
Department: Head
Editor: Name, xxxx@email

A Different Kind of Smell :
Security Smells in
Infrastructure as Code Scripts

Rahman, Akond
Tennessee Technological University

Williams, Laurie
North Carolina State University

Abstract—
In this paper we summarize our recent research findings related to infrastructure as code (IaC)
scripts where we have identified 67,801 occurrences of security smells that include 9,175
hard-coded passwords. We hope our paper will facilitate awareness amongst practitioners who
use IaC.
Keywords: ansible, chef, empirical study, puppet, security smell, infrastructure as code

THE INTRODUCTION System administrators
(sysadmins) are involved in critical tasks, includ-
ing setting up user accounts, installing package
dependencies to maintain development and de-
ployment environments, and fulfilling information
technology (IT) support management. For a long
time, sysadmins developed and maintained cus-
tom BASH/Perl scripts to perform their tasks [9].
Recently, with the wide-spread availability of
cloud computing resources, manually executing
custom scripts has become error prone and time
consuming. Imagine you want to create a text
file with the text ‘Hello world!’. One way you
can achieve this task is to open a file, write in
the content, and setting the permission settings
using chmod or by changing the properties of the

file. This process is manual, and would not scale
if you want to create the same file across 1,000
Amazon Web Services (AWS) instances, as you
have to login to these instances one at a time,
and perform the above-mentioned steps. With the
practice of infrastructure as code (IaC) sysadmins
can now execute a single IaC script once, and
execute the task of creating a text file in 1,000
AWS instances.

Infrastructure as code (IaC) scripts help prac-
titioners to provision and configure their devel-
opment environment and servers at scale [9].
Commercial IaC tool vendors, such as Chef and
Puppet, provide programming syntax and libraries
so that programmers can specify configuration
and dependency information as scripts. Similar
to software source code, IaC scripts are treated

IEEE Security and Privacy Published by the IEEE Computer Society c© 2020 IEEE 1

Preprin
t

Department Head

as ‘first class citizens’ i.e. these scripts undergo
software quality activities, such as linting and
testing, and also maintained in a version control
system (VCS) system [9].

The information technology (IT) industry has
experienced benefits with the usage of IaC. For
example, the Intercontinental Exchange (ICE),
which runs millions of financial transactions
daily [10], maintains 75% of its 20,000 servers
using IaC scripts [7]. The use of IaC scripts has
helped ICE decrease the time needed to provision
development environments from 1∼2 days to 21
minutes [7]. A wide variety of tools exist to
implement IaC, e.g., Ansible, Chef, Puppet, Salt-
Stack, and Terraform. According to a RightScale
2019 State of the Cloud report, which conducted
a survey with 786 practitioners, Ansible is per-
ceived as the most popular tool to implement
IaC [1].

Despite these reported benefits, in the open
source software (OSS) domain, IaC scripts may
be susceptible to security weaknesses, such as
hard-coded passwords. Hard-coded passwords
can give the pathway to a malicious user to
attack the system. Anecdotes like this example,
motivated us to look into this problem in detail,
taking a systematic approach.

Our paper summarizes our findings from our
recent work [10], [12] in which we answer the
following questions:
• What categories of security smells appear in

Infrastructure as Code scripts?
• How frequently do security smells appear in

Infrastructure as Code scripts?
• What do practitioners think about the identi-

fied security smells in Infrastructure as Code
scripts?

We build on our previously-published research
to synthesize and disseminate our findings to a
practitioner-focused community. Our additional
contribution is that we infer actionable insights
and lessons that practitioner can discuss and apply
to IaC development. These insights and lessons
can be leveraged to integrate security early in the
development process of IaC.

What categories of security smells
appear?

A code smell is a recurrent coding pattern
that is indicative of potential maintenance prob-

lems [4]. A code smell may not always have bad
consequences, but still deserves attention, as a
code smell may be an indicator of a problem [4].
Our paper focuses on identifying security smells.
Security smells are recurring coding patterns that
are indicative of security weakness and warrant
further inspection [10].

Security smells are different from vulnerabili-
ties, as they are coding patterns that are indicative
of a weakness. A vulnerability is defined as a
weakness, which can be used by a party to cause
a software to modify or access unintended data,
interrupt proper execution, or perform incorrect
actions that were not specifically granted to the
party. Labeling a coding pattern as a vulnerability
necessitates consideration of application context,
which is not applicable for security smells. Se-
curity smells provide a mechanism for security-
focused inspection that may or may not lead to
a vulnerability but deserves attention, inspection,
and if necessary, mitigation. Let us consider
an example of hard-coded secret. A hard-coded
secret, such as a hard-coded password is only
relevant if the password is used to login to a
software system. Understanding whether or not
the password is being used for a login can be
determined by understanding program context,
possibly by using data flow analysis. Our analysis
does not capture these contexts, which motivated
us to use the term security smell instead of
vulnerability.

Methodology
To identify security smells, we apply manual

analysis with a set of 3,339 Ansible, Chef, and
Puppet scripts to determine security smells. A
summary of the collected scripts is available in
Table 1. The 29 repositories used in our manual
analysis were downloaded on November 2016
by cloning the master branches. The Puppet-
related repositories were collected from Mozilla,
whereas, the Ansible and Chef-related reposito-
ries were collected from Openstack.

To derive what security smells appear, we
first apply a qualitative analysis technique called
open coding on 1,726 scripts to identify security
smells. Next, we map each identified smell to a
possible security weakness defined by the Mitre
Common Weakness Enumeration (CWE) [5].

2 IEEE Security and Privacy

Preprin
t

Table 1. Summary Statistics of Collected Scripts to Determine Security Smells
Lang. Duration Repository Count Org. Script Count
Ansible 2014-02 to 2016-11 16 Openstack 1,101
Chef 2011-05 to 2016-11 11 Openstack 855
Puppet 2014-09 to 2016-11 2 Mozilla 1,383

Findings
We found nine security smells from our col-

lection of Ansible, Chef, and Puppet scripts. Not
all smells appear for all three tools. A complete
mapping of each security smell and the tool it
appears for is listed in Table 2.
Admin by default: This smell is the recurring
pattern of specifying default users as administra-
tive users. The smell can violate the ‘principle of
least privilege’ property [6], which recommends
practitioners design and implement a system in a
manner so that, by default, the least amount of
access necessary is provided to any entity.
Empty password: This smell is the recurring
pattern of using a string of length zero for a
password. An empty password is indicative of
a weak password. An empty password does not
always lead to a security breach, but makes it
easier to guess the password. For example, if your
MySQL server allows ‘root’ access from a remote
machine and the superuser ‘root’ has an empty
password then anyone can connect with your
MySQL server without a password with all privi-
leges. An empty password is different from using
no passwords. In SSH key-based authentication,
instead of passwords, public and private keys can
be used. Our definition of empty password does
not include usage of no passwords and focuses on
attributes/variables that are related to passwords
and assigned an empty string. Empty passwords
are not included in hard-coded secrets because for
a hard-coded secret, a configuration value must be
a string of length one or more.
Hard-coded secret: This smell is the recurring
pattern of revealing sensitive information such
as user name and passwords as configurations in
IaC scripts. IaC scripts provide the opportunity to
specify configurations for the entire system, such
as configuring user name and password, setting
up SSH keys for users, specifying authentications
files (creating key-pair files for Amazon Web
Services). However, in the process programmers
can hard-code these pieces of information into
scripts. We consider three types of hard-coded

secrets: hard-coded passwords, hard-coded user
names, and hard-coded private cryptography keys.
Unrestricted IP address binding: This smell
is the recurring pattern of assigning the address
0.0.0.0 for a database server or a cloud ser-
vice/instance. Binding to the address 0.0.0.0 may
cause security concerns as this address can allow
connections from every possible network. Such
binding can cause security problems as the server,
service, or instance will be exposed to all IP
addresses for connection. For example, practition-
ers have reported how binding to 0.0.0.0 facili-
tated security problems for MySQL, Memcached
(cloud-based cache service) and Kibana (cloud-
based visualization service). We acknowledge that
an organization can opt to bind a database server
or cloud instance to 0.0.0.0, but this case may not
be desirable overall.
Missing Default in Case Statement This smell
is the recurring pattern of not handling all input
combinations when implementing a case condi-
tional logic. Because of this coding pattern, an
attacker can guess a value, which is not handled
by the case conditional statements and trigger
an error. Such error can provide the attacker
unauthorized information for the system in terms
of stack traces or system error.
No integrity check This smell is the recurring
pattern of not checking repository content that is
being downloaded using checksums and gpg sig-
natures. By not checking for integrity, a developer
assumes the downloaded content is secure and has
not been corrupted by a potential attacker.
Suspicious comment: This smell is the recurring
pattern of putting information in comments about
the presence of defects, missing functionality, or
weakness of the system. If you put a comment in
your scripts that include certain keywords such
as ‘TODO’, ‘FIXME’, and ‘HACK’, along with
putting bug information in comments then it may
reveal about missing functionalities of your sys-
tem. However, these keywords make a comment
‘suspicious’ i.e., indicating missing functionality
about the system.

May/June 2020 3

Preprin
t

Department Head

Table 2. Mapping of Security Smell and Corresponding IaC Tool
Security Smell Tool Corresponding CWE
Admin by default Chef, Puppet CWE-250: Execution with Unnecessary Privileges
Empty password Ansible, Puppet CWE-258: Empty Password in Configuration File
Hard-coded secret Ansible, Chef, Puppet CWE-798: Use of Hard-coded Credentials
Invalid IP address binding Ansible, Chef, Puppet CWE-284: Improper Access Control
Missing Default in Case Chef CWE-478: Missing Default Case in Switch Statement
No Integrity Check Ansible, Chef CWE-353: Missing Support for Integrity Check
Suspicious comment Ansible, Chef, Puppet CWE-546: Suspicious Comment
Use of HTTP Without TLS Ansible, Chef, Puppet CWE-319: Cleartext Transmission of Sensitive Information
Use of Weak Crypto. Algorithm Ansible, Puppet CWE-326: Inadequate Encryption Strength

Use of HTTP Without TLS: This smell is
the recurring pattern of using HTTP without the
Transport Layer Security (TLS). Such use makes
the communication between two entities less se-
cure, as without TLS, use of HTTP is susceptible
to man-in-the-middle attacks [13]. For example,
if you connect with your MySQL server without
TLS then the connection between your system
with MySQL server is not private and secure
because any third party can listen and modify
information on this communication.
Use of Weak Crypto. Algorithms: This smell is
the recurring pattern of using weak cryptography
algorithms, such as MD5 and SHA-1 for encryp-
tion purposes. When weak algorithms, such as
MD5 and SHA1, are used for hashing that may
not lead to a breach, but using MD5 for password
setup may.

How frequently do security smells
appear?

As the next step, we want to identify if
these security smells are prevalent in the OSS
domain. By doing such empirical analysis we can
not only understand the current state of security
smell prevalence in IaC scripts, but also create
benchmarks that practitioners can leverage. We
conduct quantitative analysis by first constructing
a static analysis tool, and then applying the tool
on OSS repositories with IaC scripts.

Methodology
Static Analysis Tool: We construct a tool

called Security Linter for Infrastructure as Code
(SLIC), to automatically identify security smells
for Ansible, Chef, and Puppet. SLIC uses a set of
rules to identify security smells in Ansible, Chef,
and Puppet scripts. The benefit of these rules is
that practitioners can build their own tools that
they are using for configuration and automated

infrastructure management within their organiza-
tion. The source code of the tool is available
online [8], [11].

Repository collection: We apply a systematic
filtering criteria to filter out repositories needed
for frequency analysis. Summary attributes of the
collected repositories are available in Table 3. All
1,094 repositories used for automated analysis
were downloaded on April 2019 by cloning the
master branches.
Metrics: First, we apply SLIC to determine the
security smell occurrences for each script. Sec-
ond, we calculate two metrics described below:
• Smell Density: We use smell density to mea-

sure the frequency of a security smell x, for
every 1000 lines of code (LOC). We measure
smell density using Equation 1.

Smell Density (x) =
Total occurrences of x

Total line count for all scripts/1000
(1)

• Proportion of Scripts (Script%): We use the
metric ‘Proportion of Scripts’ to quantify how
many scripts have at least one security smell.
This metric refers to the percentage of scripts
that contain at least one occurrence of smell x.
The two metrics characterize the frequency

of security smells differently. The smell density
metric is more granular, and focuses on the con-
tent of a script as measured by how many smells
occur for every 1000 LOC. The proportion of
scripts metric is less granular and focuses on the
existence of at least one of the seven security
smells for all scripts.

Findings
To quantify frequency of security smells in

IaC scripts we collect 14,253 Ansible, 36,070
Chef, and 10,774 Puppet scripts respectively, col-
lected from 365, 449, and 280 repositories. We

4 IEEE Security and Privacy

Preprin
t

Table 3. Summary Attributes of the Datasets
Ansible Chef Puppet

Attribute GH OST GH OST GH OST
Repository Count 349 16 438 11 219 61
Total File Count 498,752 4,487 126,958 2,742 72,817 12,681
Total Script Count 13,152 1,101 35,132 938 8,010 2,764
Tot. LOC (IaC Scripts) 602,982 52,239 1,981,203 63,339 424,184 214,541

observe our identified security smells to exist
across all datasets. For Ansible, in our GitHub
and Openstack datasets we observe respectively
25.3% and 29.6% of the total scripts to contain
at least one of the six identified security smells.
For Chef, in our GitHub and Openstack datasets
we observe respectively 20.5% and 30.4% of the
total scripts to contain at least one of the eight
identified security smells. For Puppet, in GitHub
and Openstack datasets we observe proportion
of scripts to be respectively, 29.3% and 32.9%.
Hard-coded secret is the most prevalent security
smell with respect to occurrences, smell den-
sity, and proportion of scripts contain hard-coded
secrets. A complete breakdown of frequency-
related findings for Ansible, Chef, and Puppet is
respectively presented in Tables 4, 5, and 6.

Occurrences: The occurrences of the security
smells are presented in the ‘Occurrences’ col-
umn of Table 4 for all six datasets. In Table 4
‘N/A’ indicates the security smell category is
not applicable for the tool. For example, admin
be default is not applicable for Ansible, as the
category was not identified during qualitative
analysis. The ‘Combined’ row presents the total
smell occurrences. In the case of Ansible scripts,
we observe 18,353 occurrences of security smells,
and for Chef, we observe 28,247 occurrences of
security smells. For Puppet we observe 17,756
occurrences of security smells. For Ansible, we
identify 15,131 occurrences of hard-coded se-
crets, of which 55.9%, 37.0%, and 7.1% are
respectively, hard-coded keys, user names, and
passwords. For Chef, we identify 15,363 occur-
rences of hard-coded secrets, of which 47.0%,
8.9%, and 44.1% are respectively, hard-coded
keys, user names, and passwords. For Puppet,
we identify 14,444 occurrences of hard-coded
secrets, of which 68.6%, 22.9%, and 8.5% are
respectively, hard-coded keys, user names, and
passwords.

Smell Density: In Table 5, we report the
smell density for all datasets. The ‘Combined’

row presents the smell density for each dataset
when all seven security smell occurrences are
considered. For all six datasets, we observe the
dominant security smell to be ‘Hard-coded se-
cret’. In Table 5 ‘N/A’ indicates the security smell
category is not applicable for a tool. For example,
‘admin by default’ is not applicable for Ansible
as the smell category was not identified as part
of our manual analysis.

Proportion of Scripts (Script%): In Table 6,
we report the proportion of scripts (Script %)
values for each of the six datasets. The ‘Com-
bined’ row represents the proportion of scripts
in which at least one of the identified smells
appear. In Table 6 ‘N/A’ indicates the security
smell category is not applicable for a tool, e.g.,
‘admin by default’ is not applicable for Ansible.

Our findings related to security smell fre-
quency can be summarized as following:
• Approximately, 17.9%∼32.9% of IaC

scripts in our dataset include at least one
category of security smell.

• For every 1,000 lines of IaC code, security
smells appear in 13.3∼31.5 LOC in IaC
scripts.

• With respect to script proportion and smell
density, the most frequently occurring secu-
rity smell category is hard-coded secret. In
our datasets, 6.8%∼24.8% of the collected
scripts include at least one hard-coded se-
cret. Furthermore, for every 1,000 lines of
code for IaC scripts, 7.1%∼25.6 hard-coded
secrets to appear. Hard-coded passwords are
common: on average, 1 hard-coded pass-
words appear in 7 IaC scripts.

• Considering script proportion and smell den-
sity, the use of weak cryptography algo-
rithms, is less than 1.0 across all datasets.

What do practitioners think about
identified security smells?

Now that we have empirical evidence that
shows security smells are rampant in OSS IaC

May/June 2020 5

Preprin
t

Department Head

Table 4. Smell Occurrences for Ansible, Chef, and Puppet scripts
Ansible Chef Puppet

Smell Name GH OST GH OST GH OST
Admin by default N/A N/A 301 61 52 35
Empty password 298 3 N/A N/A 136 21
Hard-coded secret 14,409 722 14,160 1,203 10,892 3,552
Missing default in switch N/A N/A 953 68 N/A N/A
No integrity check 194 14 2,249 132 N/A N/A
Suspicious comment 1,421 138 3,029 161 758 305
Unrestricted IP address 129 7 591 19 188 114
Use of HTTP without TLS 934 84 4,898 326 1,018 460
Use of weak crypto algo. N/A N/A 94 2 177 48
Combined 17,385 968 26,275 1,972 13,221 4,535

Table 5. Smell Density for Ansible, Chef, and Puppet scripts
Ansible Chef Puppet

Smell Name GH OST GH OST GH OST
Admin by default N/A N/A 0.1 0.9 0.1 0.1
Empty password 0.49 0.06 N/A N/A 0.3 0.1
Hard-coded secret 23.9 13.8 7.1 19.0 25.6 16.5
Missing default in switch N/A N/A 0.5 1.0 N/A N/A
No integrity check 0.3 0.2 1.1 2.1 N/A N/A
Suspicious comment 2.3 2.6 1.5 2.5 1.7 1.4
Unrestricted IP address 0.2 0.1 0.3 0.3 0.4 0.5
Use of HTTP without TLS 1.5 1.6 2.4 5.1 2.4 2.1
Use of weak crypto algo. N/A N/A 0.05 0.03 0.4 0.1
Combined 28.8 18.5 13.3 31.5 25.3 29.6

Table 6. Proportion of Scripts With At Least One Smell for Ansible, Chef, and Puppet scripts
Ansible Chef Puppet

Smell Name GH OST GH OST GH OST
Admin by default N/A N/A 0.3 2.1 0.6 1.1
Empty password 1.1 0.2 N/A N/A 1.4 0.5
Hard-coded secret 19.2 22.4 6.8 15.9 21.9 24.8
Missing default in switch N/A N/A 2.5 6.5 N/A N/A
No integrity check 1.1 1.0 3.6 3.8 N/A N/A
Suspicious comment 6.3 8.0 6.6 9.3 5.9 7.2
Unrestricted IP address 0.5 0.4 1.1 1.0 1.7 2.9
Use of HTTP without TLS 3.7 3.0 4.9 6.9 6.3 8.5
Use of weak crypto algo. N/A N/A 0.2 0.1 0.9 0.5
Combined 25.3 29.6 20.5 30.4 29.3 32.9

scripts, we wanted to get feedback from OSS
practitioners for a random subset of the identified
security smells. We provide our methodology and
results below:

Methodology
We gather feedback using bug reports on

how practitioners perceive the identified security
smells. We apply the following procedure:

First, we randomly select 500 occurrences of
security smells for each of Ansible, Chef, and
Puppet scripts. Second, we post a bug report for
each occurrence, describing the following items:
smell name, brief description, related CWE, and
the script where the smell occurred. Third, we
determine a practitioner to agree with a security
smell occurrence if (i) the practitioner replies to
the submitted bug report explicitly saying the

practitioner agrees; or (ii) the practitioner fixes
the security smell occurrence in the specified
script as determined by re-running SLIC on IaC
scripts, for which we submitted bug reports. If
the security smell does not exist in the script
of interest, then we determine the smell to be
fixed. We report disagreements if the practitioner
(i) closes the issue report without discussion;
or (ii) explicitly reports the identified security
smell instances as a false positive or irrelevant.
If no actions are taken related to agreement or
disagreement, then we report ‘no response’.

Findings
In the case of Ansible scripts, we observe an

agreement of 82.7% for 29 smell occurrences.
For Chef scripts, we observe an agreement of
55.5% for 54 smell occurrences. In the case

6 IEEE Security and Privacy

Preprin
t

of Puppet scripts, we observe an agreement of
63.4% for 104 smell occurrences. The percentage
of smells to which practitioners agreed to be fixed
for Ansible, Chef, and Puppet is respectively,
presented in Figures 1, 2, and 3. For each of
the figures, the y-axis represents each smell name
followed by the occurrence count. For example,
according to Figure 1, for 4 occurrences of ‘Use
of HTTP without TLS’ (HTTP.USG), we observe
100% agreement for Ansible scripts.

Reasons for Practitioner Agreements: In their
response, practitioners provided reasoning on
why these smells appeared. For one occurrence of
‘HTTP without TLS’ in a Chef script, one practi-
tioner suggested availability of a HTTPS endpoint
saying: “In this case, I think it was just me being
a bit sloppy: the HTTPS endpoint is available so I
should have used that to download RStudio pack-
ages from the start”. For an occurrence of hard-
coded secret in an Ansible script one practitioner
agreed stating possible solutions: “I agree that it
[hard-coded secret] could be in an Ansible vault
or something dedicated to secret storage.”. Upon
acceptance of the smell occurrences, practitioners
also suggested how these smells can be mitigated.
For example, for an occurrence of ‘Unrestricted
IP Address’ in a Puppet script, one practitioner
stated:“I would accept a pull request to do a
default of 127.0.0.1”.

Reasons for Practitioner Disagreements: We
observe practitioners to value development con-
text when disagreeing with security smell oc-
currences. For example, a hard-coded password
may not seem to have security implications for
practitioners if the hard-coded password is used
for testing purposes. One practitioner disagreed
stating “the code in question is an integration test.
The username and password is not used anywhere
else so this should be no issue.”. These anecdo-
tal evidence suggests that while developing IaC
scripts practitioners may only be considering their
own development context, and not realizing how
another practitioner may perceive use of these
security smells as an acceptable practice. For
one occurrence of ‘HTTP Without TLS’ in a
Puppet script one practitioner disagreed stating
“It’s using http on localhost, what’s the risk?”.

The above-mentioned statements from dis-
agreeing practitioners also suggest a lack of secu-
rity awareness, e.g. if a developer comes across

the script of interest mentioned in the above-
mentioned paragraph, the developer may perceive
the use of hard-coded passwords to be an accept-
able practice, potentially propagating the practice
of hard-coded secrets. Another practitioner sug-
gested that human intervention is also necessary
when dealing with static analysis tool alerts:
“Human intervention is likely the best principled
action, here.”

What Did We Learn?
We learn that for IaC scripts security smells

are prevalent. The most frequent security smell
category is hard-coded secret. However, hard-
coded secrets are not the only security smell cat-
egory, other categories exist as well for example,
use of weak cryptography algorithm and unre-
stricted IP address. Our findings show that well-
known security smells that appear for existing
languages, such as Java also appear for IaC.

One possible explanation can attribute to the
prevalence of hard-coded secrets: the nature of
IaC development i.e. if practitioners are setting
up user accounts, then user names and passwords
are likely to be specified in IaC scripts. Another
possible explanation could be lack of credential
tool availability and usage: may be practitioners
do not have good enough tools to manage the
passwords and usernames in IaC scripts. They
also may not be aware of credential tool man-
agement that already exists for IaC, such as Vault.
Lack of cybersecurity awareness could be another
possible explanation. Practitioners who develop
IaC scripts may not be aware of the consequences
of security smells, and they may have contributed
to the prevalence of security smells.

Implications for Practitioners
Our research can have implications for prac-

titioners, which we describe below:

Look Before You Push
Practitioners can leverage our work to prior-

itize which coding patterns they should look for
to mitigate security issues. If an organization uses
code review as part of their IaC development
process, then the team members can use the
listed security smells as a guide. If a team does
not use the code review process, the team may
benefit from adopting a code review process,

May/June 2020 7

Preprin
t

Department Head

INVA.IP_2

INTE.CHEC_3

EMPT.PASS_3

SUSP.COMM_5

HARD.CODE.SECR_12

HTTP.USG_4

0% 25% 50% 75% 100%

Percentage

S
ec

ur
ity

 S
m

el
l

Disagree Agree

Figure 1. Feedback for 29 smell occurrences for Ansible. Practitioners agreed with 82.7% of the selected smell
occurrences.

SUSP.COMM_17

DFLT.ADMN_2

INTE.CHEC_2

HARD.CODE.SECR_10

HTTP.USG_10

WEAK.CRYP_9

MISS_DFLT_1

INVA.IP_3

0% 25% 50% 75% 100%

Percentage

S
ec

ur
ity

 S
m

el
l

Disagree Agree

Figure 2. Feedback for 54 smell occurrences for Chef. Practitioners agreed with 55.5% of the selected smell
occurrences.

which will flag the security smells. Some of
the identified security smells in IaC scripts are
examples of security misconfigurations that have
been attributed to cause large-scale breaches, as
happened for the Cloud Hospitality attack where
over 10 million people’s personal data was ex-
posed due to a cloud-based misconfiguration [15].
Security-focused code review can help practition-
ers mitigate such attacks that can be potentially
caused by IaC scripts as they are heavily used in
automated configuration management.

Early Mitigation
For each category of security smell, we list

mitigation techniques that developers can adopt
while developing IaC scripts:

• Admin by default: We advise practitioners
to create user accounts that have the mini-
mum possible security privilege and use that
account as default. Recommendations from
Saltzer and Schroeder [14] may be helpful
in this regard.

• Empty password: We advocate against stor-
ing empty passwords in IaC scripts. Instead,
we suggest the use of strong passwords.

• Hard-coded secret: We suggest the follow-
ing measures to mitigate hard-coded secrets:
– use tools such as Vault to store secrets
– scan IaC scripts to search for hard-coded

secrets using tools such as CredScan and
SLIC.

8 IEEE Security and Privacy

Preprin
t

SUSP.COMM_15

DFLT.ADMN_9

EMPT.PASS_7

HARD.CODE.SECR_30

INVA.IP_15

HTTP.USG_19

WEAK.CRYP_9

0% 25% 50% 75% 100%

Percentage

S
ec

ur
ity

 S
m

el
l

Disagree Agree

Figure 3. Feedback for 104 smell occurrences for Puppet. Practitioners agreed with 63.4% of the selected
smell occurrences.

• Invalid IP address binding: To mitigate this
smell, we advise programmers to allocate
their IP addresses systematically based on
which services and resources need to be
provisioned. For example, incoming and out-
going connections for a database containing
sensitive information can be restricted to a
certain IP address and port.

• Missing default in case statement: We
advise programmers to always add a default
‘else’ block so that unexpected input does
not trigger events, which can expose infor-
mation about the system.

• No integrity check: As IaC scripts are
used to download and install packages and
repositories at scale, we advise practition-
ers to always check downloaded content by
computing hashes of the content or checking
with GPG signatures.

• Suspicious comment: We acknowledge that
in OSS development, programmers may be
introducing suspicious comments to facili-
tate collaborative development and to pro-
vide clues on why the corresponding code
changes are made.

• Use of HTTP without TLS: We advocate
companies to adopt the HTTP with TLS by
leveraging resources provided by tool ven-
dors. We advocate for better documentation
and tool support so that programmers do not
abandon the process of setting up HTTP with
TLS.

• Use of Weak cryptography algorithms:
We advise programmers to use cryptography
algorithms recommended by the National
Institute of Standards and Technology [2] to
mitigate this smell.

Knowledge is Power
We urge educators and researchers to pursue

efforts in educating the IaC community. Our sug-
gestions include conducting hands-on workshops
and sharing tutorials on practitioner-oriented con-
ferences. Currently, the field of DevOps and IaC
has garnered a lot of interests amongst prac-
titioners. IaC practitioners frequently organize
workshop and conferences where they discuses
their experiences and the challenges they face
related to IaC. We urge researchers to participate
in these venues and underline the importance of
integrating cybersecurity in IaC. Practitioners are
more receptive to hear from the experiences of
other practitioners, and these venues could help
in disseminating our findings to the practitioners.

Tools! We Need Better Tools!!
Teams use an automated pipeline to de-

ploy their provisioned systems, may benefit from
SLIC, as the tool is automated. Furthermore,
developers can use the tool to identify security
smells as they develop these scripts. If a continu-
ous integration system is used, automated checks
can be added to the CI system, so that security
smells are first flagged, and integration of the

May/June 2020 9

Preprin
t

Department Head

submitted code changes are rejected, as long as
the security smells are removed.

SLIC is susceptible to generate false positives
and false negatives that can prevent wide-scale
adoption amongst practitioners. As documented
in our research, precision and recall of SLIC can
be as lows as respectively, 72% [3] and 75% [12].
We are currently taking these limitations into
account, and investing efforts on how to apply
strategies, such as taint tracking so that fewer
false positives and false negatives are generated
by SLIC.

ACKNOWLEDGMENT
We thank the PASER group at Tennessee

Technological University (TTU) for their valuable
feedback. This research was partially funded by
the National Science Foundation (NSF) award
2026869 and the NSA Science of Security
Lablet (award H98230-17-D-0080) at NC State
University.

REFERENCES
1. Alison Rayome. Ansible overtakes chef and

puppet as the top cloud configuration management

tool. https://www.techrepublic.com/article/

ansible-overtakes-chef-and-puppet/, 2019. [Online;

accessed 18-January-2021].

2. Elaine Barker. Guideline for using cryptographic stan-

dards in the federal government: Cryptographic mecha-

nisms. Technical report, National Institute of Standards

and Technology, Gaithersburg, Maryland, August 2016.

3. F. Bhuiyan and A. Rahman. Characterizing co-located

insecure coding patterns in infrastructure as code

scripts. In 2020 35th IEEE/ACM International Confer-

ence on Automated Software Engineering Workshop

(ASEW), 2020. to appear.

4. Martin Fowler and Kent Beck. Refactoring: improving

the design of existing code. Addison-Wesley Profes-

sional, 1999.

5. MITRE. CWE-Common Weakness Enumeration. https:

//cwe.mitre.org/index.html, 2018. [Online; accessed 02-

July-2020].

6. National Institute of Standards and Technology. Secu-

rity and privacy controls for federal information systems

and organizations. https://www.nist.gov/publications/,

2014. [Online; accessed 04-July-2020].

7. Puppet. Nyse and ice: Compliance, devops and effi-

cient growth with puppet enterprise. Technical report,

Puppet, April 2018.

8. A. Rahman, C. Parnin, and L. Williams. The Seven

Sins: Security Smells in Infrastructure as Code Scripts.

1 2019.

9. Akond Rahman, Effat Farhana, and Laurie Williams.

The ’as code’ activities: Development anti-patterns for

infrastructure as code. Empirical Softw. Engg., 2020. to

appear, pre-print: https://arxiv.org/pdf/2006.00177.pdf.

10. Akond Rahman, Chris Parnin, and Laurie Williams. The

seven sins: Security smells in infrastructure as code

scripts. In Proceedings of the 41st International Confer-

ence on Software Engineering, ICSE ’19, pages 164–

175, Piscataway, NJ, USA, 2019. IEEE Press.

11. Akond Rahman, M. Rahman, Chris Parnin, and Laurie

Williams. Dataset for Security Smells for Ansible and

Chef Scripts Used in DevOps, 4 2020.

12. Akond Rahman, Md. Rayhanur Rahman, Chris Parnin,

and Laurie Williams. Security smells in ansible

and chef scripts: A replication study. ACM Trans.

Softw. Eng. Methodol., 2020. To appear. pre-print:

https://arxiv.org/pdf/1907.07159.pdf.

13. Eric Rescorla. Http over tls. 2000.

14. J. H. Saltzer and M. D. Schroeder. The protection of

information in computer systems. Proceedings of the

IEEE, 63(9):1278–1308, Sept 1975.

15. Tara Seals. Millions of hotel guests worldwide

caught up in mass data leak. https://threatpost.com/

millions-hotel-guests-worldwide-data-leak/161044/,

2020. [Online; accessed 18-January-2021].

Akond Rahman Akond Rahman is an assistant pro-
fessor at Tennessee Tech University. His research
interests include DevOps and Secure Software De-
velopment. He graduated with a PhD from North Car-
olina State University, an M.Sc. in Computer Science
and Engineering from University of Connecticut, and
a B.Sc. in Computer Science and Engineering from
Bangladesh University of Engineering and Technol-
ogy. He won the ACM SIGSOFT Doctoral Sympo-
sium Award at ICSE in 2018, the ACM SIGSOFT
Distinguished Paper Award at ICSE in 2019, the CSC
Distinguished Dissertation Award, and the COE Dis-
tinguished Dissertation Award from NC State in 2020.
He actively collaborates with industry practitioners
from IBM, Siemens, and others. To know more about
his work, visit https://akondrahman.github.io/.

Laurie Williams Laurie Williams is a Distinguished
University Professor in the Computer Science Depart-
ment of the College of Engineering at North Carolina
State University (NCSU). Laurie is a co-director of the
NCSU Science of Security Lablet sponsored by the
National Security Agency. Laurie’s research focuses

10 IEEE Security and Privacy

Preprin
t

https://www.techrepublic.com/article/ansible-overtakes-chef-and-puppet/
https://www.techrepublic.com/article/ansible-overtakes-chef-and-puppet/
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://www.nist.gov/publications/
https://threatpost.com/millions-hotel-guests-worldwide-data-leak/161044/
https://threatpost.com/millions-hotel-guests-worldwide-data-leak/161044/

on software security; agile software development
practices and processes; software reliability, and soft-
ware testing and analysis. Laurie is both an IEEE
Fellow and an ACM Fellow. To know more about her
work, visit https://collaboration.csc.ncsu.edu/laurie/.

May/June 2020 11

Preprin
t

	What categories of security smells appear?
	Methodology
	Findings

	How frequently do security smells appear?
	Methodology
	Findings

	What do practitioners think about identified security smells?
	Methodology
	Findings

	What Did We Learn?
	Implications for Practitioners
	Look Before You Push
	Early Mitigation
	Knowledge is Power
	Tools! We Need Better Tools!!

	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Akond Rahman
	Laurie Williams

