Authorship of Minor Contributors in Kubernetes Configuration
Scripts: An Exploratory Study

Akond Rahman
Auburn University
Auburn, Alabama, USA

akond@auburn.edu

Abstract

Kubernetes is a popular open source software (OSS) tool to manage
containers at scale. Despite being beneficial for rapid deployment,
Kubernetes-based software deployments are susceptible to defects
that can lead to serious consequences. A systematic analysis of
development-related factors that cause defects can aid practitioners
on how to mitigate these defects. We conduct an exploratory em-
pirical study where we use causal analysis to quantify the impact
of one development factor called minor contributors, which refers
to practitioners who author < 5% of the total code. By analyzing
29,028 commits from 157 OSS repositories, we observe (i) 5.6% of
the 29,028 commiits to be authored by minor contributors; and (ii)
authorship of minor contributors to impact defects in configuration
scripts. Based on our findings, we recommend researchers to (1)
further investigate the characteristics of minor contributors; and (2)
identify other development-related factors that may have a causal
impact on defects in Kubernetes configuration scripts.

CCS Concepts

« Software and its engineering — Software defect analysis;
Empirical software validation.

Keywords

causal inference, configuration, defect, devops, Kubernetes

ACM Reference Format:

Akond Rahman, Gerry Dozier, and Yue Zhang. 2025. Authorship of Minor
Contributors in Kubernetes Configuration Scripts: An Exploratory Study. In
Proceedings of Causal Methods in Software Engineering (Cause 2025). ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Kubernetes is a popular open source software (OSS) tool to imple-
ment the practice of container orchestration. Container orchestra-
tion is the practice of automatically managing multiple containers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Cause 2025, Trondheim, Norway

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Gerry Dozier
Auburn University
Auburn, Alabama, USA

doziegv@auburn.edu

Yue Zhang
Auburn University

Auburn, Alabama, USA

yzz0229@auburn.edu
metadata:
labels:
k8s-app: calico-typha-autoscaler
annotations:

scheduler.alpha.kubernetes.io/critical -pod: ’’

Figure 1: A commit that includes a defect in a Kubernetes
configuration script. The commit is authored by a minor
contributor.

at scale [16]. The global market of Kubernetes is expected to be
11.78 billion by the year of 2032 1. Usage of Kubernetes has yielded
benefits for organizations. For example, the U.S. Department of
Defense (DoD) decreased their software deployment time from 3~8
months to 1 week [2].

Despite reported benefits, Kubernetes-based software deployments
are susceptible to configuration defects that can lead to example
to serious consequences, such as outages. For example, a defect
in a Kubernetes configuration script created an outage for Reddit,
the popular social media platform [9]. Recent research also reports
defects to be prevalent for Kubernetes configuration scripts. For
example, Rahman et al. [16] reported 1,051 security defects in 2,039
configuration scripts.

The prevalence of defects in Kubernetes configuration scripts ne-
cessitate systematic understanding of the factors that can cause
defects in configuration scripts. Anecdotal evidence from the OSS
domain can provide us signals on what factors can contribute to
defects. Let us consider Figure 1 in this regard, which presents
a code snippet from an OSS repository 2. The code snippet in-
cludes a defect as highlighted in red. The defect occurs because
of providing an incorrect value for the configuration parameter
scheduler.alpha.kubernetes.io/critical-pod. Manual explo-
ration reveals that the defective code snippet is included in a com-
mit which is authored by a ‘minor contributor’, i.e., a contributor
who authors < 5% of the total lines of configuration scripts in the
repository [17]. A systematic analysis can determine whether or
not authorship of minor contributors can impact defects in Ku-
bernetes configuration scripts. Such an analysis, which remains
under-explored, can be useful for practitioners to mitigate defects
in configuration scripts.

Accordingly, we answer the following research questions:

https://www.skyquestt.com/report/kubernetes-market
Zhttps://github.com/aws/amazon-vpc-cni-k8s/

https://orcid.org/0000-0002-5056-757X
https://orcid.org/0009-0006-7862-4026
https://orcid.org/0000-0001-7421-7833
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Cause 2025, May 23 2025, Trondheim, Norway

o RQ1: How frequently do minor contributors change Kubernetes
configuration scripts?

e RQ2: How does authorship of minor contributors impact defects in
Kubernetes configuration scripts?

We conduct an empirical study with 29,028 commits mined from
157 OSS repositories that contain 44,401 Kubernetes configuration
scripts. We apply a qualitative analysis technique called closed cod-
ing [18] to derive defect-related commits. We apply a causal analysis
technique called causal inference [13] to quantify the impact of
minor contributors’ authorship on defect-related commits.

Contribution: Our contribution is an evaluation of causal rela-
tionship between minor contributors’ authorship and defects in
Kubernetes configuration scripts.

2 Background and Related Work
2.1 Background

Kubernetes is an OSS tool to implement the practice of container or-
chestration. Researchers have also referred to it as a cluster manage-
ment tool as it is used to manage computing clusters [20, 21]. In or-
der to specify which configurations are needed for their desired de-
ployment, practitioners use Kubernetes configuration scripts. These
scripts are developed in YAML syntax and are used to specify the
configurations of Kubernetes entities, such as pods, deployment,
and service [11]. Listing 1 shows an example configuration script
that specifies the configurations of a service called ‘sample-service’
that will run using TCP through port # 80.

kind: Service
metadata: .
name: sample-service
spec:
selector: .

app: nginx
ports:

- protocol: TCP

port:

Listing 1: Example of a Kubernetes configuration script.

2.2 Related Work

Researchers have shown increasing interest in quality assurance for
Kubernetes in recent years. Rahman et al. [16] identified what types
of Kubernetes objects are impacted by security defects. Shamim
et al. [19] studied security tool performance for Kubernetes con-
figuration scripts. Carmen et al. [1] in their study, created a new
taxonomy for Kubernetes scheduling techniques, organizing the
techniques into five main domains and highlighting where current
scheduling techniques fall short, especially in terms of security and
performance. Gu et al. [6], Sun et al. [20, 21], and Xu et al. [22] in
separate publications focused on analyzing and detecting defects
related to Kubernetes controllers. Xu et al. [22] focused on deriving
a taxonomy for defects that occur in Kubernetes operators, which
are specialized controllers.

Rahman et al.

Despite the growing body of literature in the domain of quality
assurance for Kubernetes, we observe authorship of configuration
scripts to be under-explored. We address this gap in this paper.

3 Methodology
We provide the methodology of our paper as follows.

3.1 Dataset Construction

We describe our methodology to construct our dataset in the fol-
lowing subsections.

3.1.1 Mine OSS Repositories with Kubernetes Configuration Scripts.
We use the GHTorrent archive [5] that is hosted on Google Big
Query to obtain OSS repositories that contain Kubernetes configura-
tion scripts. We apply the following filtering criteria: (i) repository
must be publicly available and contain the ‘Kubernetes’ label; (ii)
at least 10% of the files in the repository are YAML files where
each file contains Kubernetes objects; (iii) the repository is not a
copy of another repository; and (iv) the repository has at least 10
contributors. Initially, we start with 14,747,836 repositories. After
applying our filtering criteria, we find 157 repositories, which we
use to answer RQ1 and RQ2. Attributes of these repositories is
available in Table 1.

3.1.2 Qualitative Analysis to Determine Defect-related Commits.
We apply a qualitative analysis technique called closed coding [18],
where each fo the two raters maps each commit—in which a Kuber-
netes configuration script is modified—to a defect. If a commit maps
to a defect, then we refer to that commit as a defect-related commit.
In order to determine the mapping, first, we use a keyword-based
approach similar to prior research on defect analysis [15]. We sep-
arate commits for which any of the following keywords appear:
‘bug’, ‘defect’, ‘error’, ‘fault’, ‘fix’, ‘flaw’, ‘incorrect’, ‘issue’, and ‘mis-
take’. Using keyword search, we find 66 commits that contain at
least one of the above-mentioned keywords.

Next, we use two raters of the paper who individually inspects
the following: (i) problematic code exists in the commit diff; (ii)
problematic code leads to an incorrect or undesired consequence
that is explicitly expressed by a practitioner in the commit message;
(iii) the commit message describes an immediate consequence of
the defect; and (iv) the problematic code was repaired. One of the
raters is a volunteer and the other is the last author of the paper.
The last author and the volunteer respectively, identifies 50 and
61 commits. In the case of 23 disagreements, the first author is the
resolver, and his decision is final. In all, we identify that 52 of the
66 commits to be defect-related. Each of these 52 commits contain
defect-related code for configuration scripts.

Table 1: Dataset Attributes

Category Data
Total Repositories 157
Total Commits 417,598
Total Kubernetes-related Commits 29,028
Total Contributors 21,559
Total Kubernetes Scripts 44,401
Total Size (LOC) 51,282,124

Authorship of Minor Contributors in Kubernetes Configuration Scripts: An Exploratory Study

3.2 Methodology to Answer RQ1

We answer RQ1, first deriving minor contributors for each repos-
itory. Here, we determine a contributor of the repository to be a
minor contributor if the contributors authors < 5% of the total lines
in all configurations scripts that reside in that repository. After
deriving all minor contributors for each of the 157 repositories,
we determine whether or not a commit is authored by a minor
contributor. Here, we use the output from the first step, where we
identify if each commit is authored by a minor contributor. Next,
for each commit we compute the following metrics:

e Age: The difference between the timestamp of the commit and
the first commit in the repository measured in days;

e Size: The total number of lines added and deleted in a commit;
o Files: Total number of files changed in a commit.

We answer RQ1 by reporting: (i) count of commits authored by
minor contributors; (ii) count of defect-related commits authored
by minor contributors; (iii) and average, and standard deviation for
size, file count, and age for commits authored by minor contributors
as well as for commits not authored by minor contributors.

3.3 Methodology to Answer RQ2

We answer RQ2 by quantifying the causal relationships between
authorship of minor contributors and defect-related commits. We
use the potential outcomes framework, that focuses on quantifying
the differences in outcomes to estimate the causal impact of the
treatment variables [7]. Unlike causal discovery that focuses on
inferring causal relationships amongst treatment variables, we use
causal inference to quantify the relationship between pre-defined
treatment variables and pre-defined outcome variables [13].

For RQ2, the pre-defined treatment variable is commit authorship,
i.e., whether or not a commit is being authored by a minor contrib-
utor. The outcome variable is defect-related commits. We use three
confounding factors, namely files, commit size, and age as each of
these three factors are related with software quality [3, 14, 23]. In-
clusion of these metrics as confounding factors can aid in estimating
the causal impact of commit authorship adequately.

We implement causal inference using the CausalLib package [10]
with inverse probability weighting (IPW). IPW is a model that can
be used to obtain average effect estimation. IPW requires a model
for estimating the probabilities of treatment assignments given
the confounding factors [12]. For applying IPW, we use a logistic
regression model [8] as our outcome is binary: 1 if the commit is
defect-related, 0 otherwise.

We compute propensity density distribution (PDD) [4] to determine
if our data is well-suited for applying IPW-based causal inference.
Figure 2 shows PDD for both groups—commits with minor contrib-
utors and commits without minor contributors—to overlap. The
implication of this finding is that our data with minor contributors
is well-suited for using IPW for causal inference [4], as data points
with similar characteristics can be compared between two groups:
commits authored by minor contributors and commits that are not
authored by minor contributors.

Cause 2025, May 23 2025, Trondheim, Norway

4 Results

We provide answers to our research questions as follows:

Answer to RQ1. In all, we identify 11,057 minor contributors in 157
repositories. A distribution of the minor contributors is available
in Figure 3. We observe 1,643 out of 29,028 commits to be authored
by minor contributors. Out of the 52 defect-related commits, 14 are
authored by minor contributors. Table 2 reports statistics for age,
size, and files for commits that are authored by minor contributors
and for commits not authored by minor contributors respectively,
using the ‘Commits with Minor Contrib. and ‘Commits with No
Minor Contrib. columns.

Propensity Distribution

15.0 4 treatment = False

treatment = True
10.0 4

=4 ©u
=} o
L L

Probability density
w
o

10.0 4

15.0 4

20.01
T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Propensity

Figure 2: Propensity density distribution for commits au-
thored by minor contributors (‘treatment = True’) and com-
mits not authored by minor contributors (‘treatment = False’).

Answer to RQ2. : We answer RQ2 using Table 3. According to
Table 3, modification of commits by a minor contributor results in
a higher rate of defect likelihood by a factor of 7, i.e., from 0.1% to
0.7%.

N
—
o
€ < 7
>
/S)
O 0 —
>
2
2 o -
%)
a
[0} <
@
~

0 500 1000 1500 2000

Minor Conbtributor Count

Figure 3: Distribution of minor contributors per repository.

Cause 2025, May 23 2025, Trondheim, Norway

Table 2: Distribution of Age, Size, and Files for Kubernetes-
related Commits

Metric Commits with Minor Contrib. ~Commits with No Minor Contrib.
(Avg., Std.Dev.) (Avg., Std.Dev.)

Age 463.1, 524.1 882.2,639.4
Size 34.0, 58165.6 35.0, 100448.1
Files 4.0, 160.4 4.0, 290.9

Table 3: Results from Causal Inference

Minor Contributors Outcome (%)
False 0.1
True 0.7

5 Discussion

We discuss the implications along with limitations as follows:

Implications for Practitioners. Our analysis shows that minor
contributors’ authorship has an impact on defects. This finding can
be used a heuristic for prioritizing code review efforts. In the case
of conducting code reviews, commits that are modified by minor
contributors can be prioritized for inspection.

Implications for Researchers. Our answers to RQ2 show that mi-
nor contributors’ authorship has impact, which necessitates further
investigation on the nature of minor contributors for Kubernetes-
based configuration management. We also advocate for further
empirical research that will apply causal analysis techniques to
identify other factors for defect proneness of Kubernetes configu:
ration scripts.

Limitations. The limitations of our paper are:

Conclusion Validity: The defect dataset is constructed by two raters
making the process susceptible to rater bias. We mitigate this limita-
tion by assigning the first author for disagreement resolution. In our
causal inference analysis, we use three confounding factors. There
could be other confounding factors that we have not considered.

External Validity: Our analysis is limited to the repositories that
we use from the OSS domain. Our findings may not generalize for
proprietary repositories.

Construct Validity: Our analysis applies causal inference on defect-
related commits that are mined from OSS repositories. Our analysis
is subject to construct validity because of not considering other
factors that are unavailable in repositories.

6 Conclusion

As defects in Kubernetes configuration scripts can cause serious
consequences, it is important to identify the factors that cause
these defects. We characterize one factor namely, authorship of
minor contributors in Kubernetes configuration scripts. Our em-
pirical study finds 11,057 minor contributors in 157 repositories.
We also observe minor contributors’ authorship to have an impact
on defect-related commits when three confounding factors are ap-
plied: age, file, and size of the commit. Based on our findings, we

Rahman et al.

recommend researchers to further characterize other development
factors including minor contributors that can cause defects.

Acknowledgments

We thank the PASER group at Auburn University for their valuable
feedback. This research was partially funded by the U.S. National
Science Foundation (NSF) Award # 2312321.

References

[1] Carmen Carrién. 2022. Kubernetes Scheduling: Taxonomy, Ongoing Issues
and Challenges. ACM Comput. Surv. 55, 7, Article 138 (dec 2022), 37 pages.
doi:10.1145/3539606

[2] CNCF. 2025. With Kubernetes, the U.S. Department of Defense Is Enabling

DevSecOps on F-16s and Battleships. https://www.cncf.io/case-study/dod/

Filipe Falco, Caio Barbosa, Baldoino Fonseca, Alessandro Garcia, Marcio Ribeiro,

and Rohit Gheyi. 2020. On Relating Technical, Social Factors, and the Introduction

of Bugs. In 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). 378-388. doi:10.1109/SANER48275.2020.9054824

[4] Melissa M Garrido, Amy S Kelley, Julia Paris, Katherine Roza, Diane E Meier,
R Sean Morrison, and Melissa D Aldridge. 2014. Methods for constructing and
assessing propensity scores. Health services research 49, 5 (2014), 1701-1720.

[5] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: GitHub’s data from

a firehose. In 2012 9th IEEE Working Conference on Mining Software Repositories

(MSR). IEEE, 12-21.

Jiawei Tyler Gu, Xudong Sun, Wentao Zhang, Yuxuan Jiang, Chen Wang, Man-

dana Vaziri, Owolabi Legunsen, and Tianyin Xu. 2023. Acto: Automatic End-

to-End Testing for Operation Correctness of Cloud System Management. In

Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz, Ger-

many) (SOSP ’23). Association for Computing Machinery, New York, NY, USA,

96-112. doi:10.1145/3600006.3613161

[7] Grace Guo, Ehud Karavani, Alex Endert, and Bum Chul Kwon. 2023. Causalvis:
Visualizations for Causal Inference. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (Hamburg, Germany) (CHI '23). Association
for Computing Machinery, New York, NY, USA, Article 462, 20 pages. doi:10.
1145/3544548.3581236

[8] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. Vol. 398. John Wiley & Sons.

[9] Jayme Howard. 2024. You Broke Reddit: The Pi-Day Outage. https://www.reddit.

com/r/RedditEng/comments/11xx500/you_broke_reddit_the_piday_outage/.
[Online; accessed 30-July-2024].
Ehud Karavani. 2024. Causal Inference with Causallib. In PyData Tel Aviv.
Kubernetes. 2024. Kubernetes Documentation. https://kubernetes.io/docs/home/.
[Online; accessed 14-August-2024].
[12] Mohammad Ali Mansournia and Douglas G Altman. 2016. Inverse probability
weighting. Bmj 352 (2016).

[13] Judea Pearl. 2009. Causal inference in statistics: An overview. Statistics Surveys
3, none (2009), 96 — 146. doi:10.1214/09-SS057

[14] Akond Rahman, Dibyendu Brinto Bose, Yue Zhang, and Rahul Pandita. 2024.
An empirical study of task infections in Ansible scripts. Empirical Software
Engineering 29, 1 (2024), 34.

[15] Akond Rahman, Effat Farhana, Chris Parnin, and Laurie Williams. 2020. Gang

of Eight: A Defect Taxonomy for Infrastructure as Code Scripts. In Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,

South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY,

USA, 752-764. doi:10.1145/3377811.3380409

Akond Rahman, Shazibul Islam Shamim, Dibyendu Brinto Bose, and Rahul Pan-

dita. 2023. Security Misconfigurations in Open Source Kubernetes Manifests: An

Empirical Study. ACM Trans. Softw. Eng. Methodol. 32, 4, Article 99 (May 2023),

36 pages. doi:10.1145/3579639

Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, experience and

defects: a fine-grained study of authorship. In Proceedings of the 33rd International

Conference on Software Engineering (Waikiki, Honolulu, HI, USA) (ICSE '11).

Association for Computing Machinery, New York, NY, USA, 491-500. doi:10.

1145/1985793.1985860

Johnny Saldafa. 2015. The coding manual for qualitative researchers. Sage.

Shazibul Islam Shamim, Hanyang Hu, and Akond Rahman. 2025. On Prescription

or Off Prescription? An Empirical Study of Community-prescribed Security

Configurations for Kubernetes. In Proceedings of the IEEE/ACM 47th International

Conference on Software Engineering (Ottawa, Canada) (ICSE ’25). Association for

Computing Machinery, New York, NY, USA, 13 pages.

Xudong Sun, Wenqing Luo, Jiawei Tyler Gu, Aishwarya Ganesan, Ramnatthan

Alagappan, Michael Gasch, Lalith Suresh, and Tianyin Xu. 2022. Automatic

reliability testing for cluster management controllers. In 16th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 22). 143-159.

[3

[6

[10
[11

[16

(17

[18
[

—
L

[20

https://doi.org/10.1145/3539606
https://www.cncf.io/case-study/dod/
https://doi.org/10.1109/SANER48275.2020.9054824
https://doi.org/10.1145/3600006.3613161
https://doi.org/10.1145/3544548.3581236
https://doi.org/10.1145/3544548.3581236
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://www.reddit.com/r/RedditEng/comments/11xx5o0/you_broke_reddit_the_piday_outage/
https://kubernetes.io/docs/home/
https://doi.org/10.1214/09-SS057
https://doi.org/10.1145/3377811.3380409
https://doi.org/10.1145/3579639
https://doi.org/10.1145/1985793.1985860
https://doi.org/10.1145/1985793.1985860

Authorship of Minor Contributors in Kubernetes Configuration Scripts: An Exploratory Study Cause 2025, May 23 2025, Trondheim, Norway

[21] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon How-
ell, Andrea Lattuada, Oded Padon, Lalith Suresh, Adriana Szekeres, et al. 2024.
Anvil: Verifying Liveness of Cluster Management Controllers. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24). 649-666.
Qinxing Xu, Yu Gao, and Jun Wei. 2024. An Empirical Study on Kubernetes
Operator Bugs. In Proceedings of the 33nd ACM SIGSOFT International Symposium
on Software Testing and Analysis (Vienna, Austria) (ISSTA 2024). Association for
Computing Machinery, New York, NY, USA, 12 pages.

Thomas Zimmermann, Nachiappan Nagappan, and Laurie Williams. 2010. Search-
ing for a Needle in a Haystack: Predicting Security Vulnerabilities for Windows
Vista. In 2010 Third International Conference on Software Testing, Verification and
Validation. 421-428. doi:10.1109/ICST.2010.32

[22

[23

https://doi.org/10.1109/ICST.2010.32

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methodology
	3.1 Dataset Construction
	3.2 Methodology to Answer RQ1
	3.3 Methodology to Answer RQ2

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

