
An Empirical Study of Vulnerabilities in Robotics
Kaitlyn Cottrell∗, Dibyendu Brinto Bose†, Hossain Shahriar‡, and Akond Rahman§

∗§Department of Computer Science, Tennessee Technological University
†Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology

‡College of Computing and Software Engineering, Kennesaw State University
∗kmcottrell42@tntech.edu, †brintodibyendu@gmail.com, ‡hshahria@kennesaw.edu, §arahman@tntech.edu

∗† Kaitlyn Cottrell and Dibyendu Brinto Bose are joint first authors of the paper

Abstract—The ubiquitous usage of robots in modern society
necessitates secure development of robotics systems. Practitioners
who engage in robot development can benefit from a systematic
study that investigates the categories of vulnerabilities that
appear in robotics systems. The goal of this paper is to help
practitioners mitigate vulnerabilities in robotics systems by con-
ducting an empirical study of vulnerabilities in robotics systems.
We conduct an empirical study where we analyze 176 robotics-
related vulnerabilities collected from the Robot Vulnerability
Database (RVD). Our findings show that: (i) robotics-related
vulnerabilities can be classified into nine categories; (ii) memory-
related vulnerabilities are the most frequent category, (iii) 92.6%
of the reported vulnerabilities are software-related, and (iv)
software components in robotics systems include more critical
vulnerabilities compared to that of hardware components. Based
on our findings, we provide a list of development activities that
can be used to mitigate vulnerabilities for robotics systems.

Index Terms—empirical study, mining software repositories,
qualitative analysis, robotics, vulnerabilities

I. INTRODUCTION

A malfunctioning robot was responsible for injuring an
employee at Omnipure Filter Company, Inc. [22]. The mal-
functioning robot pinned the employee against a 400-degree
Fahrenheit mold that caused burns to the employee’s arm, face,
and upper torso [22]. If robots have security vulnerabilities,
then malicious users can conduct attacks to deter robots
from their expected behaviors and cause serious consequences,
similar to the burn injury mentioned above.

Now-a-days robots are used in diverse set of domains, for
example, eldercare robots, such as CareO-Bots 1 are used to
perform household tasks and provide mobility assistance [6].
As another example, companies, such as Amazon uses manu-
facturing robots to accomplish manufacturing labor activities,
such as welding and assembling equipment [6]. According to
the International Data Corporation, spending on robotics is
expected to reach USD 241.4 billion by the end of 2023 [26].

Despite widespread usage of robots in multiple sectors of
our lives, security vulnerabilities remain a concern. Malicious
users can exploit security vulnerabilities in hardware and
software components of robotics systems to conduct security
attacks and cause malfunction, i.e., deviate robots from their
expected behaviors [6]. Security attacks on robots can have
serious consequences in multiple sectors of our daily lives,

1https://www.care-o-bot.de/en/care-o-bot-4.html

which include but are not limited to (i) cause bottlenecks and
shutdowns in the assembly line, (ii) cause disruption in the
food supply chain, (iii) provide incorrect treatment for patients,
and (iv) conduct unwanted military attacks that can injure or
kill thousands of civilians and military personnel [6].

Researchers [13] have observed a lack of awareness
amongst practitioners related to security issues that can exist
in robotics systems. Researchers [13] conducted a survey
with 50 practitioners, and reported that 76% of the surveyed
practitioners never applied security testing activities on their
robotics systems. Researchers [13] further reported that 50%
of the survey respondents did not believe that security attacks
on robotics systems are realistically possible.

The above-mentioned evidence highlights lack of security
awareness amongst practitioners who are engaged in robotics
systems development. Unaware practitioners can be a weak
link in the entire robotics development process, who can
potentially leave security vulnerabilities in robotics systems.
One strategy to inform practitioners is to systematically study
the reported vulnerabilities for robotics systems. A catego-
rization of vulnerabilities related to robotics can be helpful
in this regard, as vulnerability categorization can reveal the
vulnerability categories that occur for robotics systems, and
the actions that practitioners need to take in order to mitigate
different categories of vulnerabilities.

In other domains, such as Android, researchers [17] have
documented the importance of analyzing and categorizing
reported vulnerabilities. Vasquez et al. [17] stated categorizing
vulnerabilities can help Android practitioners “in focusing
their verification and validation activities”. Our hypothesis
is that through systematic categorization of robotics-related
vulnerabilities, we can identify activities to mitigate vulnera-
bilities in robotics systems.

The goal of this paper is to help practitioners mitigate
vulnerabilities in robotics systems by conducting an empirical
study of vulnerabilities in robotics systems.

We answer the following research questions:
• RQ1 [Frequency]: How frequent are vulnerabilities in

robotics systems?
• RQ2 [Component]: In what types of robotics components

are vulnerabilities located?
• RQ3 [Categorization]: What categories of vulnerabilities

exist for robotics systems?

Preprin
t

• RQ4 [Severity]: What is the reported severity for vulnera-
bilities in robotics systems?
We conduct an empirical study using vulnerability reports

included in the Robotics Vulnerability Database (RVD) [28] to
characterize vulnerabilities in robotics. We apply a qualitative
analysis called open coding [23] to determine the software
and hardware types in which vulnerabilities appear. Next, we
apply open coding to categorize robotics vulnerabilities. An
overview of our methodology is presented in Figure 1.

Our contributions are listed as follows:
• A list of vulnerability categories that appear for robotics

systems;
• An empirical analysis of vulnerabilities that occur in hard-

ware and software components of robotics systems; and
• A curated dataset of vulnerabilities that map to identified

categories [3].
We organize rest of the paper as follows: we provide the

methodology of our empirical study in Section II. We report
research results in Section III. We discuss the findings of our
paper along with the limitations of our paper in Section IV.
We discuss related work in Section V. Finally, we conclude
the paper in Section VI.

II. METHODOLOGY

We use RVD [28] to identify vulnerabilities that appear in
robots. We use RVD as it only focuses on robotics, and pro-
vides a list of vulnerabilities that occur for robotics systems.
In RVD, each vulnerability report is available as a GitHub
issue. The issue report includes information for a vulnerability
in JSON format, where fields and sub-fields are explicitly
labeled. Figure 2 provides an example of a vulnerability report
indexed in RVD.

Vulnerability datasets may suffer from quality issues that
can impact empirical analysis. We mitigate this limitation by
conducting the following filtering criteria:

• Criterion-1: we filter vulnerabilities included in RVD that
do not include CVEs; and

• Criterion-2: we remove duplicate vulnerability reports
by inspecting the Common Vulnerability Enumeration
(CVE) index.

We apply the above-mentioned criteria to include vulner-
abilities that are confirmed by a credible source, such as
the National Vulnerability Database (NVD). NVD indexes
confirmed vulnerabilities using the CVE entry. Practitioners
tend to mislabel non-security bugs as vulnerabilities and report
duplicate vulnerabilities, which motivated us to apply CVE-
based filtering similar to prior work [5]. After applying the
aforementioned criteria we end up with 176 vulnerabilities.
The dataset used to answer the four research questions is
available online [3].

A. Methodology to Answer RQ1 (Frequency)
We answer RQ1 by reporting (i) vulnerabilities per compo-

nent using Equation 1, and (ii) vulnerabilities per year using
Equation 2.

Vulnerability Per Component (p)% =

of vulnerabilities reported for component p
total vulnerabilities in the dataset

∗ 100%
(1)

Vulnerability Per Year (x)% =

of vulnerabilities reported in year x
total vulnerabilities in the dataset

∗ 100%
(2)

B. Methodology to Answer RQ2 (Component)

We answer RQ2 by first identifying the types of hardware
devices and software projects that exist in our vulnerability
dataset. Next, we apply metrics to quantify the frequency of
vulnerabilities that occur for each identified hardware device
type and software project type.

To identify software project types and hardware device
types by applying a qualitative analysis technique called
open coding [8]. We allocate a rater, the first author of the
paper, to conduct open coding. The first author is a graduate
student with one year experience in software engineering and
cybersecurity.

The rater derives the type of hardware devices and software
projects in the following manner: first, the rater inspects all
available fields for each vulnerability entry. Second, the rater
identifies the name and description of the software project or
hardware device, along with the title and description of the
associated vulnerabilities. Third, the rater applies open coding
on the text obtained from the previous step. The text includes
description of a hardware device or a software project.

Figure 3 provides an example of applying open coding: we
first extract raw text ‘ABB IDAL HTTP server is a HTTP-
based web server’ and ‘ABB WebWare Server is a web-based
server’ from the two software project descriptions listed under
‘Description’. Next, we identify two initial categories ‘HTTP-
based web server’ and ‘Web-based server’. We merge the two
initial categories into a category called ‘Web Servers’ as the
two initial categories correspond to software projects related
to web servers. We repeat the above-mentioned procedure to
determine hardware device types and software project types.

Rater Verification: The process of deriving hardware device
types and software project types is susceptible to bias. We mit-
igate this bias by allocating another rater, who is the last author
of the paper. The last author separately applies closed coding
[8] on the description of 50 randomly-selected vulnerability
reports. The last author is an academic researcher in secure
software development with 7 years of academic experience
in cybersecurity. For each of the 50 vulnerability reports, the
rater individually examines to which the vulnerability category
the listed device in the vulnerability report maps to. We
calculate the agreement between the first and the last author
using Cohen’s Kappa [7]. For the 50 vulnerability reports the
Cohen’s Kappa is 0.77 between the first and last author, which
suggests ‘substantial’ agreement.

Frequency of Vulnerabilities: We quantify the frequency of
vulnerabilities for hardware device types and software project
types respectively, using Equation 3 and 4. Equations 3 and 4

Preprin
t

RVD Dataset Filtered Dataset

Q1: Frequency

Q2: Component

Q3: Categories

Q4: Severity

Fig. 1: An overview of the methodology used to answer the four research questions.

"id": 3328,
"title": "RVD#3328: Privilege Escalation and DoS on

↪→ several Mitsubishi products.",
"type": "Vulnerability",
"description": "A permissions issue in GX Works 2 &

↪→ 3 and MELSOFT could allow an attacker to
↪→ escalate privilege and execute malicious
↪→ programs, which could cause a
↪→ denial-of-service condition, and allow
↪→ information to be disclosed, tampered with,
↪→ and/or destroyed.",

"cve": "CVE-2020-14496",
"keywords": [

"Mitsubishi, DoS, Privilege escalation"
],
"system": [

"GX Works2, GX Works3, MELSOFT"
],
"vendor": "Mitsubishi Electric Corporation",
"severity": {

"severity-description": "high",
},

1

Fig. 2: An example vulnerability report indexed in RVD.

respectively, calculates two metrics ‘Vulnerability Proportion
per Hardware Type’ and ‘Vulnerability Proportion per Soft-
ware Type’.

Vulnerability Proportion per Hardware Type (h)% =

of vulnerabilities recorded for hardware type h

total hardware-related vulnerabilities in dataset
∗ 100%

(3)

Vulnerability Proportion per Software Type (s)% =

of vulnerabilities recorded for software type s

total software-related vulnerabilities in dataset
∗ 100%

(4)

C. Methodology to Answer RQ3 (Categorization)

We identify vulnerability categories using open coding [8],
similar to that of RQ2. The process of deriving categories is

susceptible to bias. We mitigate this bias by allocating another
rater, who is the second author of the paper. The second author
separately applies closed coding [8] on the description of 50
randomly-selected vulnerability reports. The second author is
a fourth year undergraduate student with 2 years of academic
experience in cybersecurity. For each of the 50 vulnerability
reports, the rater individually examines if the vulnerability
maps to any of the categories identified by the first author. For
the 50 vulnerabilities the Cohen’s Kappa is 0.63 between the
first and second author, which suggests ‘moderate’ agreement,
according to Landis and Koch [16]. Reasons for disagreements
are attributed to the second author’s lack of familiarity with
the topic. In our categorization one vulnerability can belong
to multiple categories.

Category Frequency: We report the frequency of the iden-
tified vulnerability categories using two metrics: (i) Vulner-
ability per Category using Equation 5, and (ii) Vulnerability
Category Per Component using Equation 6. In Equation 6 q
corresponds to two components: hardware and software.

Vulnerability Proportion per Category (p) % =

of vulnerabilities marked as category p

total vulnerabilities in the dataset
∗100%

(5)

Vulnerability Category per Component (p, q)% =

of vulnerabilities in component q labeled as category p

total vulnerabilities in component q
∗100%

(6)

D. Methodology to Answer RQ4 (Severity)

In our empirical study we also investigate the severity of
the vulnerabilities as reported in the RVD. Such investigation
can give researchers and practitioners an understanding about
which platform, hardware or software is likely to contain
critical or high severity vulnerabilities. We use the ‘severity
description’ field that is available as part of each RVD entry.

Preprin
t

Description Raw Text Initial Category Category

The ABB IDAL HTTP server, a

HTTP-based web server, is vulnerable

to a buffer overflow when a long host

header is sent in a web request

Multiple stack-based buffer overflows

in (1) COM and (2) ActiveX controls

in ABB WebWare Server, a web-based

server developed by ABB.

ABB IDAL HTTP

server is a HTTP-

based web server

ABB WebWare

Server is a web-based

server

HTTP-based web

server

Web-based server

Web Server

Fig. 3: An example to demonstrate the process of deriving software project types using open coding.

RVD reports four levels of severity for each vulnerability:
‘critical’, ‘high’, ‘medium’, and ‘low’. We answer RQ4 us-
ing two metrics, ‘Severity/Platform’ and ‘Severity/Category’,
which we compute respectively, using Equations 7 and 8.

In Equations 7 and 8, s corresponds to four severity levels,
namely, ‘critical’, ‘high’, ‘medium’, and ‘low’. In Equation 7
p corresponds to two platforms: hardware and software. In
Equation 8 c corresponds to the category levels identified in
Section 5.

Severity/Platform(s, p) % =

of vulnerabilities for platform p, marked as severity s

total vulnerabilities in platform p

∗100%

(7)

Severity/Category(s, c) % =

of vulnerabilities marked as severity s that belong to category c

total vulnerabilities that belong to category c

∗100%

(8)

III. RESULTS

On December 25, 2020 we download 385 vulnerability
entries from the RVD. Of the 385 vulnerability entries, 58
entries had no CVEs, and 151 entries were duplicates of
others. After applying our filtering criteria, we obtain 176
vulnerabilities that we use in our empirical study.

A. Answer to RQ1 (Frequency)

We report the vulnerability per component values in Table I.
We observe 92.6% of studied 176 vulnerabilities to occur in
software components.

TABLE I: Answer to RQ1: Vulnerabilities per Component

Type Count Vuln. Per Component (%)
Hardware 13 7.4
Software 163 92.6

The vulnerability per year values is presented in Table II. We
observe the highest count of vulnerabilities in 2020, followed
by 2016 and 2017. Results from Table II show that after
vulnerabilities per year is highest for 2020. We also observe

a striking increase from year 2014 to 2015. One possible
explanation can be related to the reporting of vulnerabilities:
perhaps since 2014, more vulnerabilities were reported and
indexed in the RVD.

TABLE II: Answer to RQ1: Vulnerability per Year

Type Vuln. Per Year (%)
2009 2.3
2010 0.5
2011 0.5
2012 1.1
2013 0.5
2014 1.1
2015 10.7
2016 18.6
2017 18.6
2018 13.4
2019 16.3
2020 22.2

B. Answer to RQ2 (Component)
We report the type of hardware devices and software

projects in which vulnerabilities appear as follows:

Preprin
t

Hardware device types: Altogether 13 vulnerabilities ap-
peared for the following hardware device types:
Monitoring Systems: A monitoring system is a device that
logs and analyzes data packets coming from devices used
to implement a robot. Vulnerabilities are documented for
monitoring devices, such as ‘ABB VSN300 WiFi Logger’.
Ethernet Devices: An Ethernet device is used to connect with
Ethernet-based local and remote networks. According to a
recent report [14], Ethernet is becoming popular to connect
robots in industry settings. However, we observe security
vulnerabilities to exist for Ethernet devices, such as in an
Ethernet device called ‘M2M ETHERNET’.
Multiplexer Devices: A multiplexer is used to select between
multiple analog or digital input signals. In robotics systems
multiplexers are used to process signals from a variety of sen-
sors. A multiplexer device called ‘ABB FOX515T’ included a
vulnerability indexed in RVD.
Next Unit Computing Devices: A next unit computing (NUC)
device is a hardware device that is partially assembled com-
pared to that of a regular retail computer. Unlike regular retail
computers, NUC devices allow more customization and lower
costs. NUC devices are used in robots that uses cameras, e.g.,
Intel’s retail robot, which uses multiple cameras to interpret
information in its environment [18]. Intel’s NUC is an example
NUC device that included a vulnerability.
Human Machine Interfaces: A human-machine interface
(HMI) is a hardware device that provides a graphic terminal
to enable a robot operator to control, monitor, and collect
data from the robotics system 2. HMIs can be useful to track,
troubleshoot, and correct errors in the robot’s movements. The
‘ABB CP635 HMI’ is an example HMI device that included
a vulnerability.
Actuators: An actuator is a hardware device that is used to
move a robot’s joint 3. Actuators are typical in robots that
have multiple joints that are used in horizontal and vertical
movements. An example robot actuator is ‘Dynamixel’ 4 .

We report the vulnerability proportion per hardware device
type values for each device type in Table III. One vulnerability
can appear for more than one hardware type.

TABLE III: Vulnerability Proportion for Six Hardware Device
Types

Type Prop. per Hardware Type (%)
Monitoring Systems 53.8
Ethernet Devices 23.1
Multiplexer 15.4
Human Machine Interface 15.4
NUC Devices 7.7
Actuators 7.7

Software projects: Altogether 163 vulnerabilities appeared
for the following software projects:
Web Server: This category includes software projects that serve
as web servers. Web servers are used to store data collected

2https://www.robots.com/faq/what-is-a-hmi
3https://robotacademy.net.au/lesson/actuators/
4https://robots.ros.org/dynamixel/

from robots, as well as use to control robots over the HTTP
protocol. Web servers are also used in cloud robotics [27]
where cloud resources are used to control robots.
Management Software: This category includes software
projects used to manage, train, and simulate robots. Further-
more, this category of software projects can be used to collect
data in order to gain further insights. Examples of management
software includes ‘RobotStudio’ provided by ABB 5.
Operating System Software: This category includes software
projects that are used as operating systems dedicated for
robotics, such as the Robot Operating System (ROS) [20].
ROS is perceived as a medium for diverse groups to collabo-
rate to build upon each other’s work in the robotics domain.
Operating system software for robotics includes utilities and
libraries to construct accurate robot behavior.
Universal Robots Controller: Universal Robots Controller is a
software framework the enables practitioners to interact with
robot arms developed by a Denmark-based company called
Universal Robots. The purpose of this framework is to provide
programming utilities so that the robot arms provided by
Universal Robots are easily programmable. The framework
provides a Python library called ‘urx’ [25] to program robots
built by Universal Robots and other command line utilities
using which practitioners can run BASH-like commands. Uni-
versal Robots Controller is different from the other categories,
as this particular category is only applicable for robot arms
developed by Universal Robots.

We report vulnerability proportion per software type values
for each of the four software projects in Table IV. Amongst
the four software project types, Universal Robots Controller
include the highest number of reported vulnerabilities that
appear for software components.

TABLE IV: Vulnerability Proportion for Four Software Project
Types

Type Prop. per Software Type (%)
Universal Robots Controller 62.4
Management Software 25.9
Web Server 6.9
Operating System Software 4.8

C. Answer to RQ3 (Categorization)

We identify nine vulnerability categories that appear in
robotics systems. We provide descriptions and examples for
each category below:
Authorization/Authentication: This category includes vulner-
abilities that are related with incorrect authentication and unau-
thorized privileges. If a malicious user exploits vulnerabilities
that belong to this category, then the exploitation will result
in unauthorized access.

Example: CVE-2017-7916 is an example of an authoriza-
tion/authentication vulnerability. The vulnerability was discov-
ered in a web application called ‘ABB VSN300’. According
to the description, the application does not properly restrict

5https://new.abb.com/products/robotics/robotstudio

Preprin
t

privileges of the guest account [1]. As a result, a malicious
user might be able to access configuration information, which
should be restricted.
Cryptography-related Vulnerabilities: This category in-
cludes vulnerabilities that occur due to inadequate encryp-
tion of sensitive information used within robotics systems.
Existence of cryptography-related vulnerabilities can enable
malicious users gain unwanted access.

Example: CVE-2020-10267 [1] is an example vulnerabil-
ity related to cryptography. The vulnerability was discovered
in multiple versions of software used in Universal Robots Con-
trol. According to the vulnerability description, the software
does not encrypt artifacts that were installed from a third-
party software project called ‘URCaps’. The consequence of
this vulnerability is that upon exploitation malicious users with
access to the robot or the robot network will be able to access
all available intellectual property [1].
Denial of Service (DOS): This category includes vulnera-
bilities that can result into denial of service attacks. Denial
of service is an attack where a malicious user seeks to
make a computing machine unavailable to its intended users
by temporarily or indefinitely disrupting services of a host
connected to the Internet. Vulnerabilities that cause DOS
attacks can degrade the service quality, cause response delays,
excessive losses, and service interruptions 6.

Example: One example DOS-related vulnerability is
CVE-2015-7697 [1]. The vulnerability occurs for ‘UnZip’
that is used in ‘urx’, a Python library to interact with robots
created by Universal Robots [25]. The vulnerability was dis-
covered by creating an empty ‘bzip2’ data file. A malicious
user can exploit the vulnerability to cause a DOS attack by
creating an infinite loop with an empty bzip2 data in a ZIP
file.
Dependency-related Vulnerabilities: This category includes
vulnerabilities that occur when software packages with vulner-
abilities are used as dependencies. Outdated software versions
can have known vulnerabilities, and usage of outdated software
can propagate known vulnerabilities into robotics systems.

Example: CVE-2016-5699 is an example of a
dependency-related vulnerability, where a vulnerable version
of Python was used in URx [1]. Any Python library older
than 3.4.4 includes a Carriage Return Line Feed (CRLF)
vulnerability, which enables malicious users to inject arbitrary
HTTP headers. The vulnerability allows malicious users to
inject arbitrary HTTP headers via CRLF sequences in a URL.
Directory Traversal: This category includes vulnerabilities
that occur for allowing incorrect directory traversals. Incor-
rect directory traversal focuses on gaining access to the file
system by injecting malicious directory paths so that sensitive
directories and files, such as /etc/passwd can be accessed.

Example: CVE-2016-6321 [1] is an example of a vul-
nerability related with incorrect directory traversal. The vul-
nerability was located in the ‘GNU tar’ application that
affected urx. GNU tar does not properly handle member names

6https://owasp.org/www-community/attacks/Denial of Service

containing ‘..’, which can allow a malicious user to bypass a
protection mechanism, and write to arbitrary files.
Hard-coded Secret: This category includes vulnerabilities that
occur when sensitive information, such as hard-coded user-
names, and passwords are included in robotics-related software
artifacts. Hard-coded secrets is detrimental to the security
of a system. According to Common Weakness Enumeration
(CWE), “Username and password information should not be
included in a configuration file or a properties file in plain
text as this will allow anyone who can read the file access to
the resource” [9]. Similar to infrastructure as code [21], we
notice hard-coded secrets being exposed in robotics software
artifacts.

Example: CVE-2020-10270 [1] is an example of a vul-
nerability where sensitive information were hard-coded into a
software artifact. This vulnerability can allow malicious users
to take control of the robot remotely and use the default user
interfaces provided by Mobile Industrial Robots (MiR).
Input Sanitization: This category includes vulnerabilities that
occur when input is not adequately sanitized. Upon exploita-
tion this category of vulnerabilities can result in execution of
arbitrary code if a malicious file is created.

Example: CVE-2016-1248 [1] is an example vulnera-
bility related with input sanitization. The vulnerability could
lead to execution of arbitrary code when a file with a crafted
modeline is opened.
Insecure Default Settings: This category includes vulnera-
bilities that occur when default configuration settings of the
robotic system is predictable and can be used to conduct
attacks against the robotics system. Cybersecurity experts
advocate for modifications of default configurations of the
system so that attack surface of a system reduced.

Example: CVE-2020-10274 [1] is an example of a
vulnerability where default settings are used to configure a
robotics control dashboard. The control dashboard uses access
tokens that are included in a publicly available database of
default credentials. This vulnerability can be leveraged by
malicious users to exfiltrate sensitive data, such as indoor map
images.
Memory-related Vulnerabilities: This category includes vul-
nerabilities that occur when performing operations related to
memory. Exploitation of vulnerabilities that belong to this
category can lead to overflow errors, such as buffer overflow
and heap overflow.

Example: An example memory-related vulnerability is
CVE-2017-1000409 [1], which upon exploitation can cre-
ate a buffer overflow in ‘glibc 2.5’. ‘glibc’ is the abbreviated
version of GNU C Library that is extensively used in operating
system kernels, such as FreeBSD, and in drivers for hardware,
such as MIPS and PowerPC.

Category Frequency: In our categorization, one vulnerability
can belong to multiple categories. We report the vulnerability
per category values in Table V. We report the vulnerability
category per component values in Table VI. From Table V
we observe memory-related vulnerabilities to be the most
frequently occurring vulnerability category in our set of 176

Preprin
t

vulnerabilities. According to Table VI, input sanitization and
memory-related vulnerabilities to be the most frequent cat-
egories respectively, for hardware components and software
components.

TABLE V: Vulnerability Proportion per Category

Type Vuln. Proportion per Category (%)
Memory 30.7
Input Sanitization 25.5
Authorization/Authentication 23.2
Denial of Service 18.1
Cryptography 6.8
Dependency 6.8
Insecure Default Settings 6.8
Directory Traversal 3.5
Hard-coded Secret 2.3

TABLE VI: Vulnerability Category per Component Values for
Hardware and Software

Type Hardware (%) Software (%)
Authorization/Authentication 33.3 22.5
Cryptography 5.6 7.3
Denial of Service 5.6 19.6
Dependency 0.0 6.0
Directory Traversal 3.4 2.5
Hard-coded Secret 0.0 2.4
Input Sanitization 38.9 24.1
Insecure Default Settings 0.0 7.3
Memory 22.2 32.4

D. Answer to RQ4 (Severity)

We answer RQ4 by reporting the values for Severity/Plat-
form and Severity/Category metric. We report the values for
the Severity/Platform metric in Table VII. For example, we
observe 12.5% of vulnerabilities reported for hardware to be
critical vulnerabilities. In the case of hardware, 12.5% and
6.2% of vulnerabilities are respectively, labeled as critical
and high. For software components, 21.2% and 36.1% of
vulnerabilities are respectively, labeled as critical and high.
We observe critical vulnerabilities to occur more frequently in
software components compared to that of hardware compo-
nents.

TABLE VII: Vulnerability Severity for Hardware and Software

Type Hardware (%) Software (%)
Critical 12.5 21.2
High 6.2 36.1
Medium 0.0 18.7
Low 81.3 24.0

We report the values for the Severity/Category metric in
Table VIII. For example, we observe 12.0% of vulnerabilities
that are categorized as Authorization/Authentication to be
critical vulnerabilities. In the case of dependency, directory
traversal, hard-coded secret, and memory, 25% or more of the
vulnerabilities are categorized as critical vulnerabilities. For
hard-coded secret, 100% of all vulnerabilities are labeled as
critical.

IV. DISCUSSION

In this section, we first synthesize our findings as lessons.
Second, we discuss the implications of our findings:

A. Lessons Learned

We summarize the lessons learned from our empirical study
as follows:

1) Lesson#1: New Ecosystem, Similar Vulnerabilities:
Compared to other domains, robotics is a relatively new
ecosystem that is getting increasing attention. Despite becom-
ing a relatively new domain, we observe the vulnerability
categories to be similar to that of other existing domains,
such as web software applications. Vulnerability categories,
such as dependency-related vulnerabilities, input sanitization,
and memory-related vulnerabilities also appear for web ap-
plication software. Our hypothesis is that the commonality of
vulnerability categories between robotics and other domains
can provide researchers clues on how to bring in cybersecu-
rity knowledge, vulnerability detection and repair techniques
from other domains, for example, from the domain of web
application software into robotics.

2) Lesson#2: Not Only Software or Hardware: Answer to
RQ2 provide evidence that vulnerabilities are not limited to
only software or only hardware. We observe that vulnerabili-
ties can appear in multiple types of hardware devices, such as
actuators, multiplexers, and NUCs. Furthermore, we observe
that robotics vulnerabilities can appear for multiple software
project types.

Our findings shed light on the complexity of robotics
system development. We observe that the entire development
toolchain for a robot requires a diverse set of devices. Prac-
titioners can take these observations into account in order
to devise cybersecurity best practices for these devices. The
need of such guidelines is becoming increasingly important,
as robots become more ubiquitous and play crucial roles in
diverse domains, such as health care and supply chain.

B. Implications

We discuss the implications of our paper below:
1) Implications Related to Vulnerability Mitigation: Based

on our research we advocate practitioners to apply the follow-
ing development activities to mitigate the nine categories of
vulnerabilities:

Mitigating Authorization/Authentication Vulnerabilities
via Threat Modeling: Threat modeling is the technique
of identifying and prioritizing security threats for any sys-
tem [24]. Table V shows the presence of vulnerabilities re-
lated to authentication/authorization for robotics systems. This
category of vulnerabilities can be mitigated through adequate
threat modeling, as threat modeling can enable practitioners
to gain understanding on how authorization or authentication
issues might occur in robotics systems.

Mitigating Memory and Input Sanitization Vulnerabili-
ties via Vulnerability Scanning: We advocate practitioners to
regularly scan their robotics source code repository to identify

Preprin
t

TABLE VIII: Severity of Vulnerability Categories

Type Critical (%) High (%) Medium (%) Low (%)
Authorization/Authentication 12.0 17.0 63.6 7.4
Cryptography 20.1 33.4 13.3 33.2
Denial of Service 19.3 32.2 38.8 9.7
Dependency 25.0 41.7 25.0 8.3
Directory Traversal 40.0 0.0 0.0 60.0
Hard-coded Secret 100.0 0.0 0.0 0.0
Input Sanitization 13.6 36.3 11.3 38.8
Insecure Default Settings 0.0 100.0 0.0 0.0
Memory 25.9 42.4 16.6 15.1

vulnerabilities. Existing tools, such as CPPCheck 7 and
PySA 8 exists respectively, for C/C++ and Python, which can
identify certain vulnerabilities in source code. If practitioners
are using third party libraries as dependencies for their robotics
system implementation, then practitioners should scan their
dependencies. Dependency scanning is becoming mainstream,
for example, GitHub provides an utility called Dependabot 9

that automatically notifies repository maintainers if vulnerable
dependencies exist in their source code. Commercial tools,
such as Snyk 10 can also be used to identify vulnerable
software dependencies.

Mitigating Cryptography Vulnerabilities: Security ex-
perts have suggested the following activities that practitioners
in the robotics domain can follow: automated key rotation,
robust user authentication, and logging to demonstrate com-
pliance 11. Reinventing the wheel, i.e., development of cryp-
tography algorithms from scratch is also discouraged 12.

Mitigating Denial of Service Vulnerabilities: We echo
views expressed by cybersecurity practitioners 13, and advocate
practitioners to apply the following activities to mitigate denial
of service vulnerabilities: monitoring and analysis of robot
traffic patterns, and application of configuration-related best
practices.

Mitigating Dependency Vulnerabilities: Following recom-
mendations from cybersecurity experts 14 we advocate the fol-
lowing activities to mitigate dependency vulnerability-related
dependencies: scanning and updating software dependencies,
as well as testing of third-party applications and libraries that
are used in the robotics system.

Mitigating Vulnerabilities Related to Directory Traver-
sal: Similar to other domains 15, validating user inputs and
verifying canonical paths can help practitioners mitigate vul-
nerabilities related to directory traversal for robotics systems.

7http://cppcheck.sourceforge.net/
8https://engineering.fb.com/2020/08/07/security/pysa/
9https://dependabot.com/
10https://snyk.io/
11https://www.cryptomathic.com/news-events/blog/cryptographic-key-

management-the-risks-and-mitigations
12https://securitytoday.com/Articles/2019/08/01/Dont-Reinvent-the-

Wheel.aspx
13https://blog.eccouncil.org/types-of-ddos-attacks-and-their-prevention-

and-mitigation-strategy/
14https://itnext.io/mitigate-vulnerabilities-in-your-open-source-

dependencies-3a31c1fce9b9
15https://portswigger.net/web-security/file-path-traversal

Mitigating Hard-coded Secrets via CredScan: We advo-
cate practitioners to apply tools, such as CredScan 16 so that
practitioners can automatically identify hard-coded secrets in
robotics-related software artifacts. Practitioners can also apply
code review practices so that they can identify hard-coded
secrets before deploying the software.

Mitigating Insecure Default Settings: We advocate prac-
titioners to always change default configuration settings of
software so that configuration settings of the software is not
predictable and the attack surface for the software is reduced.

2) Fuzzing-related Implications: Practitioners can use
fuzzing to detect and repair vulnerabilities pro-actively while
developing robotics systems. Fuzzing is a testing technique,
which generates erroneous and random input to a software so
that the software of interest can be monitored for exceptions,
such as crashes [2]. Fuzzing can reveal latent memory-related
vulnerabilities by generating unexpected input to the programs
of interest.

3) Implications for Toolsmiths: Existence techniques might
be helpful to repair robotics vulnerabilities. Memory-related
vulnerabilities, such as buffer overflow vulnerabilities can be
fixed using techniques, such as CodePhage, PASAN, and
AutoPAG, as all of these techniques repair buffer overflow
vulnerabilities [12]. Vulnerabilities related to memory leaks
can be repaired using LeakFix, whereas, vulnerabilities re-
lated to input sanitization can be repaired using SemRep [12].
If source code of robotics systems is hosted on version control
systems, then dependency-related vulnerabilities can be de-
tected using automated pull requests. Application of all above-
mentioned techniques for robotics systems is challenging and
under-explored. Toolsmiths can build upon existing work to
tailor security tools that can easily integrated into the workflow
of robotics systems development.

C. Threats to Validity

Conclusion Validity: We acknowledge that our empirical
study is limited to the set of vulnerabilities that we mined from
RVD. We may have missed vulnerabilities that are not avail-
able in RVD. Our vulnerability categorization is susceptible to
rater bias, which we mitigate using two raters. Furthermore,
as part of empirical study we analyze 176 vulnerabilities
downloaded on December 2020, and therefore, we may have
not included vulnerabilities that are published after December
2020 in RVD.

16https://secdevtools.azurewebsites.net/helpcredscan.html

Preprin
t

External Validity: Our paper suffers from external validity
as our empirical results may not hold for another set of
vulnerabilities found in robotics systems.

V. RELATED WORK

Our paper is related with prior research that has investigated
safety and reliability issues for robotics systems. Khadidos
et al. [15] used simulation to propose a detection model that
detects exogenous failures in robotics. Clark et al. [6] proposed
a set of hypothetical cybersecurity attacks that are targeted for
robotics systems. Beltrame et al. [4] applied pattern traversal
flow analysis to automatically identify is a robot is violating
safety policies. Quarta et al. [19] proposed a novel attack
model for industry robots an attacker model, and showed
how an attacker can compromise a robot controller. Dieber et
al. [11] constructed and evaluated a novel technique to secure
all communication channels for ROS. DeMarinis et al. [10]
also studied ROS and provided a list of best practices to secure
ROS at the network layer to provide a stopgap solution for
critical security issues. We observe a lack of empirical research
related to robotics vulnerabilities, which we address in our
paper.

VI. CONCLUSION

Robotics systems are becoming common place in a diverse
set of domains, such as households, manufacturing industry,
and health care. Ubiquitous usage of robots necessitates them
to be securely developed so that vulnerabilities are miti-
gated. We have systematically analyzed 176 vulnerabilities
reported for robotics systems to provide understanding on what
vulnerabilities appear. We have identified nine vulnerability
categories amongst which memory-related vulnerabilities are
most frequent. Furthermore, we observe 92.6% of the reported
vulnerabilities are software-related, and software components
to include more critical vulnerabilities compared to that of
hardware components. We have provided guidelines on how
our analysis can inform practitioners to take actions for vul-
nerability mitigation. We hope our paper will facilitate secure
development of robotics systems.

VII. ACKNOWLEDGMENT

We thank the PASER group at Tennessee Technological
University (TTU) for their valuable feedback. This research
was partially funded by the National Science Foundation
(NSF) award # 2026869 and the Cybersecurity Research,
Education, and Outreach Center (CEROC) at TTU.

REFERENCES

[1] aliasrobotics/RVD. Robot vulnerability database (rvd). https://github.
com/aliasrobotics/RVD, 2020. [Online; accessed 04-Nov-2020].

[2] Paul Ammann and Jeff Offutt. Introduction to software testing. Cam-
bridge University Press, 2016.

[3] Anonymous Authors. Dataset for paper. https://figshare.com/s/
1289b19dff6054ca09c3, 2020. [Online; accessed 05-Nov-2020].

[4] Giovanni Beltrame, Ettore Merlo, Jacopo Panerati, and Carlo Pinciroli.
Engineering safety in swarm robotics. In Proceedings of the 1st
International Workshop on Robotics Software Engineering, RoSE ’18,
page 36–39, New York, NY, USA, 2018. Association for Computing
Machinery.

[5] Farzana Ahamed Bhuiyan, Akond Rahman, and Patrick Morrison. Vul-
nerability discovery strategies used in software projects. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE ’20, page 13–18, New York, NY, USA,
2020. Association for Computing Machinery.

[6] G. W. Clark, M. V. Doran, and T. R. Andel. Cybersecurity issues in
robotics. In 2017 IEEE Conference on Cognitive and Computational
Aspects of Situation Management (CogSIMA), pages 1–5, 2017.

[7] Jacob Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46, 1960.

[8] Benjamin F Crabtree and William L Miller. Doing qualitative research.
SAGE Publications, 1999.

[9] CWE. Cwe-798: Use of hard-coded credentials. https://cwe.mitre.org/
data/definitions/798.html, 2020. [Online; accessed 19-August-2020].

[10] N. DeMarinis, S. Tellex, V. P. Kemerlis, G. Konidaris, and R. Fonseca.
Scanning the internet for ros: A view of security in robotics research.
In 2019 International Conference on Robotics and Automation (ICRA),
pages 8514–8521, 2019.

[11] Bernhard Dieber, Benjamin Breiling, Sebastian Taurer, Severin Ka-
cianka, Stefan Rass, and Peter Schartner. Security for the robot operating
system. Robotics and Autonomous Systems, 98:192 – 203, 2017.

[12] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic
software repair: A survey. IEEE Transactions on Software Engineering,
45(1):34–67, 2017.

[13] Carlos Gonzalez. Fear the hacker! robot security is a growing threat.
https://www.machinedesign.com/mechanical-motion-systems/article/
21835782/fear-the-hacker-robot-security-is-a-growing-threat, 2017.
[Online; accessed 02-Nov-2020].

[14] Hirschmann. Ethernet for machines and robots. https:
//www.digikey.com/Site/Global/Layouts/DownloadPdf.ashx?pdfUrl=
BA9FDC4CCD394DAE87908341BC3EEB5E, 2020. [Online; accessed
04-Nov-2020].

[15] Adil Khadidos, Richard M. Crowder, and Paul H. Chappell. Exogenous
fault detection and recovery for swarm robotics. IFAC-PapersOnLine,
48(3):2405 – 2410, 2015. 15th IFAC Symposium onInformation Control
Problems inManufacturing.

[16] J. Richard Landis and Gary G. Koch. The measurement of observer
agreement for categorical data. Biometrics, 33(1):159–174, 1977.

[17] Mario Linares-Vásquez, Gabriele Bavota, and Camilo Escobar-
Velasquez. An empirical study on android-related vulnerabilities. In
Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, pages 2–13, Piscataway, NJ, USA, 2017. IEEE
Press.

[18] Martha DeGrasse. Intel demos retail robot. https://enterpriseiotinsights.
com/20170119/channels/news/intel-retail-robot, 2017. [Online; accessed
10-Nov-2020].

[19] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and
S. Zanero. An experimental security analysis of an industrial robot
controller. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 268–286, 2017.

[20] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[21] Akond Rahman, Md. Rayhanur Rahman, Chris Parnin, and Laurie
Williams. Security smells in ansible and chef scripts: A replication
study. ACM Trans. Softw. Eng. Methodol., 2020. To appear. pre-print:
https://arxiv.org/pdf/1907.07159.pdf.

[22] Occupational Safety and Health Administration. Accident: 113594.015
- employee is pinned against heated mold by robotic arm and
su. https://www.osha.gov/pls/imis/accidentsearch.accident\ detail?id=
113594.015, 2019. [Online; accessed 01-Nov-2020].

[23] Johnny Saldana. The coding manual for qualitative researchers. Sage,
2015.

[24] Adam Shostack. Threat modeling: Designing for security. John Wiley
& Sons, 2014.

[25] SintefManufacturing/python-urx. urx. https://github.com/
SintefManufacturing/python-urx, 2020. [Online; accessed 10-Nov-
2020].

[26] Statista. Global spending on robotics and drones in 2020 and
2023. https://www.statista.com/statistics/441948/forecast-for-robotic-
market-spending-worldwide/, 2021. [Online; accessed 11-Feb-2021].

[27] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski,
M. Wills, and S. Chernova. Robot web tools: Efficient messaging

Preprin
t

for cloud robotics. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4530–4537, 2015.

[28] Victor Mayoral Vilches, Lander Usategui San Juan, Bernhard Dieber,

Unai Ayucar Carbajo, and Endika Gil-Uriarte. Introducing the robot
vulnerability database (rvd). arXiv preprint arXiv:1912.11299, 2019.

Preprin
t

