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ABSTRACT Context: Security bug reports are reports from bug tracking systems that include descriptions
and resolutions of security vulnerabilities that occur in software projects. Researchers use security bug
reports to conduct research related to software vulnerabilities. A mapping study of publications that use
security bug reports can inform researchers on (i) the research topics that have been investigated, and (ii)
potential research avenues in the field of software vulnerabilities.
Objective: The objective of this paper is to help researchers identify research gaps related to software
vulnerabilities by conducting a systematic mapping study of research publications that use security bug
reports.
Method: We perform a systematic mapping study of research that use security bug reports for software
vulnerability research by searching five scholar databases: (i) IEEE Xplore, (ii) ACM Digital Library,
(iii) ScienceDirect, (iv) Wiley Online Library, and (v) Springer Link. From the five scholar databases, we
select 46 publications that use security bug reports by systematically applying inclusion and exclusion cri-
teria. Using qualitative analysis, we identify research topics investigated in our collected set of publications.
Results: We identify three research topics that are investigated in our set of 46 publications. The three topics
are: (i) vulnerability classification; (ii) vulnerability report summarization; and (iii) vulnerability dataset
construction. Of the studied 46 publications, 42 publications focus on vulnerability classification.
Conclusion: Findings from our mapping study can be leveraged to identify research opportunities in the
domains of software vulnerability classification and automated vulnerability repair techniques.

INDEX TERMS bug report, software security, survey, systematic mapping study, vulnerability

I. INTRODUCTION
Daily news reports reveal the serious consequences of se-
curity vulnerabilities in software projects. For example, in
2019, the ‘DELL PC Doctor’ vulnerability impacted millions
of Dell computers [1]. As another example, Experian, a
consumer credit reporting service, experienced a security
attack due to a vulnerability, affecting nearly 24 million
South African customers and approximately 793,749 busi-
ness organizations in August 2020 1. Since the beginning of
2020, more than 445 million cyberattacks have been reported,
all of which exploited latent vulnerabilities 2.

The prevalence of vulnerabilities has motivated re-
searchers [2]–[6] to systematically study vulnerabilities in

1https://www.znetlive.com/blog/top-10-cybersecurity-incidents-in-2020/
2https://www.helpnetsecurity.com/2020/04/29/2020-attack-rate/

software by mining security bug reports used in open source
software (OSS) projects. Security bug reports are reports
from bug tracking systems that include descriptions and
resolutions of security vulnerabilities that occur in software
projects. Information contained in security bug reports en-
ables researchers to conduct an in-depth analysis of reported
vulnerabilities and derive insights on how to pro-actively
mitigate vulnerabilities.

Despite their use in software vulnerability research, a sys-
tematic synthesis of publications that use security bug reports
remains under-explored. A systematic mapping study (SMS)
of publications that use security bug reports for software
vulnerabilities might be beneficial for researchers in the fol-
lowing manner: (i) provide a synthesis of the research topics
that already have been addressed, (ii) provide an understand-
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ing of what properties of security bug reports can be mined
to conduct vulnerability-related research, and (iii) identify
research topics that might be of interest to researchers.

The objective of this paper is to help researchers identify
research gaps related to software vulnerabilities by conduct-
ing a systematic mapping study of research publications that
use security bug reports.

We answer the following research questions:
• RQ1: What research topics have been investigated in

publications that use security bug reports for software
vulnerability research?

• RQ2: How frequently do identified research topics ap-
pear in publications that use security bug reports for
software vulnerability research?

• RQ3: Which properties of security bug reports are used
in publications for software vulnerability research?

• RQ4: What automated techniques are used in publica-
tions that use security bug reports for software vulnera-
bility research?

We perform an SMS following the guidelines of Petersen
et al. [7] to synthesize publications that use security bug
reports for software vulnerability research. First, we search
five scholar databases namely, IEEE Xplore 3, ACM Digital
Library 4, ScienceDirect 5, Wiley Online Library 6, and
Springer Link 7. Using two search strings, we obtain a set of
45,077 publications from the software engineering (SE) do-
main that were published from 2000 to August 2020. By sys-
tematically applying inclusion and exclusion criteria [8], we
obtain 46 publications. Following Kitchenham’s guidelines
[9], we assess the quality of our set of 46 publications. We
apply a qualitative analysis technique called open coding [10]
to identify topics discussed in the collected publications. We
also investigate temporal trends and techniques applied in
publications that have used security bug reports.

Contributions: We list our contributions as follows:
• A list of research topics studied in publications that use

security bug reports (Section V-A);
• An evaluation of the temporal trends for publications

that use security bug reports (Section V-B);
• An evaluation of the quality of publications that use

security bug reports (Section V); and
• A list of future research directions to share the vision

and expand the horizon of software vulnerability re-
search (Section VI-B).

We organize the rest of the paper as follows: in Section
II we describe the necessary background and in Section III
we describe related publications. We provide our research
methodology in Section IV. We present our results in Section
V and discuss possible implications of findings in Section VI.
We list the limitations of our SMS in Section VII. Finally, we
conclude our paper in Section VIII.

3http://ieeexplore.ieee.org/Xplore/home.jsp
4https://dl.acm.org/
5https://www.sciencedirect.com/
6https://onlinelibrary.wiley.com/
7https://link.springer.com/

II. BACKGROUND
We provide background information on security bug reports
and SMS in this section.

A. BACKGROUND ON SECURITY BUG REPORTS
Security bug reports are reports from bug tracking systems
that include descriptions and resolutions of security vulner-
abilities that occur in software projects. Typical entities of
bug reports include but are not limited to: (i) a title that
summarizes the bug, (ii) a bug ID that is unique across all
listed bugs, (iii) timestamp information that shows when the
bug report was opened and closed; and (iv) comments that
discuss how to reproduce the bug. We provide an annotated
snapshot of a security bug report [11] retrieved from the
Mozilla organization in Figure 1. The security bug report
mentions a vulnerability, labeled as ‘Common Vulnerabilities
and Exposures (CVE)-2016-5267’ for Mozilla Firefox. A
vulnerability is defined as a weakness in a software system,
system security procedures, internal controls, or implemen-
tation that could be exploited by a malicious user 8.

Bug 1284372 (CVE-2016-5267)   Opened 4 years ago  Closed 4 years agoClosed

Firefox Mobile Address Bar Spoofing
User Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/51.0.2704.103 Safari/537.36
Firefox for Android

Steps to reproduce:
- Visit - https://jsfiddle.net/ktfegrhf/3/ using latest version of Firefox Mobile
- Click on the link and observe the URL

Actual results:
Due to mishandling of arabic RTL characters firefox for mobile causes the complete URL to be displayed from Right to left 
instead of left to right.

Expected results:
The URL should be been displayed from LTR:

Expected Result:
http:// تاراما.يبرع /google.com/test/test/test

Rendered Results 
google.com/test/test/test/ تاراما.يبرع

Comment

Title
CVE
Timestamp
Bug ID

FIGURE 1: Annotation of a security bug report retrieved
from the Mozilla organization.

B. BACKGROUND ON SYSTEMATIC MAPPING STUDY
Systematic mapping is a technique that is used in medical
research and recently in SE [12]–[15]. An SMS offers a
‘map’ of the research fields by classifying papers on the
basis of the relevant categories and counting the work in
each of those categories. An SMS offers a summary of the
research domain to support researchers to identify topics
that are well studied and to identify gaps that need further
analysis. SMSs use the same basic approach as the systematic
literature reviews (SLRs) but provide a framework for future
research on a wide domain of SE rather than finding answers
to a particular research issue [16].

III. RELATED WORK
Our SMS is related to prior research studies that have con-
ducted SMSs in SE:

8https://csrc.nist.gov/glossary/term/vulnerability
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A. PRIOR RESEARCH ON SYSTEMATIC MAPPING
STUDY
The use of SMSs is commonplace in SE. Rahman et al. [14]
studied 32 publications related to infrastructure as code (IaC)
[13] and observed that research in IaC was mostly focused
on implementing or extending the practice of IaC. Morrison
et al. [17] performed a mapping study on 71 papers and
reported 324 unique software life cycle security metrics. For
each metric, they also identified the subject being measured,
how the metric had been validated, and how the metric was
used. Venson et al. [18] collected 54 papers related to secure
software development. They categorized the papers accord-
ing to the approach to software security cost analysis and
observed that performing security reviews, applying threat
modeling, and performing security testing were the three
most frequent activities related to cost. Mohammed et al. [12]
conducted an SMS to identify the primary studies on the use
of software security techniques in the software development
lifecycle. They selected and categorized 118 primary studies
and showed that the most frequent used approaches were
static analysis and dynamic analysis that provide security
checks in the coding phase.

Zein et al. [15] conducted an SMS to structure the research
evidence that has been published in the field of mobile
application testing techniques and the challenges reported.
They mapped 79 empirical studies to a classification schema
and suggested that there is a need for eliciting testing require-
ments early during the development process and for con-
ducting research in real-world development environments.
Curcio et al. [19] conducted a mapping study on requirements
engineering in agile software development by analyzing 104
related publications. They identified obstacles related to the
environment, people, and resources, that practitioners face
while dealing with requirements engineering in an agile
context.

Alshuqayran et al. [20] conducted a mapping study with
33 publications and identified potential research gaps in the
domain of microservices. Pahl and Jamshidi [21] performed
a systematic mapping analysis of 21 publications related
to microservices and reported that microservices are placed
within a continuous development context, but also related
to containers. Alharby and Moorsel [22] did a mapping
study on blockchain-based smart contracts using 24 papers
and reported that about two-thirds of the papers focus on
identifying and tackling smart contract issues. Macrinici et
al. [23] compiled 64 publications related to smart contracts
and reported that the most discussed issues and solutions in
those literature relate to the security, privacy, and scalability
of blockchain and the programmability of smart contracts.

We observe the lack of SMSs in the domain of security
bug reports. To the best of our knowledge, this is the first
systematic mapping review to quantitatively categorize mul-
tiple aspects of the experiments recorded in several articles
related to security bug reports. Through our SMS, we aim to
identify research domains in the field of software vulnerabil-
ity research that needs attention.

IV. RESEARCH METHOD
We conduct an SMS with publications that use security
bug reports for software vulnerability research. We follow
the recommendations of Felderer et al. [24] to conduct our
SMS. Our SMS process consists of the following four steps:
(i) publication searching, (ii) publication selection for map-
ping study, (iii) publication quality assessment, and (iv) data
analysis and results reporting.

A. PUBLICATION SEARCHING
The purpose of the search process is to identify the publi-
cations needed for our SMS. We use an automated search
mechanism where we use scholar databases to identify
relevant studies for inclusion in the SMS. We use five
scholar databases: (i) IEEE Xplore, (ii) ACM Digital Li-
brary, (iii) ScienceDirect, (iv) Wiley Online Library, and
(v) Springer Link. We select these databases as these
databases are recommended for SMS execution on SE do-
main by Kuhrmann et al. [25]. A literature search should
address the most common sources. Instead of searching
specific conference proceedings, search queries should be
designed to work with entire digital libraries. For software
engineering, our selected libraries are considered as standard
databases [25].

Search Strings Set: We use a set of search strings for
searching the selected databases. We start with an exploratory
search in Google Scholar using the string ‘bug report’. Based
on the search result, we observe the string ‘bug report’ yields
publications that are not related to security. Therefore, to
identify publications that are actually related to software vul-
nerabilities, we add ‘security’, and the search string becomes
‘security bug report’. From manual inspection, we observe
all publications identified from the search string ‘security bug
report’ to belong to software security.

We want to identify publications related to software vul-
nerabilities. So, we add the search string ‘vulnerability’ to
our set. However, ‘vulnerability’ is a concept used in domains
that are not related to SE, such as in the domain of psychol-
ogy [26] and social science [27]. To identify publications that
study vulnerabilities in software projects we add the string
‘software engineering’, using which we derive the search
string ‘vulnerability’ AND ‘software engineering’. Finally,
we have the following two search strings in our final set of
search string.

• ‘security bug report’
• ‘vulnerability’ AND ‘software engineering’

We search each of our five scholar databases using the two
search strings which result in a collection of publications.

Quasi-Gold Set: To assess if our search strings can yield
publications that use security bug reports, we apply the quasi-
gold technique proposed by Zhang et al. [28]. The quasi-
gold approach validates whether our set of search strings
is adequate to identify all the publications that use security
bug reports for software vulnerability research. To build the
quasi-gold set, we perform the following steps.
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• First, we identify publications that use security bug
reports and have at least 300 citations. Our assumption is
that by selecting publications that are related to security
bug reports and have high citations will enable us to
build a quasi-gold set, as highly cited papers are more
likely to be used by other researchers [29].

• Second, we apply the snowballing technique recom-
mended by Wohlin et al. [30] to build our quasi-gold
set. We apply forward and backward snowballing on the
publications selected in the previous step. For forward
snowballing, we identify publications that cite the se-
lected publications. For backward snowballing, we iden-
tify the publications that are cited by the selected publi-
cations. Our snowballing process is completed when we
do not identify any publications that use security bug
reports of vulnerability research and are not included in
the quasi-gold set.

• Third, we exclude publications that are not related to
software vulnerabilities. We exclude unrelated publica-
tions by reading the titles of the collected publications.
If we are unable to decide from the title, we read the full
publication.

• Fourth, we included publications that are peer-reviewed
and in English.

We use two raters to mitigate the subjectivity of our se-
lection process. The first and last authors separately conduct
this step. We calculate the agreement rate between the two
authors using Cohen’s Kappa [31], and interpret Cohen’s
Kappa using Landis and Koch’s interpretation [32]. Then,
the first and the last author resolve the disagreements upon
discussion.

If the set of papers returned by our search string include
papers in the quasi-gold set, then we can state that the two
search strings are capable of identifying publications needed
for our SMS. We use the quasi-sensitivity metric (QSM)
using Equation 1 to quantify how many papers identified by
the search string are included in the quasi-gold set.

QSM =

# of publications from search strings and in quasi-gold set
# of publications in quasi-gold set

(1)

B. PUBLICATION SELECTION FOR MAPPING STUDY
The publication selection process involves defining the se-
lection criteria, performing the selection process, and deter-
mining the relationship between paper and studies [24]. The
collection of publications obtained from the five databases
may contain irrelevant results that are out of scope for our re-
search study. We use explicit exclusion and inclusion criteria
that we describe below:

Exclusion criteria: As part of the exclusion process, (i) we
exclude publications that are not peer-reviewed, for exam-
ple, keynote abstracts and book chapters, (ii) we exclude
publications that are not written in English, (iii) we exclude

publications that are published before the year 2000, (iv) we
exclude publications that are duplicates of other publications,
and (v) we exclude publications that are not available for
download.

Inclusion criteria: The criterion for inclusion is whether
the title, abstract, keyword, and introduction content of a pub-
lication explicitly states that the publication uses security bug
reports and is related to software vulnerability research. For
the inclusion process, first, we only read the title to identify
if a publication is relevant for us. Next, we read the abstract
and introduction of the paper to determine their relevance.
We use two raters to conduct this step. The first and second
authors perform the inclusion process as independent raters.
We calculate the agreement rate between the two raters. For
each disagreement, first, both raters read the full paper and
then upon discussion, we resolve the disagreements.

Upon applying the inclusion and exclusion criteria, we
obtain a set of publications related to security bug reports.

C. PUBLICATION QUALITY ASSESSMENT
After deriving our set of publications, we manually read
each publication to assess the quality of these publications.
We use nine criteria proposed by Kitchenham et al. [9] for
performing our quality assessment. A higher quality score
means that the publication has concrete goals, actionable
results, discussion on the limitations, and a clear presentation
structure. The quality criteria provided by Kitchenham et al.
[9] is listed below:

• Q1 (Aim): Do the authors clearly state the goals of the
research?

• Q2 (Units): Do the authors describe the sample and
experimental units?

• Q3 (Design): Do the authors describe the design of the
experiment?

• Q4 (Data Collection): Do the authors describe the data
collection procedures and define the measures?

• Q5 (Data Analysis): Do the authors define the data
analysis procedures?

• Q6 (Bias): Do the authors discuss potential experi-
menter bias?

• Q7 (Limitations): Do the authors discuss the limitations
of the study?

• Q8 (Clarity): Do the authors state the findings clearly?
• Q9 (Usefulness): Is there evidence that the Experiment/

Quasi - Experiment can be used by other researchers/
practitioners?

Based on the response to each of the above questions, a
rater provides a score: 0 (not at all), 1 (very little), 2(some-
what), 3(mostly), and 4 (fully). A higher score means that
the authors of the publication have provided a thorough de-
scription for replications [9]. Since the process is susceptible
to subjectivity, we use two raters who independently scores
each publication. We report the average quality, which is the
average score for each question and for each publication.
Upon completion of this phase, we obtain a quality assess-
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ment for the selected publications that we use to answer our
RQs.

Validity reported in the publications: The validity of a
publication denotes the reliability of the findings, as well as
the degree to which the findings are accurate and not biased
by the subjectivity of the researcher’s point of view [33].
When conducting research studies, there may be validity
threats that either need to be accounted for or considered
as possible limitations. Explicit reporting of threats or lim-
itations is indicative of a high-quality academic publication
[9]. For each of the selected publications, we check if the
following four types of validity have been reported by the
authors.

• Conclusion Validity: Threats to the conclusion validity
are concerned with issues that influence the ability to
draw a correct conclusion on the relationship between
the treatment and the outcome of an experiment [30].

• Internal Validity: Threats to internal validity are factors
that may impact the conclusion about a potential causal
relationship between treatment and outcome [30].

• Construct Validity: Construct validity are limitations
that relate to the generalization of the findings of the ex-
periment to the concept or theory behind the experiment
of the study [30].

• External Validity: Threats to external validity are fac-
tors that hinder our ability to generalize the findings of
our experiment in other contexts [30].

The above-mentioned validity types are obtained from
Wohlin et al. [30]. We do not make any assumptions on the
threats in research that have not been documented by the
authors.

D. DATA ANALYSIS ANS RESULTS REPORTING
In this section we provide the methodology to answer the
following research questions:

1) Answer to RQ1: What research topics have been
investigated in publications that use security bug reports for
software vulnerability research?
We use a qualitative analysis called open coding [10] to
derive topics that are studied in each publication. Open
coding is a qualitative analysis technique that summarizes the
underlying theme from unstructured text [10]. We conduct
open coding with sentences collected from each publication.
From the sentences, we identify initial codes. From these
initial codes we derive codes, which are merged into topics
based upon commonalities observed in the codes.

Figure 2 provides a hypothetical example of our open
coding process. We first analyze raw text from the collected
publications. Next, we extract text snippets as initial codes
that describe the main topic of the publication. For example,
from the raw text in the top left corner, we separate the text
snippet ‘the more SQL hotspots a file contains per line of
code, the higher the probability that file will contain any
type of vulnerability’, as it describes the action of classi-
fying vulnerabilities based on the number of SQL hotspots

a file contains per line of code. Next, from the text snippet
we generate an initial category called ‘Prioritization heuris-
tic for vulnerability classification’. Two initial categories
‘Prioritization heuristic for vulnerability classification’ and
‘Predictive functionality for vulnerability classification’ are
combined into one category ‘Vulnerability Classification’, as
they both indicate vulnerability classification research using
security bug reports.

The process of generating topics is subjective, which we
mitigate using two raters. The first and second authors in-
dividually conduct the process on the selected publication
and independently generate the topics. Two topic names that
are synonyms is counted as an agreement. The disagreements
are resolved upon discussion. We record the agreement rate
between the first and second authors. We record Cohen’s
Kappa [31], and interpret Cohen’s Kappa using Landis and
Koch’s interpretation [32].

Answer to RQ1 provides us a list of topics that are studied
in publications that use security bug reports for software
vulnerability research. Each of our collected publications can
relate to one or more of the identified topics.

2) Answer to RQ2: How frequently do identified research
topics appear in publications that use security bug reports for
software vulnerability research?
To answer RQ2, we use two approaches to quantify temporal
trends: (i) an overall trend, and (ii) temporal trends per topic.

First, we compute the overall trend of publications that
use security bug reports for software vulnerability research
by counting how many publications have been published per
year since 2000. Second, we compute the temporal trends
exhibited for each identified topic by counting the number
of publications that belong to each topic and are published
each year.

3) Answer to RQ3: Which properties of security bug reports
are used in publications for software vulnerability research?
This RQ can help identify which properties of bug reports
have been used in software vulnerability research. We manu-
ally examine each publication to identify what properties of
the bug reports were used in the paper. We use open coding
similar to RQ1. We extract sentences from the publications
to apply open coding and identify techniques to conduct the
proposed research.

4) Answer to RQ4: What automated techniques are used in
publications that use security bug reports for software
vulnerability research?
Similar to RQ3, we use open coding to find the automated
techniques used in publications that use security bug reports
for software vulnerability research. Similarly to RQ3, we
extract sentences from the publications to apply open coding
and identify techniques to conduct the proposed research.
Examples of techniques that answer to RQ4 could yield are
natural language processing and statistical learners.
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Raw Text Initial Code Code Topic

Our goal is to improve the

prioritization of security for-

tification efforts by inves-

tigating the ability of SQL

hotspots to be used as the

basis for a heuristic for pre-

diction of all vulnerability

types. Using statistical anal-

ysis, we show that the more

SQL hotspots a file contains

per line of code, the higher

the probability that file will

contain any type of vulnera-

bility.

we propose an integrated

data mining framework to

automatically describe how

vulnerabilities develop over

time and detect the evolution

of a specific vulnerability.

Additionally, our framework

has a predictive functionality

that can be used to predict

specific vulnerabilities or to

estimate future appearance

probabilities of vulnerability

groups.

the more SQL hotspots

a file contains per line

of code, the higher the

probability that file will

contain any type of vul-

nerability

automatically describe

how vulnerabilities de-

velop over time and de-

tect the evolution of a

specific vulnerability,

predictive functional-

ity that can be used to

predict specific vulnera-

bilities

Prioritization

heuristic for vul-

nerability classi-

fication

Predictive func-

tionality for vul-

nerability classi-

fication

Vulnerability
Classification

FIGURE 2: An example to demonstrate the methodology of generating topics from publications related to security bug reports
using qualitative analysis.

V. RESULTS
In this section, we describe the results of our SMS.

We search five scholar databases using our derived two
search strings. As shown in Figure 3a, altogether, we obtain
45,077 publications as our search result. In Table 1, we report
the number of publications for each database. We collect the
titles of all the 45,077 publications as comma-separated value
(CSV) files on August 2020.

TABLE 1: Number of Publications from the Search Results

Scholar Database Count

IEEE Xplore 2,435
The ACM Digital Library 12,842

ScienceDirect 12,164
Wiley Online Library 8,376

Springer Link 9,260

Quasi-Gold Set: We identify 10 publications that belong
to our quasi-gold set. Initially, the first author identifies 11
and the last author identifies 9 publications. Among these,
7 publications are common between the two authors’ lists,

which are added to our quasi-gold set. We calculate the agree-
ment rate between the two authors. The recorded Cohen’s
Kappa is 0.34, which is ‘fair’ agreement according to Landis
and Koch [32]. The first and the last author resolve their
disagreements by discussing the contents of the publications
for which both raters disagreed. Upon discussion, 3 more
publications are added to the quasi-gold set, which results
in a total of 10 publications in our final quasi-gold set. The
list of publications included in our quasi-gold set is shown
in Table A1 of the Appendix. Using Equation 1 reported
in section IV-A, we record a QSM score of 1.0 for the
collected publications, which indicates that our search strings
are capable of identifying publications that use security bug
reports for software vulnerability research.

We describe the details of our selection process as fol-
lows. As shown in Figure 3a, first we exclude 33,710
non-peer reviewed publications, which left us with 11,367
publications. During our selection process we observe the
scholar databases to yield publication titles that are not peer-
reviewed, such as keynote abstracts, call for papers, presenta-
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IEEE
(2,435)

ACM
(12,842)

Sciencedirect
(12,164)

Wiley
(8,376)

SpringerLink
(9,260)

Search Result: 45,077

Peer-reviewd: 11,367

English-only: 11,366

Without Duplicate: 7,530

Available for Download:7,529

Collect Search Results

Remove non peer-reviewed publications

Remove non-English publications

Remove duplicate publications

Remove unavailable for download publications

a

Peer-reviewed: 7,529

Filter By Title (Second Author): 85Filter By Title (First Author): 185

Filter By Abstract & Introduction 
(Second Author): 47

Filter By Abstract & Introduction 
(First Author): 48

Final Set: 46

Resolve Disagreement

Filter By Title (First Author) Filter By Title (Second Author)

Filter By Abstract & 
Introduction (First 

Author)

Filter By Abstract & 
Introduction (Second 

Author)

b

FIGURE 3: Our process of obtaining the final set of 46 publications. Figures 3a summarizes the process of obtaining 7,529
publications from the initial 45,077 search results collected from five scholar databases. Figure 3b summarizes the process of
obtaining the final set of 46 publications from the set of 7,529 publications collected.

tions, newsletters, and books. Next by reading the title of the
11,367 publications, we identify 1 publication that is writ-
ten in non-English and separate out 11,366 publications all
written in English. Then, from the set of 11,366 publications,
we remove duplicates and separate out 7,530 publications.
Among these 7,530 papers, 1 paper is not available for
download. All the other 7,529 publications are accessible and
available for download. The results of each of the exclusion
criterion are shown in Table 2.

TABLE 2: Publication Selection Using the Exclusion Criteria

Exclusion Criterion Count

Search Result 45,077
Peer-reviewed 11,367
English-only 11,366

Without Duplicate 7,530
Available for Download 7,529

From the collected set of 7,529 publications, we determine
if each of the publications use security bug reports for soft-
ware vulnerability research. As shown in Figure 3b, the first
and second author performs as raters and individually com-
plete this step to determine related publications. Both raters
individually read the title of all the 7,529 publications and
excluded 7,344 and 7,444 publications respectively, which
are irrelevant to security bug reports.

Application of the exclusion criteria results in 185 and
85 publications respectively for the two raters. Next by
reading the abstract and introduction of each of the remaining
publications, the two raters respectively identify 48 and 47
publications. The two raters together select a total of 53
unique papers, 42 of which were in common between the two
raters. The agreement rate between the two raters is 79%.

While determining relevant publications we record dis-
agreements between the two raters. For example, the first
rater marks the publication ‘Research on the architecture of

vulnerability discovery technology’ [34] as relevant, but the
second rater finds this publication to be irrelevant. The sec-
ond rater marks the publication ‘At the Edges: Vulnerability
Prediction and Resilience’ [35] as relevant, but the first rater
observes this publication as irrelevant. For the disagreements,
the two raters read the full papers, and then resolve the
disagreements by discussing the contents of the papers. The
results of each of the exclusion criteria are shown in Table 3.

TABLE 3: Publication Selection Using the Inclusion Criteria

Inclusion Criterion Count
First Author Second Author

Peer-reviewed 7,529
Filter By Title 185 85
Filter by Abstract &
Introduction

48 47

Final Set 46

Upon resolving all the disagreements, we obtain a set of
46 publications that use security bug reports for software
vulnerability research. Each of the names of the publications
is listed in Table A2 of the Appendix. We index each publi-
cation as ‘P#’, for example, the index ‘P1’ refers to the publi-
cation ‘A Vulnerability Analysis and Prediction Framework’.

Quality Analysis of Publications in Our Set: After se-
lecting 46 relevant publications, we evaluate each of the pub-
lication’s quality using the criteria provided by Kitchenham
et al. [9]. Each rater independently provides scores for each
of the nine quality criteria described in Section IV-C. We
report our findings as the average score for each criterion and
for each publication in Table 4. The title of each criterion is
also specified in Table 4 alongside each quality criterion. For
example, the quality criterion Q1 relates to the criterion of a
publication’s aim or goal being clearly stated and publication
P1 has a quality score of 2.5 for this quality criteria Q1.
In the last row ‘Avg.’, we report the average score of all
publications for each quality criterion. For example, for the
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TABLE 4: Quality Assessments of Each Publications

Index Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Avg.
Aim Units Design Data Collection Data Analysis Bias Limitations Clarity Usefulness

P1 2.5 4 4 4 4 0 1.5 4 4 3.11
P2 2.5 4 4 4 4 4 4 4 4 3.83
P3 4 4 4 4 2.5 4 4 4 4 3.83
P4 4 4 4 4 3.5 4 4 4 4 3.94
P5 4 4 4 4 4 4 4 4 4 4
P6 4 4 4 4 4 4 4 4 4 4
P7 4 4 4 4 4 4 4 4 4 4
P8 1.5 4 4 4 4 0 1.5 4 4 3
P9 3 2.5 4 3.5 3.5 4 4 4 4 3.61
P10 4 3.5 4 4 3.5 4 4 4 3.5 3.83
P11 3 0 4 2.5 3 0 0 1 1 1.61
P12 3 3.5 4 3.5 4 0 0 4 4 2.89
P13 4 4 3.5 2.5 3 1.5 3.5 4 3.5 3.28
P14 4 4 4 4 4 3.5 4 4 3.5 3.89
P15 4 2.5 3.5 3.5 2.5 0.5 0.5 4 3.5 2.72
P16 4 3.5 4 4 3.5 0 0 4 3.5 2.94
P17 4 3 2 4 3 0 0 2.5 3 2.39
P18 4 2.5 4 3.5 3 2 0 3.5 3 2.83
P19 4 3 4 4 4 0 0 4 3 2.89
P20 4 4 3.5 2 3 4 4 4 2.5 3.44
P21 4 4 3.5 4 4 4 4 4 4 3.94
P22 4 3 3.5 4 4 2.5 3 4 4 3.56
P23 4 4 3.5 4 2 4 4 3.5 3 3.56
P24 1.5 2.5 4 4 3 1.5 2 4 4 2.94
P25 2 2 3.5 3.5 3 0 1 4 3 2.44
P26 3 4 4 4 4 4 4 4 4 3.89
P27 2 4 4 3.5 3.5 4 4 4 4 3.67
P28 2.5 4 4 3.5 1.5 0 0 4 4 2.61
P29 2 2 4 4 1.5 0 0 3.5 1.5 2.06
P30 4 4 4 4 3.5 1 3.5 4 4 3.56
P31 1.5 3.5 4 4 4 4 4 4 4 3.67
P32 1.5 4 4 4 4 0 0 4 4 2.83
P33 3.5 4 4 3.5 4 0 0 4 4 3.00
P34 4 3.5 4 2.5 4 3 4 4 4 3.67
P35 3 4 4 4 2.5 4 4 4 4 3.72
P36 2.5 3.5 3.5 4 2.5 3 4 4 2.5 3.28
P37 3 4 4 4 4 4 4 4 4 3.89
P38 3 4 3 3 3.5 0 0 4 3 2.61
P39 4 4 4 4 4 4 4 4 4 4
P40 4 0.5 3.5 1 1 0 0 4 2 1.78
P41 3 4 4 4 4 4 4 4 4 3.89
P42 4 4 4 4 4 4 4 4 4 4
P43 2.5 3.5 4 4 3 0 0 4 4 2.78
P44 4 4 4 4 4 4 4 4 4 4
P45 2.5 4 4 4 4 2.5 2.5 4 4 3.5
P46 3 4 4 4 4 4 4 4 4 3.89
Avg. 3.25 3.48 3.84 3.68 3.41 2.27 2.49 3.87 3.59

quality criterion Q1, the average score of all 46 publications
is 3.25. In the last column ‘Avg.’, we report the average score
of all quality criteria for each publication. For example, for
the publication P1, the average score of all 9 quality criteria
is 3.11.

Except for the Q6 and Q7 quality criteria, all the other
criteria have an average score of more than 3, which indicates
that our selected publications satisfy most of the criteria
including, expressing the aim of the publication, describing
the design of the experiment, explaining the data collection,
and analysis procedure and stating the findings.

The two quality assurance criteria Q6 and Q7 with an
average score of less than 3 correspond to the discussion
of potential experimenter bias and the discussion of the
limitations of the study. According to Kitchenham et al.’s

guidelines [9] [36], research publications should disclose the
potential bias of the experimenter and the threats associated
with the research publication. Future research studies can
take our findings into account while conducting research
that uses security bug reports, and report possible biases and
limitations that could arise while conducting their research
studies.

In our set of 46, we observe 30 publications to explicitly
report the limitations. The index of the 30 publications is
listed in Table 5. In each cell, we report whether or not a
specific category of threats is reported in the corresponding
publications. For example, we observe that the publication
P1 only mentioned the internal validity of their studies, but
did not explicitly state the conclusion, construct, or external
validity. The findings of Table 5 indicate that research studies
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that use security bug reports for software vulnerability re-
search do not sufficiently report the threats of their research
work. We advocate for better reporting of research threats in
studies that use security bug reports following the guidelines
of Wohlin et al. [30].

We observe a wide range of techniques to be used to detect
security bug reports, such as the use of existing labels avail-
able in bug reports, application of natural language process-
ing, and manual labeling using raters. P2, P3, P7, P12, P37,
and P39 used available labeled bug reports, where each bug
report is labeled as security bug report (SBR) or non-security
bug report (NSBR). P19 [37] leveraged information that are
usually available in a bug report, including meta features
and textual features, to automatically identify the security
bug reports via natural language processing and machine
learning techniques. P5 [38] used different strategies for
labeling positive samples (i.e., SBRs) and negative samples
(i.e., NSBRs). The positive samples are labeled according to
CVE entries: if a record of source bug reports is related to
any CVE entries (i.e., is linked to CVE entry), they labeled
that record as a positive sample (i.e., SBR). If a source bug
report is related to a CVE entry, the CVE identifier would
be included in the “Title” or “Reference” of the source bug
report. They selected 50 negative samples (i.e., NSBRs) via
strategy like “card sorting” [39], which is a widely applied
approach for generating categories.

Publications P22, P24, and P35 used a semi-automated
process to detect security bug reports. They used data-mining
techniques to identify software vulnerabilities, then they
classify them into different categories by using the Bugs
Framework proposed by the National Institute of Standards
and Technology (NIST). P24 [40] first manually labeled part
of their dataset, then used both supervised and unsupervised
approaches for the classification of software bug reports to
security and non-security related. P4 [41] used a manual
process using two raters. Authors of P4 [41] independently
classified each bug report as a vulnerability or as not a
vulnerability. They used a list of keywords determined by
Shin et al. [42] for the initial mining. Then for each bug, they
looked for a “dif”, or record of code changes, attached to
the bug that had been positively reviewed by a security team
member (indicated by the sec-approval+ tag) or a release
manager (indicated by approval-X or review+ tags). If all the
diffs had reviews from a security team member or a release
manager, they included them in their vulnerability list.

P10, P13, P23 also used a manual process to extract
security bugs from several bug reports of software bug repos-
itories. P10 [43] performed the manual vulnerability curation
for over a year from 2017, employing a team of security
researchers. Authors of P10 [43] performed keyword-based
filtering with security-related keywords, including keywords
such as “security”, “advisory”, “authorized”, “NVD”, etc.
P13 [44] consider a component as vulnerable if it was mod-
ified in order to fix the vulnerability. P23 [45] conducted
manual classification of software bug reports using the in-
formation provided in the ‘Title’, ‘Subject’, ‘Description’,

‘Recommended Actions’, and ‘Solution’ fields from the issue
tracking systems.

P16 [46] used a team of professional security researchers
who manually investigated the collected data. The security
researchers checked every single commit and bug report.
To ensure the accuracy of results, for an entry (a commit
or bug report) that is related to a vulnerability, the security
researchers conduct two rounds of analysis on it. In the
first round, one security researcher would first check if the
vulnerability is published publicly in National Vulnerabil-
ity Database (NVD), then analyze the exploitation process,
CVSS score, vulnerable code, affected versions, and docu-
ment it in a vulnerability report. In the second round, another
security researcher will verify the vulnerability report by
examining all the details. In addition, all disputed reports
are set aside for team discussion before a final decision.
P9 [47] downloaded vulnerability dataset from the NIST
National Vulnerability Database and categorized them by
security experts employed at their industrial partner.

P5, P10 and P37 used list of keywords to identify security
bug reports. P5 listed the following keywords related to secu-
rity bug reports: “leak”, “leakage”, “memory”, “attack”, “se-
curity”, “https”, “password”, “risk”, “javascript”, “access”,
“ssl”, “vulnerability”, “vulnerabilities”, “attacker”, “direc-
tory”, “token”, “PKI”, “port”, “scan”, “bypass”, “authoriza-
tion”, “admin”. P10 performed a keyword-based filtering
with security-related keywords, including keywords such as,
“security”, “advisory”, “authorized”, “NVD”, etc. P37 [48]
initially used historical bug reports, which are labeled either
as a security bug report or not. Then they automatically iden-
tified security related keywords from the security bug reports
of a project using the term frequency-inverse document fre-
quency (TF-IDF) technique. Each security related keyword
is scored according to its frequency in both security and non-
security reports. Using the keyword scores of bug reports,
they removed non-security reports with scores as high as
those of security bug reports. The remaining bug reports are
used to build the vulnerability classification model. They re-
ported a list of 500 security related keywords. Example key-
words include: “file”, “security”, “chrome”, “page”, “http”,
“download”, “user”, “starred”, “person”, “notified”. They
reported that their identified keywords are similar to those
found in other studies [49] [50] [51]. P35 [52] automatically
constructed an up-to-date security-relevant keyword list from
two sources: labeled data and the Common Vulnerabilities
and Exposures (CVE) database.

A. ANSWER TO RQ1: WHAT RESEARCH TOPICS HAVE
BEEN INVESTIGATED IN PUBLICATIONS THAT USE
SECURITY BUG REPORTS FOR SOFTWARE
VULNERABILITY RESEARCH?
The first and second author individually identify five top-
ics. Four topics are common between both raters, which
are (i) classifying absence and presence of vulnerabilities,
(ii) vulnerability category classification, (iii) vulnerability
report summarization, and (iv) vulnerability dataset construc-
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TABLE 5: Reported Threats for Each Publication

Index Conclusion Construct External Internal

P1 N N N Y
P2 N N Y Y
P3 Y Y Y N
P4 N Y Y Y
P5 N N Y Y
P6 N N Y Y
P7 N N Y Y
P9 N N Y Y
P10 Y N Y Y
P13 N N N Y
P14 Y Y Y Y
P20 Y Y N Y
P21 N Y Y Y
P22 N N Y N
P23 Y Y Y Y
P25 Y Y Y Y
P26 Y Y Y Y
P27 N N Y N
P30 N Y N N
P31 Y Y Y Y
P34 N N Y N
P35 N N Y Y
P36 N Y Y Y
P37 N Y Y Y
P39 N N Y Y
P41 Y Y Y Y
P42 Y Y Y Y
P44 N Y Y Y
P45 N Y N N
P46 Y Y Y Y

tion.
We calculate the agreement rate between the two authors.

The recorded Cohen’s Kappa is 0.56, which is ‘moderate’
agreement according to Landis and Koch [32]. Upon discus-
sion, we resolve the disagreements and identify four topics.
Later we merge two identified topics ‘classifying absence
and presence of vulnerabilities’ and ‘vulnerability category
classification’ into one topic called ‘vulnerability classifica-
tion’, as both of these topics are related to classification, one
being related to classifying vulnerability categories, such as
classifying if a vulnerability is an injection vulnerability or an
overflow vulnerability, and the other identified topic is related
with classifying absence or presence of vulnerabilities. The
final identified three topics are:

(i) vulnerability classification, (ii) vulnerability report
summarization, and (iii) vulnerability dataset construction.

A complete mapping of each of the three topics and the
publications that discuss the topic is available in Table 6.
A publication can belong to multiple topics. For example,
P14 [53] belongs to both vulnerability classification and vul-
nerability dataset construction because they performed their
research on both dataset construction as well as vulnerability
classification. We describe each topic below:
• Vulnerability Classification: This topic includes publi-

cations that investigate techniques on how to classify the
presence of vulnerabilities and vulnerability categories. We
identified two sub-topics that are described below:
Absence/Presence of Vulnerabilities: Detecting the ab-
sence or presence of vulnerabilities is a research topic

that has gained interest amongst researchers. This topic
refers to a binary classification problem where a file or a
software component is classified as vulnerable or not [54].
Publications related to this topic construct models that
classify whether or not software artifacts, such as a class,
a file, or a binary is likely to include a vulnerability or not.
The motivation for conducting this research is to prioritize
inspection and testing efforts so that vulnerabilities can be
mitigated early. We provide a brief summary of prior work
that belongs to this category as follows:
-- In P1 [6], researchers classify software artifacts with

vulnerabilities by finding a correlation between vulner-
abilities and the evolution of the vulnerabilities from its
genesis. Based on the evolution of a specific vulnerabil-
ity, P1 [6] also predicts future appearance probabilities
of vulnerability groups. P3 [54] used a fault prediction
model to build a vulnerability classification model us-
ing metrics such as complexity, code churn, and fault
history. P6 [42] investigated whether software metrics
obtained early in the software development life cycle are
discriminative of vulnerable code locations and whether
the metrics are predictive of vulnerabilities. Their study
was performed using metrics that can be obtained from
the development process as well as from source code.
They proposed a vulnerability classification model using
complexity, code churn, and developer activity metrics
to predict vulnerable code locations.

-- We notice publications using natural language process-
ing (NLP) and text mining for vulnerability classifica-
tion (P4, P16, P27, P31, P37, P45). P4 [41] compared
the performance of multiple vulnerability classification
models to find a different combination of features for
a better prediction model. P19 [37] also presented an
automated security bug report identification model via
multi-type features analysis. From security bug reports
they mined meta-features and textual features, to au-
tomatically identify the security bug reports via NLP
and ML techniques. P16 [46] explores the identifica-
tion of vulnerabilities in commit messages and issue
reports/pull requests using NLP and ML techniques.
Their k-fold stacking ensemble approach discovers hid-
den vulnerabilities in 5,002 projects spanning over 6
programming languages.

-- P8 [55] not only predicts the presence of vulnerabilities
but also predicts the number of latent vulnerabilities
that can potentially be present in a software system but
may not have been found yet. They observed that the
values of vulnerability densities fall within a range, and
for similar products they are closer together. The re-
searchers analyzed the Windows and Red Hat Enterprise
Linux operating systems and observed that the ratio
of vulnerabilities to the total number of faults falls in
the range of 1% to 5%. If this ratio is constantly true
across projects, the discovered vulnerability densities
can be a useful indicator to estimate the efforts to find
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TABLE 6: Mapping Between the Topics and Publications

Topic Publication Index Count

Vulnerability Classification P1, P2, P3, P4, P6, P7, P8, P9, P10, P11, P12, P13, P14, P16, P17, P18, P19, P20, P21,
P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36, P37, P39,
P40, P42, P43, P44, P45, P46

42

Vulnerability Report Summarization P9, P15, P23, P38, P41 5
Vulnerability Dataset Construction P5, P10, P14 3

undiscovered vulnerabilities. Their method is useful for
estimating the effort required to identify and correct
undiscovered security vulnerabilities.

-- P12 [56] presented a bug classification technique in
the process of identifying bug reports as security or
non-security. They focus on security vulnerabilities and
present a bug mining system for the identification of
vulnerabilities and non-security bugs using the TF-IDF
technique.

-- P13 [44] used data from the National Vulnerability
Database (NVD) 9 to predict the time to the next vulner-
ability for various software products using data-mining
techniques. They experimented with various features
constructed using the information available in NVD and
applied various statistical learners to examine the pre-
dictive power of the data. They showed that the data in
NVD generally have poor prediction capability, with the
exception of a few vendors and software applications.

-- P14 [53] evaluated the effectiveness of vulnerability
classification methods and mentions the challenges in
vulnerability classification research, such as having a
lack of reliable vulnerability dataset and lack of repli-
cation framework for comparative analysis of existing
methods. P20 [57] proposed to improve vulnerability
classification through parameter tuning of learners and
data pre-processor. They applied hyper-parameter opti-
mization to the control parameters of a learner. The data
pre-processing methods handle cases where the target
class is a small fraction of all the data. They showed
that optimizing the pre-processor is more useful than
optimizing the learners.

-- P7 [58] proposed a novel approach called ‘LTRWES’
that incorporates learning to rank and word embedding
into the identification of security bug reports. LTR-
WES is a content-based data filtering and represen-
tation framework that exploited the ranking model to
efficiently filter non-security bug reports. LTRWES also
applies word embedding technology to transform the
text features into low-dimensional real-value vectors.

-- P32 [59] introduced a tool called ‘Vulture’ to auto-
matically map vulnerability reports to vulnerable com-
ponents in the Mozilla codebase. Using the tool, they
observed common patterns of imports (#include) and
function calls in vulnerable components using pattern
mining techniques. Vulture identified 45% of all vul-
nerable components (recall) using import analysis, and

9https://nvd.nist.gov/

70% of all identified vulnerable components were true
vulnerable components (precision) using function call
analysis. Vulture was also able to identify 82% of actual
vulnerabilities in the top 30% of files ranked in the order
of predicted vulnerabilities.

-- P37 [48] proposed a framework FARSEC that im-
proved the prediction performance by choosing the
security-related keywords automatically and filtering
non-security bug reports. FARSEC selected the top 100
terms in security bug reports with the highest TF-
IDF values as security-related keywords and represented
each bug report as a 100-dimensional feature vector for
filtering non-security bug reports.

-- P10 [43] used semi-supervised learning to predict how
likely a software artifact is susceptible to a vulnerability.
The proposed technique supports a complete pipeline
from data collection, model training, and prediction, to
the validation of new models before deployment. It is ex-
ecuted iteratively to generate better models as new input
data become available. The authors used self-training
to significantly and automatically increase the size of
the training dataset, opportunistically maximizing the
improvement in the models’ quality at each iteration. For
the final prediction, the authors used a stacking ensem-
ble that consists of six statistical learners: random forest
(RF), naive bayes (NB), k nearest neighbor (KNN),
support vector machines (SVM), gradient boosting, and
AdaBoost.

-- In addition to supervised and semi-supervised learn-
ing methods, unsupervised learning methods are also
applied to construct classification models. P24 [40]
designed an automated classification of software bug
reports to security and non-security related bugs, using
both supervised and unsupervised approaches. For this
purpose, they used the title, subject, and description of
bug reports.

-- While P24 [40] used the title, subject, and description
of bug reports, P25 [60] showed that the prediction of
vulnerabilities can be performed even when solely the
title is available for training and scoring.

-- P26 [61] used active learning for prediction. Their tool
HARMLESS is an incremental support vector machine
tool that built a vulnerability classification model from
source code, then suggested what source code files
should be inspected next. HARMLESS reduced the time
and effort required to achieve the desired level of recall
for finding vulnerabilities. The tool provided feedback
on when to stop while at the same time, correcting
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human errors by double-checking suspicious files.
Prediction models constructed from the above-mentioned
proposed research suffer from a high false-positive rate
(P1, P4, P5, P7, P13, P14, P16, P35, P42, P45). Vulner-
ability classification can exhibit a decrease in recall with
an increase of precision for a certain range of classification
thresholds as shown in P1 [6].
Classifying Vulnerability Categories: This topic includes
publications that construct models to classify the cate-
gories of vulnerabilities. For example, P39 [5] classified
vulnerabilities based on the predicted severity level of the
vulnerabilities using ML models on historical vulnerability
data.
-- P2, P28, and P39 classified vulnerabilities according to

their severity levels. P2 [4] proposed a framework for
vulnerability severity classification using five statistical
learners, namely, RF, KNN, decision tree (DT), NB,
and SVM. P28 [62] used word embeddings and a one-
layer shallow convolutional neural network (CNN) to
automatically capture discriminative words and sentence
features of bug report descriptions. P39 [5] presented
another framework for vulnerability severity classifica-
tion using the Bellwether analysis (i.e., exemplary data)
[63]. They applied the NLP techniques on bug report
descriptions. They also developed an algorithm called
‘Bellvul’ to identify and select an exemplary subset of
data (referred to as Bellwether) to be considered as
the training set to four statistical learners, namely, deep
neural network (DNN), logistic regression (LR), KNN,
and RF.

-- P45 [2] and P11 [3] classified hidden impact vulnera-
bilities, i.e., vulnerabilities that appeared long after the
vulnerability has been made public. Their methodology
utilized a text mining process that extracts syntacti-
cal information of the bug reports and compresses the
information for easier manipulation. The compressed
information is then utilized to generate a feature vector
that is presented to a classifier. They used three statistical
learners: NB, Multinomial NB, and DT. P11 [3] also
classified the absence and presence of hidden impact
vulnerabilities using text mining features.

-- P9 [47] proposed an approach to categorize vulnerabil-
ities according to a taxonomy based on summaries of
vulnerabilities available as advisory reports. They used
statistical learners, such as RF, BayesNet, Simple LR,
and NB.

-- P17 [64] proposed an automated software vulnerability
classification model based on DNNs. Their methodol-
ogy uses the TF-IDF technique to compute the fre-
quency and weight of each word in the textual descrip-
tions of software vulnerability.

-- P18 [65] applied NB and artificial neural network
(ANN) to classify what security objectives, namely,
availability, confidentiality, and integrity are violated
in a reported vulnerability. Their experimental results

showed that the ANN algorithm was superior to the NB
algorithm in vulnerability classification.

-- P21 [66] classified security bug reports into valid and in-
valid vulnerabilities. First, they used card sorting [39] to
categorize invalid vulnerability reports, from which six
main reasons were observed for rejected and disputed
CVEs, respectively. Next, they proposed a text mining
approach to predict the invalid vulnerability reports us-
ing NB, SVM, and RF.

-- By mining text features P22 [67] constructed a model
to predict the weakness that is related to a reported
vulnerability.

-- P23 [45] classified software vulnerabilities into soft-
ware weakness types based on the Common Weak-
ness and Enumeration (CWE) taxonomy. CWE is a
community-developed database of software security
weaknesses [68]. The goal of CWE is to (i) under-
stand software security weaknesses, (ii) create tools to
identify, fix, and prevent security weaknesses, and (iii)
serve as a baseline for vulnerability identification and
mitigation efforts [68].

• Vulnerability Report Summarization: This topic in-
cludes publications that focus on understanding the struc-
ture and meaning of security bug reports. Vulnerabili-
ties are described using natural language in vulnerabil-
ity databases, which makes automated summarization of
vulnerability challenging. To address this challenge re-
searchers [47] [69] have focused on mining text features
from security bug reports to summarize vulnerabilities and
rank vulnerabilities based on priority.
− Supervised Learning Approach: P9 [47] proposed an

approach to automatically generate summaries of re-
ported vulnerabilities, and categorize them according to
a taxonomy modeled for the industry. P15 [69] also au-
tomatically characterized software vulnerabilities from
the textual description included in the CVE reports and
mapped each vulnerability descriptions to the U.S. NIST
Vulnerability Description Ontology [70]. Both P9 [47]
and P15 [69] used statistical learners, such as NB, SVM,
and RF to automatically generate summaries of reported
vulnerabilities.

− Semi-supervised Learning Approach: P38 [71] used a
semi-supervised language embedding technique called
‘word2vec’ with paragraph vectors to capture the se-
mantic content of bug descriptions in forms of numeric
vectors.

− NLP Approach: P41 [72] used NLP to automatically
analyze security reports to extract vulnerability-specific
features to construct an intrusion detection system
(IDS).

− Manual Approach: P23 [45] manually created vulner-
ability profiles from security bug reports where they
determined when the vulnerabilities were introduced in
which locations.

• Vulnerability Dataset Construction: This topic includes
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publications that focus on the construction and quality of
vulnerability datasets. Quality vulnerability datasets help
to build and evaluate automated techniques in vulnerability
classification research.
-- For supervised or semi-supervised ML models, re-

searchers leverage labeled security bug reports. Re-
search work on vulnerability classification might assume
that predictive models are trained with respect to perfect
labelling information [73] [59] [74]. P14 [53] performed
an empirical study to investigate three vulnerability clas-
sification approaches in two settings: with and without
the unrealistic labeling assumption. They reported a
Matthews Correlation Coefficient (MCC) [75] of 0.77,
0.65, and 0.43 for Linux, OpenSSL, and Wireshark
when trained on sufficient and accurately labeled data.
However, MCC is respectively 0.08, 0.22, 0.10 when
considering realistic partial and mislabeled data. The
unrealistic labeling assumption can mislead the scien-
tific conclusions drawn; suggesting effective and de-
ployable prediction results might not hold if we account
for realistically available labeling in the experimental
methodology.

-- P5 [38] proposed an automated data labeling approach
based on iterative voting classification. Their approach
starts with a set of 42,940 ground-truth samples, which
were labeled with the help of authoritative vulnerability
records hosted in CVE. Using their proposed approach
the authors labeled over 120K more bug reports using
their proposed approach.

-- P10 [43] used a semi-supervised learning approach to
curate a library vulnerability database. The authors ap-
plied their production models to the unlabeled data to
significantly increase the amount of labeled data for
training new models.

TABLE 7: Comparison Among the Publications Based on
Dataset Usage

Dataset Publication Index Topics

NVD Dataset P1, P2, P9, P10, P13, P14,
P15, P17, P21, P22, P28,
P34, P43, P44

Vulnerability
Classification,
Vulnerability Report
Summarization,
Vulnerability Dataset
Construction

Mozilla Firefox
Dataset

P3, P4, P6, P7, P11, P12,
P19, P26, P29, P39

Vulnerability Classifica-
tion

Chromium P7, P37, P39 Vulnerability Classifica-
tion

Eclipse P11 Vulnerability Classifica-
tion

NASA Dataset P23, P24 Vulnerability Classifica-
tion

Microsoft
Dataset

P25 Vulnerability Classifica-
tion

CISCO Dataset P27 Vulnerability Classifica-
tion

Existing
Dataset

P20 Vulnerability Classifica-
tion

As shown in Table 7 We observe commonalities amongst

publications with respect to dataset usage. We provided the
datasets that are commonly used and provided a comparison
in Table 7. The NVD dataset is used by 14 of the collected
46 publications for vulnerability classification, vulnerability
report summarization and vulnerability dataset construction.
Some of the other commonly used datasets, such as the
Mozilla Firefox dataset, the Chromium dataset, the NASA
dataset are used for vulnerability classification.

Answer to RQ1: We identify three topics that are
investigated in publications that use security bug re-
ports for vulnerability research: vulnerability classi-
fication, vulnerability report summarization, and vul-
nerability dataset construction. With respect to pub-
lication count, the most frequently occurring topic is
vulnerability classification.

B. ANSWER TO RQ2: HOW FREQUENTLY DO
IDENTIFIED RESEARCH TOPICS APPEAR IN
PUBLICATIONS THAT USE SECURITY BUG REPORTS
FOR SOFTWARE VULNERABILITY RESEARCH?
To describe the overall trend of publications that use secu-
rity bug reports for software vulnerability research, we first
provide the count of publications that are published each
year in Table 8. Even though our search process included
publications starting from 2000, our earliest publication date
is the year 2007. For the year 2019, we observe the highest
publication count, which is 11. As our search process in-
cluded publications up to August 2020, our publication set
only includes publications until the month of August.

To compute the temporal trends exhibited for each identi-
fied topic, we report the frequency of publications for each
topic in Table 9. the columns ‘Classification’, ‘Summariza-
tion’, and ‘Construction’ respectively denotes vulnerability
classification, vulnerability report summarization, and vul-
nerability dataset construction. We observe the number of
publications for all topics is highest in 2019, which is con-
sistent with the overall trend shown in Table 8.

TABLE 8: Frequency of Publications that Use Security Bug
Reports for Software Vulnerability Research. X Denotes
Absence of a Publication in Our Publication Set for that Year.

Year Count

2020 8
2019 11
2018 4
2017 7
2016 2
2015 1
2014 4
2013 1
2012 1
2011 2
2010 3
2009 X
2008 X
2007 2
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TABLE 9: Frequency of Publications per Year for Each
Topic. X Denotes Absence of a Publication in Our Publica-
tion Set for that Year.

Topic Classification Summarization Construction

2020 7 X 2
2019 9 3 1
2018 4 X X
2017 6 2 X
2016 2 X X
2015 1 X X
2014 4 X X
2013 1 X X
2012 1 X X
2011 2 X X
2010 3 X X
2009 X X X
2008 X X X
2007 2 X X

Answer to RQ2: Publications related to vulnerability
classification have remained prevalent from 2007 to
2020.

C. ANSWER TO RQ3: WHICH PROPERTIES OF
SECURITY BUG REPORTS ARE USED IN PUBLICATIONS
FOR SOFTWARE VULNERABILITY RESEARCH?
For efficient management of bugs information technology
(IT) organizations use bug tracking systems, such as GitHub
issues, JIRA, and Bugzilla. Bug tracking systems allow teams
of practitioners to keep track of bugs, new feature requests,
and enhancements in their products effectively.

Bug Tracking Systems Used in Publications: We iden-
tify the following bug tracking systems that are used in our
set of 46 publications:

• GitHub: As of January 2020, GitHub has 40 million
users and hosts 190 million software repositories [76].
GitHub provides issues that can be used to track en-
hancements, feature requests, and bugs [77].

• Jira: According to Atlassian, Jira is used by over 75,000
customers in 122 countries around the globe [78]. Jira
offers utilities to track issues and tasks, such as the Jira
Query Language (JQL). JQL can be used to conduct
search and reporting of issues, custom dashboards, and
third-party plugins that allow various features, such as
duplicate bug detection [77].

• Bugzilla: Bugzilla is a bug tracking system developed
by Mozilla. Companies, such as Wikipedia and Mozilla
use Bugzilla for their software projects [79]. Bugzilla is
designed to be a dedicated issue tracker with features,
such as automatic duplicate detection, advanced search
options, and customizable workflows [77].
From our mapping study we observe the most com-
monly used bug tracking system to be Bugzilla. As
shown in Table 10, we observe 18 out of the 46 pub-
lications to mine bug reports hosted on Bugzilla.

Bug Report Properties: We observe researchers to mine

TABLE 10: Bug Tracking Systems Used in Publications
that Use Security Bug Reports for Software Vulnerability
Research

Tool Publication Index

GitHub P10, P16
Jira P5, P10, P16, P30, P33, P40

Bugzilla P3, P5, P6, P7, P8, P10, P11, P12, P16, P19, P26, P29,
P30, P32, P35, P36, P44, P45

properties from bug reports to conduct research related to
vulnerability classification, vulnerability dataset construc-
tion, and vulnerability report summarization. We have listed
a set of properties that are mined from security bug reports in
our set of 46 publications:

− Bug Severity: Bug severity is a measure of the effect
that a bug can have on the development or operation of
an application feature as it is being used. Bug severity
can be divided into different levels depending on how
much of a threat the bug can pose to the software:
Low: This category of bugs will not result in any notice-
able breakdown of the system.
Minor: This category of bugs will result in some unex-
pected or undesired behavior, but not enough to disrupt
system function.
Major: This category of bugs are capable of collapsing
large parts of the system.
Critical: This category of bugs are capable of triggering
a complete system shutdown.

− Common Vulnerability Scoring System (CVSS) score:
CVSS is an open framework for the communication
of the characteristics and severity of software vulnera-
bilities. The NVD provides CVSS scores for reported
vulnerabilities.

− Code Complexity: Complex code is more difficult to un-
derstand and evaluate, so developers may have a greater
risk of introducing latent vulnerabilities. Shin et al. [42]
observed that complexity metrics, such as McCabe’s
complexity can indicate security vulnerabilities.

− Code Churn: Code is continuously changing in the
development process and any new change in the system
introduces the possibility of introducing vulnerabilities
[42]. Examples of code churn metrics are the total
number of new code lines and code lines changed since
the creation of a file. Certain bug reports have entries
that show code churn of a file linked with the bug report
of interest.

− Developer Activity: Software development is typically
carried out by development teams working together on a
shared project. Lack of team cohesion or miscommuni-
cations can correlate with software artifacts that include
vulnerabilities [80] [42]. An example developer activity
that correlates with software vulnerabilities is multiple
developers modifying the software artifact of interest.
From a version control data can be mined to extract
metrics using social network analysis [81].
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− Free Form Entries: This group of bug report entities
allows practitioners to provide information about a spe-
cific bug in terms of comments and descriptions. Typical
entities of bug reports that are free form entries are:
(i) a title that summarizes the bug, (ii) descriptions
that describe the bugs, and (iii) include comments that
discuss how to reproduce and resolve the bug of interest.
Researchers apply text mining on free form entries of
bug reports. We call these bug report entries ‘free form’
as there is no structure on how to specify text input. As
shown in Table 11, 14 publications out of our set of
46 mine free form entries from bug reports to conduct
research investigations.

TABLE 11: Features Used in Publications that Use Security
Bug Reports for Software Vulnerability Research

Features Publication Index

Bug Severity P2, P10, P19
CVSS Score P13, P17, P18, P28, P38, P39

Code Complexity P3, P4, P6, P9, P14, P34, P42, P44
Code Churn P3, P4, P6, P9, P14, P27, P30, P31, P34,

P40, P42, P44, P46
Developer Activity P6, P9, P31, P34
Free Form Entries P2, P4, P7, P9, P10, P12, P15, P16, P19,

P21, P24, P25, P28, P3

Answer to RQ3: Bugzilla is the most frequently used
bug tracking system amongst our studied publica-
tions. Researchers mine properties from bug reports,
such as free form entries, CVSS scores, and bug
report severity to conduct research investigations.

D. ANSWER TO RQ4: WHAT AUTOMATED TECHNIQUES
ARE USED IN PUBLICATIONS THAT USE SECURITY
BUG REPORTS FOR SOFTWARE VULNERABILITY
RESEARCH?
We organize this section in two subsections: (i) first, we
describe the techniques used in our set of 46 publications,
and (ii) second, we describe how publications that belong to
the three identified topics use the identified techniques.

1) Techniques Used To Conduct Software Vulnerability
Research

• Text Mining: NLP is the domain of computer science
that derives, evaluates, and applies algorithms that en-
able program computers to process and analyze natural
language data. [82]. Since security bug reports are ex-
pressed using natural language, NLP techniques such as
tokenization, summarization, and word-embedding are
used in our set of 46 publications, which we describe
below:
− TF-IDF: Security bug reports are described using

natural languages, which means the text data need to
be cleaned and convert to a numerical representation
to be used by statistical learners. TF-IDF can be used

to convert the text data into numerical representations
[83]. TF-IDF evaluates the importance of a term to a
text in the collection of documents.

− Word Embedding: Word embedding is a word rep-
resentation technique that allows words with simi-
lar meaning to have a similar representation. One
technique is ‘Word2Vec’ which is considered as an
efficient approach to automatically learn from a text
corpus [84].

− Tokenization: Tokenization involves decomposing a
stream of text into words, phrases, syllabus, or other
meaning elements termed tokens. This process re-
duces textual data by removing unnecessary words
for improved performance of the models and trans-
forms the entire vulnerability text information into the
smallest semantic unit.

− Stop Words Filtering: Stop word filtering refers to
filtering the words that appear frequently in text and
contribute little or no contribution to the content or
classification of text information.

− Stemming and Lemmatization: Stemming is used to
convert derived words to their base words. Most pub-
lications used the Porters stemming algorithm [85].
Stemming also includes converting the plural form of
a noun to the singular form. From the perspective of
data mining, these words should belong to the same
category of semantically similar words. For example,
using stemming ‘attack’, ‘attacking’, and ‘attacked’
can be expressed as ‘attack’. Lemmatization is used
to convert multiple words that have the same meaning
into one word. For example, with lemmatization ‘er-
ror’, ‘inaccurate’, and ‘false’ is converted to ‘error’.

− Keyphrase extraction: Keyphrase extraction is a tech-
nique that identifies phrases that occur in a docu-
ment using intrinsic properties, such as frequency and
length of the phrase.

− Information Gain (IG): IG can be used to select
features by calculating the gain of each variable in
the scope of the target variable [86].

• Statistical Learners:
− Statistical learners are algorithms that identify pat-

terns in historical data and make predictions on un-
seen data [87]. The statistical learners that are used in
our set of 46 publications are:
Decision Tree (DT): DT is a statistical learner where
each fork is a split in a predictor variable and each
node at the end has a prediction for the target variable
[88].
K Nearest Neighbor (KNN): KNN is a statistical
learner that stores all available prediction outcomes
based on training data and classifies test data based
on similarity measures [89].
Support Vector Machine (SVM): Support vector ma-
chines predict labels by quantifying the amount of
separation for features between multiple classes [90].
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Naive Bayes (NB): To predict the class of unknown
data sets, NB works on the Bayesian theorem of
probability with the assumption of conditional inde-
pendence between every pair of features given the
value of the class variable [91].
Logistic Regression (LR): LR estimates the probabil-
ity that a data point belongs to a certain class, given
the values of features [92]. LR provides good per-
formance for classification if the features are roughly
linear [92].
Neural Network (NN): The neural network is a series
of statistical learners that aim to identify underlying
relationships in a data set through a mechanism that
mimics the way the human brain works [93].
Ensemble Method: Ensemble methods are techniques
that create multiple statistical learners and then com-
bine them to produce improved results. Ensemble
methods produce more accurate solutions than a sin-
gle learner would. Three are three types of ensemble
methods: bagging, boosting, and stacking [94].
Bagging: Bagging ensembles statistical learners that
are similar in nature, learns them independently from
each other in parallel, and combines them. RF is an
example of ensemble tree-based statistical learners
that creates a set of DTs from a random selected
subset of training set [95].
Boosting: Boosting ensembles statistical learners that
are similar in nature, learns them sequentially in an
adaptive way (a base model depends on the previous
ones) and combines them in a deterministic manner.
Stacking: Stacking ensembles statistical learners that
are not similar in nature, learns them in parallel, and
combines them to output a prediction.

− Semi-supervised learners [87] not only learn from
historical data, but also extrapolate their conclusions
to unseen data. P46 [96] used an algorithm called
‘CoForest’, which applies semi-supervised learning
on RF. It is a disagreement-based, semi-supervised
learner proposed by Li and Zhou [97]. P10 [43] used
self-training, as defined by Nigam and Ghani [98], to
implement a semi-supervised model.

− Unsupervised learners [87] do not rely on historical
data to find patterns.

− Active learning [99] is an iterative process where a
statistical learner can interactively query a user or
other information source to label new data points with
the desired outputs. There are situations in which un-
labeled security bug reports are abundant but manual
labeling is expensive. In such a scenario, statistical
learners can query for labels.

• Evaluation Measure: For evaluation, our set of 46
publications use the following metrics:
Classification Metrics: Vulnerability classification is a
binary classification problem that can have two kinds
of errors: false positive (FP) and false negative (FN).

FP occurs when a file is classified as vulnerable when
it is not. FN occurs when a file is classified as non-
vulnerable when it has one or more vulnerabilities.
Correct classifications are called True Positives (TP) and
True Negatives (TN). These four metrics are summa-
rized in Table 12, which is known as a confusion matrix.
The extended version of this confusion matrix is used
for multi-class classification predictions. Using TP, FP,
TN, and FN the following metrics can be calculated as
done in our set of 46 publications:
-- Accuracy: Accuracy is defined as the percentage of

correct predictions for the test data. Equation 2 is used
to calculate accuracy.

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

-- Precision: Precision is defined as the fraction of rel-
evant examples among all of the examples that were
predicted to belong in a certain class. Equation 3 is
used to calculate precision.

Precision =
TP

TP + FP
(3)

-- Recall: Recall is defined as the fraction of examples
that were predicted to belong to a class with respect to
all of the examples that belong in the class. Equation 4
is used to calculate recall.

Recall =
TP

TP + FN
(4)

-- FPR Positive Rate (FPR): FPR is defined as the frac-
tion of examples which were predicted not to belong
to a class with respect to all of the examples that do
not belong in the class. Equation 5 is used to calculate
FPR.

FPR =
FP

FP + TN
(5)

-- F-score: F-score is the harmonic mean of precision
and recall. Increase in precision, often decreases re-
call, and vice-versa [100]. F-score is calculated using
Equation 6.

F − score = 2× Precision×Recall

Precision+Recall
(6)

TABLE 12: Binary Classification Measurement

Predicted Yes Predicted No
Actual Yes TP FN
Actual No FP TN

-- ROC Curve: A receiver operating characteristic
(ROC) curve is a graph showing the efficiency of a
classification model at all classification thresholds. A
ROC curve plots true positive rate vs. false positive

16 VOLUME 0, 2020

Prep
rin

t



rate at different classification thresholds. Lowering
the classification threshold classifies more items as
positive, thus increasing both true positives and false
positives. Figure 4 shows an example ROC curve.

FIGURE 4: ROC Curve

-- AUC: AUC (Area under the ROC Curve) measures
the entire two-dimensional area underneath the entire
ROC curve from (0,0) to (1,1). Figure 5 shows the
AUC for a typical ROC curve. AUC provides an
aggregate performance assessment across all possible
classification thresholds.

FIGURE 5: AUC Score

Regression Metrics: Evaluation metrics for regression
models are different from that of classification models
because regression works with predicting in a continu-
ous range instead of a limited number of classes.
-- Mean Squared Error (MSE): MSE is defined as the

average of squared differences between the predicted
output and the true output. Equation 7 is used to
calculate MSE.

MSE(ytrue, ypred) =
1

nsamples

∑
(ytrue − ypred)

2

(7)
In Equation 7, ytrue, ypred and nsamples respectively,
stands for true output, predicted output and number of
samples.

2) Usage of Techniques Amongst Publications
Vulnerability Classification

Out of 42 publications that investigate vulnerability clas-
sification, 25, 38, and 35 publications respectively use text
mining, statistical learners, and evaluation measures.

Vulnerability Summarization
Of the 5 publications related to vulnerability summariza-

tion, P38 and P15 use text mining techniques. P38 [47]
used word embedding techniques, while P15 [69] used TF-
IDF. 3 of the 5 publications, namely P9, P15, and P41 used
classification metrics as evaluation techniques.
Vulnerability Dataset Construction

We notice P10, which is related to vulnerability dataset
construction, to use text mining methods. P10 [43] used
word2vec for word embedding. All 3 papers related to vul-
nerability dataset construction reported precision and recall.
Only P10 reported AUC scores.

Out of the 46 publications, 15 used TF-IDF method as
shown in Table 13. 8 publications used word embedding
techniques, such as word2vec to obtain the vectors for the
representation of text features of security bug reports. 9 publi-
cations used tokenization in their feature selection process. 4
publications namely, P19, P24, P36, and P44 used the library
NLTK [101] to implement NLP techniques. We observe 2
publications to use a statistical test called the Chi-Squared
[102] test.

Table 14 shows what statistical learners are used in our
set of 46 publications. Bayesian learners, such as NB are
used by 20 publications. Of the 19 publications that used
ensemble method, 17 used RF. We also observe publications
used a combination of learners to implement bagging (P5,
P15), boosting (P14) and stacking (P10, P16) algorithms. 13
publications used variants of neural networks, such as multi-
layer perceptron (P5), CNN (P2), and RNN (P28).

The majority of the publications in our set used precision
and recall to evaluate their statistical learners as shown in
Table 15. Of the 46 publications, 65% used precision for
evaluating their learners.

TABLE 13: Feature Selection Methods Used in Our Set of
Publications

Feature Selection method Publication Index

TF-IDF P2, P11, P12, P13, P15, P17, P22,
P24, P25, P28, P30, P33, P35,
P37, P39

Work Embedding P7, P10, P16, P22, P24, P28, P31,
P38

Tokenization P2, P4, P17, P19, P29, P31, P36,
P37, P44

Stop Words Removal P2, P12, P17, P19, P24, P27, P29,
P36, P37, P45

Stemming/Lemmatization P2, P17, P24, P27, P29, P36, P45
Index Term Extraction P2

Chi-squared P11, P36
Information Gain P2, P17, P21

Answer to RQ4: Text mining, application of statis-
tical learners, classification metrics, and regression
metrics are commonly used techniques in our set of
publications.
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TABLE 14: Statistical Learners Used in Publications

Statistical Learner Publication Index

Regression P1, P3, P4, P5, P7, P8, P9, P13, P14,
P15, P20, P22, P25, P30, P34, P37,
P39, P43, P46

Bayesian Network P3, P4, P5, P6, P7, P9, P11, P12, P15,
P16, P18, P20, P21, P22, P24, P25,
P29, P30, P36, P37, P45

Decision Tree P2, P4, P14, P15, P25, P30, P45
Support Vector Machine P2, P7, P15, P16, P19, P21, P22, P24,

P26, P30, P32, P33, P34, P35
K-Nearest Neighbor P2, P7, P14, P16, P20, P24, P37, P39,

P43
Neural Network P1, P2, P5, P7, P13, P17, P18, P20,

P27, P28, P30, P37, P39
Ensemble Method P2, P3, P4, P5, P7, P9, P10, P14, P15,

P16, P20, P21, P22, P24, P30, P31,
P37, P39, P46

Unsupervised Learning P24
Semi-supervised Learning P10, P35, P38, P46

Active Learning P26

TABLE 15: Evaluation Measures Used in Publications

Evaluation measure Publication Index

Accuracy P2, P5, P12, P15, P17, P18, P19, P24, P25,
P27, P28, P31, P33, P46

Precision P1, P2, P3, P4, P5, P6, P7, P9, P10, P12,
P14, P16, P17, P19, P20, P22, P24, P27,
P28, P30, P31, P32, P34, P35, P37, P39,
P41, P42, P44, P46

Recall P2, P3, P4, P5, P6, P7, P9, P10, P14, P16,
P17, P19, P20, P22, P24, P26, P27, P28,
P30, P31, P32, P34, P35, P37, P39, P41,
P42, P44, P46

F-score P2, P3, P4, P5, P7, P9, P17, P19, P22, P24,
P28, P30, P33, P35, P37, P39

AUC P2, P10, P21, P25, P30, P36
Goodness of Fit P15, P8, P36, P42

P-value P8, P15
MSE P13, P30

VI. DISCUSSION
We discuss our findings in this section.

A. SUMMARY OF RESEARCH THAT USE SECURITY
BUG REPORTS FOR SOFTWARE VULNERABILITY
RESEARCH
We summarize our research findings as follows:

Publication Count: We have collected 46 publications
from our initial search results of 45,077 publications. Table 8
shows that amongst 46 publications, the count of publications
is highest in 2019, indicating an increasing trend in the field
of software vulnerability research.

Studied Topics: With respect to publication count vulner-
ability classification is the most frequent topic. While we
observe extensive research related to vulnerability classifica-
tion in software projects, the outcomes of these publications
are yet to impact practice [103] [44] [53]. We foresee that
researchers will build upon existing work and invest more
efforts in vulnerability classification before acceptable per-
formance will be achieved.

Our mapping study shows vulnerability dataset construc-
tion to also be of interest to researchers. Furthermore, we

observe researchers to work on vulnerability report summa-
rization.

Usage of Security Bug Reports : We find our studied
publications to use GitHub, Jira, or Bugzilla to track the
reported bugs of open source projects. The most commonly
used bug tracking system is Bugzilla, as we observe 18 of
the 46 publications to use Bugzilla to collect security bug
reports. We also observe the majority of the publications to
mine code churn and free form entries from bug reports for
their research work.

Analysis Techniques: Security bug reports are described
using natural languages, which necessitates the mined text
features to be cleaned and converted to a numerical represen-
tation so that these features can be used as input to statistical
learners. To convert the text data into numerical representa-
tions, we found publications to use NLP techniques, such as
TF-IDF, word2vec, tokenization, and lemmatization. We also
observe most of the publications in our set used supervised
statistical learners, such as SVM and regression. To evaluate
the statistical learners, precision and recall are used in most
of the publications.

Reporting of Results: As shown in Section V, none of
the publication in our set has a perfect score of 4.0 for the
quality check criteria provided by Kitchenham et al. [8],
[9]. We advise researchers to follow guidelines provided
by Kitchenham et al. [8] [9], when reporting their findings
related to software vulnerability research.

B. RESEARCH DIRECTIONS
We identify the following research directions that could be of
interest to researchers:

Empirical Studies Related to Vulnerability Evolution:
We advocate for empirical analysis on a large corpus of
security bug reports to understand how vulnerabilities evolve
through time. Such analysis may help in understanding the
nature of vulnerabilities, the change in the complexity of
vulnerabilities, and the change in vulnerability detection
strategies.

Vulnerability Discovery Strategies: Identifying vulner-
ability discovery strategies can be useful to characterize
vulnerabilities in software systems. A vulnerability discov-
ery strategy is one or more computational and/or cognitive
activities that an attacker performs to discover a vulnerability,
where the vulnerability is indexed by a credible source,
such as the NVD. Security bug reports can be leveraged to
understand how vulnerabilities are discovered that could aid
practitioners to characterize exploitation of vulnerabilities,
which seems to be a promising research direction.

Handling Data Imbalance: Available vulnerability
datasets are imbalanced as there is an unequal distribution
of classes in the dataset. Imbalanced classifications pose a
challenge to predictive modeling as statistical learners are
usually used for classification based on the assumption of an
equal number of examples for each class [104]. This results
in models with low predictive performance, especially for
vulnerability classification [58] [53] [46] [52]. Researchers
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can explore how classifiers can be designed to account for
unbalanced datasets.

Vulnerability Repair: Automated defect and vulner-
ability repair techniques, such as example-based tech-
niques [105], rely on a mature collection of examples to
generate repairs for defects and vulnerabilities. Security bug
reports that are closed can include repairs to the reported
vulnerabilities. We hypothesize that the collection and cu-
ration of vulnerability repair patches could aid researchers
who engage in automated vulnerability repair techniques. We
predict two avenues of research in this regard: (i) empirically
establish that security bug reports include legitimate vulner-
ability repairs, and (ii) systematically construct and curate
datasets of vulnerability repair patches by mining security
bug reports. Future research can also complement existing
vulnerability repair techniques [106] by utilizing the security
bug reports along with CVE characteristics.

Feature Selection: Researchers could be interested in
mining features for better classification of vulnerabilities.
Combining text features with other information in security
bug reports, such as product and component information,
can be used to improve the performance of vulnerability
classification. The severity level attribute of a bug report is
one example of properties that can be leveraged for efficient
verification and validation efforts in order to mitigate vulner-
abilities early. Future work can also investigate the impact of
the wrapper and embedded feature selection techniques [107]
on software vulnerability classification models.

Improve Vulnerability Classification: More research ef-
forts are desirable to develop effective methods that gen-
erate fewer false positives while classifying vulnerabilities.
Researchers can investigate hyper-parameter tuning meth-
ods [108] to further improve the performance of prediction
models. Unsupervised learners might also be a promising
step forward in the applicability of prediction models to real
problems.

Transfer Learning: Research efforts can be allocated
to investigate whether constructed datasets can perform
cross-project. This research problem is challenging as target
projects often do not have enough training data. Transfer
learning can be used to solve this challenge by learning
patterns from one project and applying the patterns to another
project [109] [110]. None of the publications in our set of
46 have investigated how transfer learning can be helpful for
vulnerability-related research, such as vulnerability classifi-
cation and vulnerability summarization. Existing literature
have used transfer learning for defect prediction [111] [112]
[113]. Since, vulnerability classification research uses similar
metrics as defect prediction [54], it might be possible to use
transfer learning in vulnerability-related research success-
fully.

VII. THREATS TO VALIDITY
In this section, we discuss the limitation of our SMS.
• Conclusion Validity: We apply a set of inclusion and ex-

clusion criteria for selecting publications that use security

bug reports for software vulnerability research. We ac-
knowledge that the selection process for these publications
can be subjective, with the possibility of missing relevant
publications. We reduce subjectivity by using two raters
who have independently identified which publications use
security bug reports for software vulnerability research.
We also used open coding to determine the topics that
are explored in the selected publications. We acknowledge
the process of generating topics may be subjective. We
mitigate this limitation by using two qualitative raters who
independently perform the process.

• External Validity: Our findings are not generalizable as
our SMS depends on our collection of 46 publications
collected in August 2020. We mitigate this threat by using
five scholar databases recommended by Kurhamm et al.
[25]. To mitigate this limitation we used two raters, and
reported all the inclusion/exclusion reasons as suggested
by Kitchenham et al. [8].

• Internal Validity: We acknowledge that our search pro-
cess is not comprehensive. We used five scholar databases
to mitigate this limitation. Our two search strings also
might not be comprehensive, as the search strings may
leave out publications during the search process. We mit-
igated this limitation by constructing a quasi gold set and
measuring the quasi-sensitivity metric (QSM) with a score
of 1.0.

VIII. CONCLUSION
Characterization of vulnerabilities in software projects is
pivotal to secure software development. An SMS of publica-
tions that use security bug reports for software vulnerability
research can characterize existing publications and lay the
groundwork to conduct new research activities, which may
yield techniques and tools to facilitate secure software devel-
opment.

Using five scholar databases, we identify 46 publications
that use security bug reports through a systematic inclusion
and exclusion criteria. We identify three topics that are ad-
dressed in our set of 46 publications by conducting open
coding. These three topics are: (i) vulnerability classifica-
tion, (ii) vulnerability summarization, and (iii) vulnerabil-
ity dataset construction. Vulnerability classification is the
most frequently investigated topic in our set of publications.
We also observe that text mining, application of statistical
learners, and use of classification and regression metrics, are
commonly used techniques in publications that use security
bug reports for software vulnerability research.

Although these papers have advanced the field of vulner-
ability analysis, our SMS indicates that there are potential
research opportunities for further development in this field.
As vulnerabilities in software systems can cause serious
consequences, we advocate for research studies that derive
techniques for improving classification results that can help
practitioners in early mitigation of software vulnerabilities.
With regard to the reporting of research results, we advise
researchers to follow the guidelines from Kitchenham et
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al. [8] on writing good publications. We hope our SMS will
facilitate more research in the domain of software vulnerabil-
ities.
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A. Appendix
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QG2 Scandariato, Riccardo, et al. "Predicting vulnerable software components via text mining."

IEEE Transactions on Software Engineering 40.10 (2014): 993-1006.
QG3 Gegick, Michael, Pete Rotella, and Tao Xie. "Identifying security bug reports via text mining:

An industrial case study." 2010 7th IEEE Working Conference on Mining Software Reposi-
tories (MSR 2010). IEEE, 2010.

QG4 Goseva-Popstojanova, Katerina, and Jacob Tyo. "Identification of security related bug reports
via text mining using supervised and unsupervised classification." 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE, 2018.

QG5 Wijayasekara, Dumidu, et al. "Mining bug databases for unidentified software vulnerabili-
ties." 2012 5th International Conference on Human System Interactions. IEEE, 2012.

QG6 Wijayasekara, Dumidu, Milos Manic, and Miles McQueen. "Vulnerability identification and
classification via text mining bug databases." IECON 2014-40th Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 2014.

QG7 Peters, Fayola, et al. "Text filtering and ranking for security bug report prediction." IEEE
Transactions on Software Engineering (2017).

QG8 Shin, Yonghee, et al. "Evaluating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities." IEEE transactions on software engineering 37.6
(2010): 772-787.

QG9 Neuhaus, Stephan, et al. "Predicting vulnerable software components." Proceedings of the
14th ACM conference on Computer and communications security. 2007.

QG10 Walden, James, Jeff Stuckman, and Riccardo Scandariato. "Predicting vulnerable compo-
nents: Software metrics vs text mining." 2014 IEEE 25th international symposium on soft-
ware reliability engineering. IEEE, 2014.

Table A2: List of 46 Publications for the Systematic Mapping Study
Index Publication
P1 Williams, Mark A., et al. "A vulnerability analysis and prediction framework." Computers &

Security 92 (2020): 101751.
P2 Chen, Jinfu, et al. "An Automatic Software Vulnerability Classification Framework Using

Term Frequency-Inverse Gravity Moment and Feature Selection." Journal of Systems and
Software (2020): 110616.

P3 Shin, Yonghee, and Laurie Williams. "Can traditional fault prediction models be used for
vulnerability prediction?." Empirical Software Engineering 18.1 (2013): 25-59.

P4 Theisen, Christopher, and Laurie Williams. "Better together: Comparing vulnerability pre-
diction models." Information and Software Technology 119 (2020): 106204.

P5 Wu, Xiaoxue, et al. "CVE-assisted large-scale security bug report dataset construction
method." Journal of Systems and Software 160 (2020): 110456.

P6 Shin, Yonghee, et al. "Evaluating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities." IEEE transactions on software engineering 37.6
(2010): 772-787.

P7 Jiang, Yuan, et al. "LTRWES: A new framework for security bug report detection." Informa-
tion and Software Technology (2020): 106314.

P8 Alhazmi, Omar H., Yashwant K. Malaiya, and Indrajit Ray. "Measuring, analyzing and pre-
dicting security vulnerabilities in software systems." computers & security 26.3 (2007): 219-
228.
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Table A2 – continued from previous page
Index Publication
P9 Russo, Ernesto Rosario, et al. "Summarizing vulnerabilities’ descriptions to support experts

during vulnerability assessment activities." Journal of Systems and Software 156 (2019): 84-
99.

P10 Chen, Yang, et al. "A Machine Learning Approach for Vulnerability Curation." Proceedings
of the 17th International Conference on Mining Software Repositories. 2020.

P11 Patel, Krishna A., and Rohan C. Prajapati. "A Survey-Vulnerability Classification of Bug
Reports using Multiple Machine Learning Approach." Compusoft 5.3 (2016): 2071.

P12 Behl, Diksha, Sahil Handa, and Anuja Arora. "A bug mining tool to identify and analyze
security bugs using naive bayes and tf-idf." 2014 International Conference on Reliability Op-
timization and Information Technology (ICROIT). IEEE, 2014.

P13 Zhang, Su, Doina Caragea, and Xinming Ou. "An empirical study on using the national vul-
nerability database to predict software vulnerabilities." International conference on database
and expert systems applications. Springer, Berlin, Heidelberg, 2011.

P14 Jimenez, Matthieu, et al. "An Empirical Study on Vulnerability Prediction of Open-Source
Software Releases." Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 2019.

P15 Gonzalez, Danielle, Holly Hastings, and Mehdi Mirakhorli. "Automated Characterization of
Software Vulnerabilities." 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2019.

P16 Zhou, Yaqin, and Asankhaya Sharma. "Automated identification of security issues from com-
mit messages and bug reports." Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. 2017.

P17 Huang, Guoyan, et al. "Automatic classification method for software vulnerability based on
deep neural network." IEEE Access 7 (2019): 28291-28298.

P18 Gawron, Marian, Feng Cheng, and Christoph Meinel. "Automatic vulnerability classifica-
tion using machine learning." International Conference on Risks and Security of Internet and
Systems. Springer, Cham, 2017.

P19 Zou, Deqing, et al. "Automatically identifying security bug reports via multitype features
analysis." Australasian Conference on Information Security and Privacy. Springer, Cham,
2018.

P20 Shu, Rui, et al. "Better security bug report classification via hyperparameter optimization."
arXiv preprint arXiv:1905.06872 (2019).

P21 Chen, Qiuyuan, et al. "Categorizing and predicting invalid vulnerabilities on common vulner-
abilities and exposures." 2018 25th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2018.

P22 Adhikari, Thamali Madhushani, and YanWu. "Classifying Software Vulnerabilities by Using
the Bugs Framework." 2020 8th International Symposium on Digital Forensics and Security
(ISDFS). IEEE, 2020.

P23 Goseva-Popstojanova, Katerina, and Jacob Tyo. "Experience report: security vulnerability
profiles of mission critical software: empirical analysis of security related bug reports." 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
2017.

P24 Goseva-Popstojanova, Katerina, and Jacob Tyo. "Identification of security related bug reports
via text mining using supervised and unsupervised classification." 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE, 2018.

P25 Pereira, Mayana, Alok Kumar, and Scott Cristiansen. "Identifying Security Bug Reports
Based Solely on Report Titles andNoisy Data." 2019 IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE, 2019.

P26 Yu, Zhe, et al. "Improving vulnerability inspection efficiency using active learning." IEEE
Transactions on Software Engineering (2019).

P27 Gegick, Michael, Pete Rotella, and Tao Xie. "Identifying security bug reports via text mining:
An industrial case study." 2010 7th IEEE Working Conference on Mining Software Reposi-
tories (MSR 2010). IEEE, 2010.
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Table A2 – continued from previous page
Index Publication
P28 Han, Zhuobing, et al. "Learning to predict severity of software vulnerability using only vul-

nerability description." 2017 IEEE International Conference on Software Maintenance and
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P29 Wijayasekara, Dumidu, et al. "Mining bug databases for unidentified software vulnerabili-
ties." 2012 5th International Conference on Human System Interactions. IEEE, 2012.

P30 Bulut, FatmaGül, HalukAltunel, andAyşe Tosun. "Predicting SoftwareVulnerabilities Using
Topic Modeling with Issues." 2019 4th International Conference on Computer Science and
Engineering (UBMK). IEEE, 2019.

P31 Walden, James, Jeff Stuckman, and Riccardo Scandariato. "Predicting vulnerable compo-
nents: Software metrics vs text mining." 2014 IEEE 25th international symposium on soft-
ware reliability engineering. IEEE, 2014.

P32 Neuhaus, Stephan, et al. "Predicting vulnerable software components." Proceedings of the
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P33 Gromova, Anna, et al. "Raising the Quality of Bug Reports by Predicting Software Defect
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Security Companion (QRS-C). IEEE, 2019.
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P35 Mostafa, Shaikh, et al. "SAIS: Self-Adaptive Identification of Security Bug Reports." IEEE
Transactions on Dependable and Secure Computing (2019).
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P37 Peters, Fayola, et al. "Text filtering and ranking for security bug report prediction." IEEE
Transactions on Software Engineering (2017).

P38 Peeples, Cody R., Pete Rotella, and Mark-David McLaughlin. "Textual analysis of security
bug reports." 2017 IEEE International Symposium on Technologies for Homeland Security
(HST). IEEE, 2017.

P39 Kudjo, Patrick Kwaku, et al. "The effect of Bellwether analysis on software vulnerability
severity prediction models." Software Quality Journal (2020): 1-34.

P40 Sultana, Kazi Zakia. "Towards a software vulnerability prediction model using traceable code
patterns and software metrics." 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2017.

P41 Feng, Xuan, et al. "Understanding and securing device vulnerabilities through automated bug
report analysis." SEC’19: Proceedings of the 28th USENIX Conference on Security Sympo-
sium. 2019.

P42 Smith, Ben, and LaurieWilliams. "Using SQL hotspots in a prioritization heuristic for detect-
ing all types of web application vulnerabilities." 2011 Fourth IEEE International Conference
on Software Testing, Verification and Validation. IEEE, 2011.

P43 Last, David. "Using historical software vulnerability data to forecast future vulnerabilities."
2015 Resilience Week (RWS). IEEE, 2015.

P44 Jimenez, Matthieu, Mike Papadakis, and Yves Le Traon. "Vulnerability prediction models: A
case study on the linux kernel." 2016 IEEE 16th International Working Conference on Source
Code Analysis and Manipulation (SCAM). IEEE, 2016.

P45 Wijayasekara, Dumidu, Milos Manic, and Miles McQueen. "Vulnerability identification and
classification via text mining bug databases." IECON 2014-40th Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 2014.
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