of our symptom analysis. For example, >90% survey respondents
report deprecation and polyglot to have ‘not at all’/‘low’ severity, even though
these defect categories lead to crashes.
Documentation-related Recommendations: Our empirical study provides
evidence that developers violate Julia-related best practices, such as writing

Pre-
prin

t

30 Rahman et al.

code that is compliant with type stability and world age. The Julia documen-
tation can be improved so that these concepts are better disseminated with
examples.

Application of Our Methodology: The major challenge for conducting
this type of empirical study is the qualitative analysis portion, where raters
with expertise on software defects need to individually inspect commits and
issue reports. Another challenge is scalability: the more the commits and issues
there are, the longer will take to conduct the analysis. In our case, the defect
categorization process took 29 and 33 hours respectively, for the first and
second author. Once these raters are identified, the methodology is generic
enough to be adopted for any emerging programming language. Our defect
categories can also be applied and extended for other emerging programming
languages as well, as our paper provides definitions, examples, and symptoms
for all defect categories.

Defect Frequency: Except for type-related defects, we observe majority of
practitioners to perceive Julia-related defects to be infrequent and less severe.
The frequency-related perceptions is congruent with empirical evidence as we
identify 742 defects from 30,494 commits and 3,038 issue reports. One possible
explanation for the infrequent defects is that as Julia is an emerging program-
ming language, there is a lack of repositories that may have contributed to
the reported perceptions and identified defect count. Another possible expla-
nation is that our empirical study is reliant on reported defects as documented
in commits and issue reports. It is possible that practitioners who maintain
these repositories may have missed defects that they inadvertently introduced.

While we acknowledge that all of these explanations are possible, we still
believe that our empirical study could be useful for the research community
to conduct novel research, and for toolsmiths to develop tools that will aid
practitioners who use Julia.

When applying qualitative analysis our focus was on deriving defect cat-
egories, where we derived each category based on the uniqueness for each
category. While deriving these categories we do not consider the frequency of
each category. As a result, in our categorization we have identified a defect
category that includes only instance, namely world age.

Importance or Severity of Defect Categories: In our paper, we do not
make any claim on the importance of each identified defect categories. Our
survey analysis from Section 7 provided practitioner perception on the sever-
ity for each defect category, which can help researchers to contextualize the
severity or importance of each identified defect categories.

Implications for Toolsmiths: We provide the following recommendation’s
based on our empirical analysis:

Deprecation repair tools: This category of tools will automatically detect dep-
recated syntax in Julia programs and repair detected deprecation instances.
For example, this category of tools will automatically detect that symbol is
deprecated, and repair automatically with Symbol.

Pre-
prin

t

Empirical Study of Defects in Julia Programs 31

Security tools: This category of tools will automatically detect security weak-
nesses in Julia programs (e.g. use of unsafe convert()), and provide recom-
mendations on how to fix them.
Polyglot tools: This category of tools will automatically generate code so that
developers can easily interface Julia code with C and Fortran code
Detection tools for best practice violations: This category of tools will iden-
tify violations of Julia-related best practices automatically. Listing 19 shows
evidence on how defects can be introduced into Julia programs because of vi-
olating Julia-related best practices. While the Julia community provides a set
of recommended development practices (Jul, 2022d), developers can benefit
from techniques, which can automatically identify violation of Julia best prac-
tices. For example, this category of tools will report where the Julia principle
of type instability and world age is being violated in the code. Possible steps
to develop these kinds of tools include but are not limited to:

– Curate Julia-related coding practices;
– Leverage code examples that map to each of the recommended practices;
– Generate rules by abstracting code patterns that are reflective of a violation

for a certain recommended practice. For example, for gc.enable(), we
observe that when the enable() function is called, then it violates the
recommended practice of using gc.@preserve() instead of gc.enable().
This violation can be abstracted as ¬gc.enable() ∧ gc.preserve(), which
in turn can be used as rule to inspect Julia programs that includes this
violation;

– Detect instances of best practice violations with Julia-provided syntax an-
alyzers, such as CSTParser Jul (2022d); and

– Apply information flow analysis techniques to mitigate false positive in-
stances

Implications for Researchers: We list the following implications as future
directions for researchers:

– Use our derived defect examples to generate example-guided repair tech-
niques for Julia programs;

– Identify latent defects in Julia programs;
– Develop automated testing techniques for Julia programs;
– Gain an understanding of defects that appear for the Julia compiler; and
– Systematically investigate the feasibility of existing fuzzing techniques to

detect defects in the Julia compiler.

9 Threats to Validity

In this section, we describe the limitations of our paper:
Conclusion Validity: The identified defect categories are prone to rater bias,
which we mitigate by allocating multiple raters. Besides this, our analysis is
limited as we determine the defect categories for Julia programs by mining

Pre-
prin

t

32 Rahman et al.

issue reports and commit messages, which may not provide full context. Fur-
thermore, our keyword-based approach may might miss defect-related commits
that do not include the keywords that we used. We mitigate this limitation
by applying open coding on a sample of 378 commits, from where we do not
identify new defect categories.

Internal Validity: Since the defect categories are identified based on the
set of GitHub-related artifacts, as well as rater judgment, we cannot consider
this list of categories to be comprehensive. We mitigate this limitation by sys-
tematically analyzing 30,494 commits and 3,038 issue reports. Our repository
filtering criteria are based on heuristics, which may not identify all repositories
with sufficient Julia source code files.

External Validity: Our findings may not generalize to OSS repositories that
are not included in our analysis. Our findings may also not generalize for pro-
prietary datasets. We mitigate these limitations by mining OSS Julia-related
repositories hosted on GitHub.

10 Conclusion

Julia was designed to provide syntax similar to that of scripting languages,
with the similar program execution speed of compiled languages that have
low-level memory access. An empirical study, which systematically investigates
defects in Julia programs can be beneficial for the Julia community as such a
study can yield insights on why defects in Julia programs appear, and derive
actionable recommendations to mitigate such defects. We have conducted an
empirical study with 742 defects that appear in Julia programs by mining 112
OSS repositories. We identify 9 defect categories and 7 defect symptoms for
the collected 742 defects. We observe certain categories, namely, polyglot, pre-
compilation, and world age to be unique to Julia programs. Our findings also
reveal that defects in Julia programs result in crashes and reduced program
execution speed. Our findings provide groundwork on how to develop tools and
documentation resources so that developers are well-equipped in developing
Julia programs.

Conflict of Interests/Competing Interests The authors have no relevant
financial or non-financial interests to disclose.

Data Availability Statements Dataset and source code used in our paper
is publicly available online (Rahman, 2022).

Acknowledgements We thank the PASER group at Auburn University for their valuable
feedback. This research was partially funded by the U.S. National Science Foundation (NSF)
Award # 2247141, Award # 2310179, and the U.S. National Security Agency (NSA) Award
H98230-21-1-0175.

Pre-
prin

t

Empirical Study of Defects in Julia Programs 33

References

(2017) Julia joins petaflop club. https://www.hpcwire.com/off-the-wire/julia-
joins-petaflop-club/

(2019) Julia: come for the syntax, stay for the speed.
https://www.nature.com/articles/d41586-019-02310-3

(2020a) Bug types in Julia: what types of bugs in Julia programs have you
experienced? https://discourse.julialang.org/t/bug-types-in-julia-what-
types-of-bugs-in-julia-programs-have-you-experienced-are-they-different-
from-bug-types-in-general-programming-languages-like-c-c/38640

(2020b) Programming languages: Developers reveal what they love and
loathe, and what pays best. https://www.zdnet.com/article/programming-
languages-developers-reveal-what-they-love-and-loathe-and-what-pays-
best/

(2020c) Why julia is slowly replacing python in machine learning and data
science. https://www.section.io/engineering-education/why-julia-is-slowly-
replacing-python-for-machine-learning-and-data-science/

(2022a) Julia. https://juliacomputing.com/case-studies/celeste.html
(2022b) Julia. https://juliacomputing.com/case-studies/lanl/
(2022c) Julia. https://juliacomputing.com/case-studies/lincoln-labs/
(2022d) The Julia language. https://docs.julialang.org/en/v1/
(2022) The julia programming language. https://julialang.org/#
abelsiqueira (2015) https://gist.github.com/abelsiqueira/d4ca585c62204516bf37,

[Online; accessed 19-Aug-2021]
Agrawal A, Rahman A, Krishna R, Sobran A, Menzies T (2018) We

don’t need another hero?: The impact of ”heroes” on software devel-
opment. In: Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering in Practice, ACM, New York, NY,
USA, ICSE-SEIP ’18, pp 245–253, DOI 10.1145/3183519.3183549, URL
http://doi.acm.org/10.1145/3183519.3183549

amckay (2016) bug fix in markov chain simulation.
https://github.com/QuantEcon/QuantEcon.jl/commit/097cf3, [Online;
accessed 17-Feb-2022]

Antinyan V, Staron M, Sandberg A (2017) Evaluating code complexity trig-
gers, use of complexity measures and the influence of code complexity on
maintenance time. Empirical Software Engineering 22(6):3057–3087

Beizer B (1984) Software system testing and quality assurance. Van Nostrand
Reinhold Co.

Belyakova J, Chung B, Gelinas J, Nash J, Tate R, Vitek J (2020)
World age in julia: Optimizing method dispatch in the presence of
eval. Proc ACM Program Lang 4(OOPSLA), DOI 10.1145/3428275, URL
https://doi.org/10.1145/3428275

Bezanson J, Chen J, Chung B, Karpinski S, Shah VB, Vitek J, Zoubritzky
L (2018) Julia: Dynamism and performance reconciled by design.
Proc ACM Program Lang 2(OOPSLA), DOI 10.1145/3276490, URL
https://doi.org/10.1145/3276490

Pre-
prin

t

34 Rahman et al.

Carver JC (2009) First international workshop on software engineering for
computational science engineering. Computing in Science Engineering
11(2):7–11, DOI 10.1109/MCSE.2009.30

Catolino G, Palomba F, Zaidman A, Ferrucci F (2019) Not all
bugs are the same: Understanding, characterizing, and clas-
sifying bug types. Journal of Systems and Software 152:165
– 181, DOI https://doi.org/10.1016/j.jss.2019.03.002, URL
http://www.sciencedirect.com/science/article/pii/S0164121219300536

Chen Z, Yao H, Lou Y, Cao Y, Liu Y, Wang H, Liu X (2021) An empirical
study on deployment faults of deep learning based mobile applications. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), IEEE, pp 674–685

Chillarege R, Bhandari I, Chaar J, Halliday M, Moebus D, Ray B, Wong MY
(1992a) Orthogonal defect classification-a concept for in-process measure-
ments. IEEE Transactions on Software Engineering 18(11):943–956, DOI
10.1109/32.177364

Chillarege R, Bhandari I, Chaar J, Halliday M, Moebus D, Ray B, Wong MY
(1992b) Orthogonal defect classification-a concept for in-process measure-
ments. IEEE Transactions on Software Engineering 18(11):943–956, DOI
10.1109/32.177364

Churavy VVR (2019) Transparent distributed programming in Ju-
lia. PhD thesis, Massachusetts Institute of Technology, URL
https://dspace.mit.edu/handle/1721.1/122755

Cinque M, Cotroneo D, Corte RD, Pecchia A (2014) Assessing direct moni-
toring techniques to analyze failures of critical industrial systems. In: 2014
IEEE 25th International Symposium on Software Reliability Engineering,
pp 212–222, DOI 10.1109/ISSRE.2014.30

Devanbu P, Zimmermann T, Bird C (2016) Belief and evidence in
empirical software engineering. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ACM, New York, NY,
USA, ICSE ’16, pp 108–119, DOI 10.1145/2884781.2884812, URL
http://doi.acm.org/10.1145/2884781.2884812

Di Franco A, Guo H, Rubio-González C (2017) A comprehensive study of real-
world numerical bug characteristics. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, pp 509–519

Drvi (2020) Fix inequality in reservoir sampling.
https://github.com/joshday/OnlineStats.jl/commit/023df7, [Online;
accessed 16-Feb-2022]

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting Empirical
Methods for Software Engineering Research, Springer London, London, pp
285–311

eulerkochy (2020) Fix parametric initialisation of rbtree.
https://github.com/JuliaCollections/DataStructures.jl/commit/b04a52,
[Online; accessed 10-Feb-2022]

Friess E (2019) Scrum language use in a software engineering firm: An
exploratory study. IEEE Transactions on Professional Communication

Pre-
prin

t

Empirical Study of Defects in Julia Programs 35

62(2):130–147, DOI 10.1109/TPC.2019.2911461
Gagniuc PA (2017) Markov chains: from theory to implementation and exper-

imentation. John Wiley & Sons
Garcia J, Feng Y, Shen J, Almanee Y Sumaya Xia, Chen QA (2020) A com-

prehensive study of autonomous vehicle bugs. In: Proceedings of the 42nd
International Conference on Software Engineering, ICSE ’20, to appear

Gibson J (2017) The julia programming language: the fu-
ture of scientific computing. APS pp L39–011, URL
https://ui.adsabs.harvard.edu/abs/2017APS..DFDL39011G/abstract

github (2023) Blocking command line pushes that expose your personal email
address. https://docs.github.com/en/account-and-profile/setting-up-and-
managing-your-personal-account-on-github/managing-email-preferences/,
[Online; accessed 22-Feb-2023]

Gmys J, Carneiro T, Melab N, Talbi EG, Tuyttens D
(2020) A comparative study of high-productivity high-
performance programming languages for parallel metaheuris-
tics. Swarm and Evolutionary Computation p 100720, URL
https://www.sciencedirect.com/science/article/abs/pii/S2210650220303734

Hickey G, Kipping C (1996) A multi-stage approach to the coding of data
from open-ended questions. Nurse researcher 4(1):81–91

Howison J, Herbsleb JD (2011) Scientific software production: Incentives and
collaboration. In: Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work, Association for Computing Machinery, New
York, NY, USA, CSCW ’11, p 513–522, DOI 10.1145/1958824.1958904, URL
https://doi.org/10.1145/1958824.1958904

Humbatova N, Jahangirova G, Bavota G, Riccio V, Stocco A, Tonella
P (2020) Taxonomy of real faults in deep learning systems. In: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, Association for Computing Machinery, New York,
NY, USA, ICSE ’20, p 1110–1121, DOI 10.1145/3377811.3380395, URL
https://doi.org/10.1145/3377811.3380395

Islam MJ, Nguyen G, Pan R, Rajan H (2019) A comprehensive study on
deep learning bug characteristics. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, Association for Comput-
ing Machinery, New York, NY, USA, ESEC/FSE 2019, p 510–520, DOI
10.1145/3338906.3338955, URL https://doi.org/10.1145/3338906.3338955

Januszek T, Pleszczyński M (2018) Comparative analysis of the effi-
ciency of Julia language against the other classic programming lan-
guages. Silesian Journal of Pure and Applied Mathematics 8, URL
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-
c4339453-4519-4b92-a673-307638a50cb1

jayschwa (2014) Fix infinite recursion on 32-bit machines.
https://github.com/JuliaGL/GLFW.jl/commit/89343b, [Online; accessed
19-Feb-2022]

Pre-
prin

t

36 Rahman et al.

Julia (2021) https://docs.julialang.org/en/v1/base/numbers/#Core.UInt64,
[Online; accessed 29-Aug-2021]

julia (2021) Julia computing. https://juliacomputing.com/, [Online; accessed
11-Oct-2021]

JuliaLang (2017) https://github.com/JuliaLang/IJulia.jl/issues/573, [Online;
accessed 10-Aug-2021]

JuliaLang (2021) Julialang/ijulia.jl. https://github.com/JuliaLang/IJulia.jl,
[Online; accessed 10-Aug-2021]

JuliaLang/IJuliajl (2017) Pkd.build(“ijulia”) failing on arm.
https://github.com/JuliaLang/IJulia.jl/issues/516, [Online; accessed
25-Aug-2021]

JuliaSmoothOptimizers (2019) Juliasmoothoptimizers/linearoperators.jl.
https://github.com/JuliaSmoothOptimizers/LinearOperators.jl/issues/110,
[Online; accessed 09-Aug-2021]

JuliaSmoothOptimizers/CUTEstjl (2015) Segmentation fault.
https://github.com/JuliaSmoothOptimizers/CUTEst.jl/issues/45, [On-
line; accessed 19-Aug-2021]

Kitchenham BA, Pfleeger SL (2008) Personal Opinion Surveys,
Springer London, London, pp 63–92. DOI 10.1007/978-1-84800-044-
53, URLhttps : //doi.org/10.1007/978− 1− 84800− 044− 5 3

Krippendorff K (2018) Content analysis: An introduction to its methodology.
Sage publications

Krippendorff K, Fleiss JL (1978) Reliability of binary attribute data
Krishna R, Agrawal A, Rahman A, Sobran A, Menzies T (2018) What is the

connection between issues, bugs, and enhancements?: Lessons learned from
800+ software projects. In: Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice, ACM, New York,
NY, USA, ICSE-SEIP ’18, pp 306–315, DOI 10.1145/3183519.3183548, URL
http://doi.acm.org/10.1145/3183519.3183548

Lattner C, Adve V (2004) Llvm: A compilation framework for lifelong program
analysis & transformation. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004., IEEE, pp 75–86

Lombard M, Snyder-Duch J, Bracken CC (2010) Practical resources for assessing
and reporting intercoder reliability in content analysis research projects

Makhshari A, Mesbah A (2021) Iot bugs and development challenges. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp 460–472, DOI 10.1109/ICSE43902.2021.00051

Mauny M, Vaugon B (2014) Nullable type inference. In: OCaml 2014-The OCaml
Users and Developers Workshop

Merchant FA, Castleman KR (2005) 10.10 - computer-assisted mi-
croscopy. In: BOVIK A (ed) Handbook of Image and Video Pro-
cessing (Second Edition), second edition edn, Communications, Net-
working and Multimedia, Academic Press, Burlington, pp 1311–
XLIV, DOI https://doi.org/10.1016/B978-012119792-6/50136-4, URL
https://www.sciencedirect.com/science/article/pii/B9780121197926501364

Pre-
prin

t

Empirical Study of Defects in Julia Programs 37

MikeInnes (2017) https://github.com/JunoLab/Juno.jl/commit/bd49b4, [On-
line; accessed 20-Feb-2022]

MOSEK (2018) fix: three number version.
https://github.com/MOSEK/Mosek.jl/commit/3e9c63dab09, [Online; ac-
cessed 09-Aug-2021]

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating GitHub for en-
gineered software projects. Empirical Software Engineering pp 1–35, DOI
10.1007/s10664-017-9512-6, URL http://dx.doi.org/10.1007/s10664-017-9512-
6

Murphy J, Brady ET, Shamim SI, Rahman A (2020) A curated dataset of se-
curity defects in scientific software projects. In: Proceedings of the 7th Sym-
posium on Hot Topics in the Science of Security, Association for Computing
Machinery, New York, NY, USA, HotSoS ’20, DOI 10.1145/3384217.3384218,
URL https://doi.org/10.1145/3384217.3384218

pfitzseb (2017) https://github.com/JunoLab/Juno.jl/commit/865068, [Online;
accessed 21-Feb-2022]

Poulding S, Feldt R (2017) Automated random testing in multiple dispatch lan-
guages. In: 2017 IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp 333–344, DOI 10.1109/ICST.2017.37

Rahman A (2022) Verifiability package for paper.
https://figshare.com/s/35d775572bb840ebd392, [Online; accessed 15-Mar-
2022]

Rahman A, Agrawal A, Krishna R, Sobran A (2018) Characterizing the
influence of continuous integration: Empirical results from 250+ open
source and proprietary projects. In: Proceedings of the 4th ACM SIG-
SOFT International Workshop on Software Analytics, ACM, New York,
NY, USA, SWAN 2018, pp 8–14, DOI 10.1145/3278142.3278149, URL
http://doi.acm.org/10.1145/3278142.3278149

Rahman A, Farhana E, Parnin C, Williams L (2020) Gang of eight: A defect tax-
onomy for infrastructure as code scripts. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, Association for
Computing Machinery, New York, NY, USA, ICSE ’20, p 752–764, DOI
10.1145/3377811.3380409, URL https://doi.org/10.1145/3377811.3380409,
pre-print: https://akondrahman.github.io/papers/icse20 acid.pdf

randyzwitch (2015) https://github.com/johnmyleswhite/Vega.jl/commit/9e3046,
[Online; accessed 19-Feb-2022]

Raulamo-Jurvanen P, Hosio S, Mäntylä MV (2019) Practitioner evaluations
on software testing tools. In: Proceedings of the Evaluation and Assess-
ment on Software Engineering, Association for Computing Machinery, New
York, NY, USA, EASE ’19, p 57–66, DOI 10.1145/3319008.3319018, URL
https://doi.org/10.1145/3319008.3319018

Saldaña J (2015) The coding manual for qualitative researchers. Sage
Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J (2016) Vega-lite: A gram-

mar of interactive graphics. IEEE transactions on visualization and computer
graphics 23(1):341–350

Pre-
prin

t

38 Rahman et al.

Seaman CB, Shull F, Regardie M, Elbert D, Feldmann RL, Guo Y, Godfrey
S (2008a) Defect categorization: Making use of a decade of widely varying
historical data. In: Proceedings of the Second ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, Association for
Computing Machinery, New York, NY, USA, ESEM ’08, p 149–157, DOI
10.1145/1414004.1414030, URL https://doi.org/10.1145/1414004.1414030

Seaman CB, Shull F, Regardie M, Elbert D, Feldmann RL, Guo Y, Godfrey
S (2008b) Defect categorization: Making use of a decade of widely varying
historical data. In: Proceedings of the Second ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, Association for
Computing Machinery, New York, NY, USA, ESEM ’08, p 149–157, DOI
10.1145/1414004.1414030, URL https://doi.org/10.1145/1414004.1414030

simonster (2014) Fix type instability in read array.
https://github.com/JuliaIO/HDF5.jl/commit/ce2c44, [Online; accessed
20-Feb-2022]

Smith E, Loftin R, Murphy-Hill E, Bird C, Zimmermann T (2013) Improving
developer participation rates in surveys. In: 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE), pp
89–92, DOI 10.1109/CHASE.2013.6614738

Sweeney A, Greenwood KE, Williams S, Wykes T, Rose DS (2013) Hearing the
voices of service user researchers in collaborative qualitative data analysis: the
case for multiple coding. Health Expectations 16(4):e89–e99

Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2014) Bug characteristics in open
source software. Empirical software engineering 19:1665–1705

tknopp (2018) fix sampling density function.
https://github.com/JuliaMath/NFFT.jl/commit/fc791b, [Online; accessed
18-Feb-2022]

Vitter JS (1985) Random sampling with a reservoir. ACM Trans Math Softw
11(1):37–57, DOI 10.1145/3147.3165, URL https://doi.org/10.1145/3147.3165

julia vscode (2022) julia-vscode/cstparser.jl. https://github.com/julia-
vscode/CSTParser.jl, [Online; accessed 22-Feb-2022]

Wang P, Brown C, Jennings JA, Stolee KT (2020) An empirical study on reg-
ular expression bugs. In: Proceedings of the 17th International Conference
on Mining Software Repositories, Association for Computing Machinery, New
York, NY, USA, MSR ’20, p 103–113, DOI 10.1145/3379597.3387464, URL
https://doi.org/10.1145/3379597.3387464

WGS-TB (2021a) Update calling functions.jl. https://github.com/WGS-
TB/MentaLiST/commit/3f59f7b, [Online; accessed 11-Aug-2021]

WGS-TB (2021b) Wgs-tb/mentalist. https://github.com/WGS-
TB/MentaLiST, [Online; accessed 11-Aug-2021]

yuyichao (2016) https://github.com/JuliaPy/PyCall.jl/commit/6ff741, [Online;
accessed 17-Feb-2022]

Zappa Nardelli F, Belyakova J, Pelenitsyn A, Chung B, Bezanson J, Vitek J
(2018) Julia subtyping: A rational reconstruction. Proc ACM Program Lang
2(OOPSLA), DOI 10.1145/3276483, URL https://doi.org/10.1145/3276483

Pre-
prin

t

Empirical Study of Defects in Julia Programs 39

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018a) An empirical study
on tensorflow program bugs. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Association for
Computing Machinery, New York, NY, USA, ISSTA 2018, p 129–140, DOI
10.1145/3213846.3213866, URL https://doi.org/10.1145/3213846.3213866

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018b) An empirical study
on tensorflow program bugs. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, Association for
Computing Machinery, New York, NY, USA, ISSTA 2018, p 129–140, DOI
10.1145/3213846.3213866, URL https://doi.org/10.1145/3213846.3213866

Pre-
prin

t

