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ABSTRACT
Researchers have observed programmers to allocate considerable
amount of effort in program comprehension. But, how does pro-
gram comprehension effort relate with programming activities? We
answer this question by conducting an empirical study using the
MSR 2018 Mining Challenge Dataset. We quantify programmers’
comprehension effort, and investigate the relationship between
program comprehension effort and four programming activities:
navigating, editing, building projects, and debugging. We observe
when programmers are involved in high comprehension effort they
navigate and make edits at a significantly slower rate. However, we
do not observe any significant differences in programmers’ build
and debugging behavior, when programmers are involved in high
comprehension effort. Our findings suggest that the relationship
between program comprehension effort and programming activ-
ities is nuanced, as not all programming activities associate with
program comprehension effort.
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1 INTRODUCTION
Researchers [5] [1] have extensively studied on how programmers
spend their time and what activities they are involved with. In
these studies researchers have observed that programmers spend
a considerable amount of time for program comprehension i.e.
reading and understanding source code, to accomplish software
engineering tasks such as bug fixing, and refactoring. For example,
Minelli et al. [5] observed that programmers on average spend 70%
of their time on program comprehension.

But how does the effort needed for program comprehension
relate with other programming activities? Amann et al. [1] hinted
that the activity of navigation may be related with program com-
prehension, stating “the amount of navigation may correlate with the
need for code understanding". How well-founded is this conjecture?
Can we observe empirical evidence that demonstrates the relation-
ship between program comprehension effort and programming
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activities including navigation? Such investigation can also reveal
if other programming activities such as debugging and editing are
related with program comprehension.

We conduct an empirical study using the MSR 2018 Mining Chal-
lenge Dataset [9] to investigate the relationship between program
comprehension effort and programming activities. Similar to prior
work [12] [8], we use a surrogate measure to quantify program
comprehension effort of programmers by calculating Halstead’s
metrics [3]. We focus on four programming activities: navigation,
building projects, debugging, and editing. We answer the follow-
ing research question: How does program comprehension effort
relate with navigation frequency, edit frequency, debugging
frequency, and build event frequency?

Our findings can be summarized as: when programmers are in-
volved in high comprehension effort they navigate and make edits
at a significantly slower rate, but, we do not observe any significant
differences in programmers’ build and debugging behavior. Our find-
ings provides empirical evidence that support Amann at al. [1]’s
conjecture i.e. program comprehension effort and navigation are
related.

2 EMPIRICAL ANALYSIS
Weuse theMSR 2018Mining ChallengeDataset provided by Proksch
et al. [9], which includes interaction data from programmers and
include event types such as ‘Command Event’, ‘Debugger Event’,
and ‘Navigation Event’. We collect the dataset on November, 2017.

2.1 Filtering
Programmer interaction traces achieved from integrated develop-
ment environments (IDEs), are susceptible to noise, and before
conducting any analysis we filter the available dataset. First we
obtain the sessions, by using the session IDs and splitting the event
stream by session IDs. Next, we use the following two measures to
filter out sessions that we won’t use for analysis:
• Session Duration: We filter out sessions that are less than 600
seconds in duration. From our initial exploration we observe the
25th and 50th percentile of all session duration to be respectively,
123.5 seconds, and 1439.0 seconds.

• Availability of Method Information: As we use methods to
measure program comprehension effort, we discard any sessions,
for which no information about the used methods are available.

2.2 Program Comprehension Effort
We measure programmer’s comprehension effort for each method
they are working on in each session. We select method, because
from an analysis granularity perspective, methods provide the mid-
dle ground between details of statements and abstractions provided
by classes [6]. For program comprehension effort we use three
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surrogate measures: ‘difficulty’, ‘volume’, and ‘parameter count’ of
a single method. The metrics volume and difficulty, are proposed
by Halstead [3], and are widely used in research studies related to
program readability and understandability [12].

We compute the comprehension effort for each programming
session in the following manner: for each programming session,
we extract all the method bodies available using the ‘Edit Event’
available as part of the MSR 2018 Mining Challenge Dataset. Next,
for each method body available in a session, we
• extract the number of parameters, total number of operators,
total number operands, total number of unique operators, and
total number of unique operands

• calculate metric ‘volume’, using Equation 1
• calculate metric ‘difficulty’, using Equation 2
• calculate the number of parameters passed to the method

volume = (total operators + total operands)×
log 2 × (total distinct operators + total distinct operands)

(1)

difficulty =
total distinct operators

2
×

total operands
total distinct operands

(2)

In a session, a programmer can work with multiple methods, and
hence to determine the overall comprehension effort associated
with the session, we need an aggregate measure. We use median as
the aggregate measure, and this measure is less biased by outliers.
Next to account for the number of methods that may vary from one
method to another, we normalize the aggregated measure for vol-
ume, difficulty, and parameter count by the total number of unique
methods. Our approach can be expressed using Equations 3, 4, and 5,
respectively, for volume, difficulty, and parameter count.

Normalized volume for session x , NV(x ) =
median of all volume measurements for all methods, in x

total methods in x
(3)

Normalized difficulty for session x , ND(x ) =
median of all difficulty measurements for all methods, in x

total methods in x
(4)

Normalized parameter for session x , NP(x ) =
median of all parameter counts for all methods, in x

total methods in x
(5)

We use all three above-described normalized measures NV , ND,
and NP , to determine comprehension effort for each session. We
assume that by using all three measures collectively, we may obtain
a suitable approximation of the associated comprehension effort.
We report the summary statistics related to the three measures
as a tuple, where the first and second item respectively presents
the mean and the median values for each metric. The summary
statistics of NV , ND, and NP are respectively, (0.85, 0.00), (0.06,
0.00), and (0.45, 0.25).

2.3 Dividing Sessions Into Groups
To quantify program comprehension effort used in a session, we
assign each session to a group based on the normalized values
of volume (NV ), difficulty (ND), and parameter count (NP ). We
perform this assignment using k-means clustering [13], an unsu-
pervised learning technique. We specify two inputs for the k-means
clustering technique: the count of clusters needed to create, and
the data that will be used to create the groups based on k-means
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Figure 1: Silhouette Width is highest when cluster count is
two, and decreases with the increase in cluster count.

clustering. As input data we provide the three normalized mea-
sures of comprehension effort: NV , ND, and NP , as one single
feature vector. The count of clusters is determined by Silhouette
Width [11], a cluster validation measure, that computes how similar
a data point is to it’s own cluster, compared to other neighboring
clusters [11]. Silhouette Width can have a value between -1 and
+1, and a high value indicates a data point is well-matched to its
own cluster [11]. To determine the cluster count, we individually
computed SilhouetteWidth for 2, 3, ..., 25 clusters. The cluster count
for which we obtained the highest Silhouette Width is used as input
to the K-Means algorithm.

We implement k-means clustering and Silhouette Width using
Scikit-Learn API [7]. The count of clusters will determine how
many groups we have to divide the sessions into. The assignment
of groups will be completed using k-means clustering. After com-
pleting these steps each session in our dataset will be divided into
groups, and assigned appropriate labels. We summarize our method-
ology in Figure 2.

We report the Silhouette Width for each cluster count in Figure 1.
As we observe from Figure 1, Silhouette Width is highest when
cluster count is two, and according to our methodology, we use two
clusters to classify the sessions into two groups: sessions that are
associated with ‘high comprehension effort (High)’, and sessions
that are associated with ‘low comprehension effort (Low)’. We
report summary statistics for the two groups ‘High’ and ‘Low’ in
Table 1. We observe from Table 1, the two groups are unbalanced,
with respect to count of sessions, navigation events, debugging
events, build events, and edit events. Our findings suggest that
programmers are not frequently involved with methods that require
high comprehension effort.

2.4 Answer to the Research Question
We consider four activities that are common amongst programmers
who use Visual Studio: building projects, debugging, editing, and
navigation. In the following subsections we report how program
comprehension effort is related with each of the four programming
activities. To compare the programming activity-related metrics
between the two groups, we use the Mann-Whitney U test [4], and
also measure the effect size using Cliffs Delta [2]. We select these
methods as they don’t make any assumptions on (i) the distribution
of the datasets, and (ii) the sample sizes of the groups. Along with
reporting the results of the two statistical tests we also report the
median values for both groups ‘High’, and ‘Low’. We also apply
normalization to account for sample size differences for the two
groups ‘High’ and ‘Low’.
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Session	 Methods	

SessionA	 Meth1_A,	Meth2_A,	Meth3_A	

SessionB	 Meth1_B,	Meth2_B,	Meth3_B	

SessionC	 Meth1_C	

Session	 Feature	Vector	
<difficulty,	volume,	parameters>	

SessionA	 <difficultyA,	volumeA,	parametersA>	

SessionB	 <difficultyB,	volumeB,	parametersB>	

SessionC	 <difficultyC,	volumeC,	parametersC>	

Feature	Generation		

Session	 SessionA	 SessionB	 SessionC	

Label	 High	 Low	 High	

Clustering	(k-means)	Cluster	count	

Label	assignment	

Figure 2: A hypothetical example to illustrate our process
of assigning session labels. First, we extract three compre-
hension features (volume, difficulty, and parameter count)
for each method. Next, we use k-means clustering to divide
sessions and assign labels.

Table 1: Summary of ‘High’ and ‘Low’ Sessions

Measurement High Low
Session count 33 704

Build event count 239 42,880
Debugging event count 636 18,458

Edit event count 4,808 228,315
Navigation event count 2,888 184,720

2.4.1 Program comprehension effort and navigation frequency.
We quantify the relationship between program comprehension
effort and navigation frequency using the metric ‘normalized navi-
gation interval (NNI )’, calculated using Equation 6.

NN I for session x , NNI(x ) =
median duration between two consecutive navigation events in session x

total number of navigation events in session x
(6)

We hypothesize that comprehension effort will significantly re-
late with programmers’ navigation behavior. We hypothesize pro-
grammers to spend more time on comprehension which can slow
down their navigation behavior. According to our hypothesis, ses-
sions in ‘High’ group i.e., sessions which are associated with high
comprehension effort, will have significantly higher NNI values.

Results. : We report our findings in Table 2. From Table 2, we ob-
serve that our hypothesis holds i.e., programmers make navigations
at a slower rate, for ‘High’ sessions. The difference in median values
is significant, and the effect size is ‘medium’ [10]. The distribution
of NNI values for both groups are available in Figure 3.

Table 2: Answer to RQ. Cells highlighted in light grey indi-
cate significant differences.

Metric Median (High, Low) p-value Cliffs Delta
NN I (Navigation Interval) (1.11, 0.04) < 0.001 0.45

NEI (Edit Interval) (0.10, 0.03) < 0.001 0.34
NDI (Debugging Interval) (0.09, 0.13) 0.33 0.07

NBI (Build Interval) (0.00, 0.00) 0.70 0.06

2.4.2 Program comprehension effort and edit frequency. Wequan-
tify the relationship between program comprehension effort and
edit frequency using a metric called ‘normalized edit interval (NEI )’,
which is computed in seconds. We compute NEI for each session
in two groups ‘High’ and ‘Low’, using Equation 7.

NEI for session x , NEI(x ) =
median duration between two consecutive edit events in session x

total number of edit events in session x
(7)

We hypothesize that comprehension effort will be significantly
related to programmers’ edit frequency. For ‘High’ sessions, i.e.
sessions which involve high comprehension effort, we expect to
observe edit events at a slower rate, which implies the time interval
between edit events will be significantly higher for ‘High’ sessions.

Results. : We report our findings in Table 2. As we observe from
Table 2, our hypothesis holds. We observe programmers to per-
form edit events at a significantly slower rate, i.e., time interval
between edit events (NEI ) is significantly larger for ‘High’ sessions.
The effect size is ‘medium’, according to Romano et al. [10]. The
distribution of NEI values for both groups are available in Figure 3.

2.4.3 Program comprehension effort and debug event frequency.
We use the metric ‘normalized debugging interval (NDI )’, which
is computed in seconds to quantify the relationship. We compute
NDI for each session in the two groups ‘High’, and ‘Low’, using
Equation 8.

NDI for session x , NDI(x ) =
median duration between two consecutive debug events in session x

total number of debug events in session x
(8)

So far respectively, from Sections 2.4.1 and 2.4.2 we observe
comprehension effort to be significantly related with navigation
and edit frequency. Similar to navigation and edit events, we hy-
pothesize that comprehension effort is associated with debugging
behavior. In particular, we hypothesize that programmers make
more frequent debugging events when involved with high compre-
hension, and as a result, debug events will happen at a faster rate,
leading to significantly smaller NDI values for ‘High’ sessions.

Results. : We report our findings in Table 2. We do not observe
significant empirical evidence for our hypothesis: p −value = 0.33,
and Cliffs Delta is 0.07 (‘negligible’ according to Romano et al. [10].).
The median NDI is smaller for the ‘High’, but as the Mann-Whitney
U test results state, this difference is not significant. The distribution
of NDI values for both groups are available in Figure 3.

2.4.4 Program comprehension effort and build event frequency.
We use the metric ‘normalized build interval (NBI )’, to quantify this
relationship. We compute NBI for each session in the two groups
‘High’, and ‘Low’, using Equation 9. We apply normalization to
account for the differences in build event count. We hypothesize
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Figure 3: Navigation interval (NNI ), edit interval (NEI ), debugging interval (NDI ), and build interval (NBI ) values for sessions
labeled as ‘High’ and ‘Low’. In ‘High’ sessions, programmers navigate and make edits at a significantly slower rate.

comprehension effort to be significantly related with build fre-
quency. When involved with high comprehension, i.e. in ‘High’
sessions programmers will make build events at a slower rate. For
‘High’ sessions we hypothesize significantly larger NBI values.

NBI for session x , NBI(x ) =
median duration between two consecutive build events in session x

total number of build events in session x
(9)

Results. : From Table 2, we do not observe significant differences
between ‘High’ and ‘Low’ groups for NBI values (p − value =
0.70), and Cliffs Delta is 0.06 (‘negligible’ according to Romano
et al. [10].). The distribution of NBI values for both groups are
available in Figure 3. The distribution of NBI values for both groups
are available in Figure 3.

2.5 Threats to Validity
Our technique of quantifying program comprehension effort relies
on Halstead metrics which can be limiting. Scalabrino et al. [12] re-
ported that Halstead’s metrics might not be sufficient enough to es-
timate program comprehension effort. We also computed program
comprehension effort at the method level, and the comprehension
effort required for the other code elements have not been included.
Furthermore, we have considered four programming activities, and
have not considered other programming activities such as code
search, unit testing, and version control activities.

2.6 Related Work
Our paper is closely related to prior research that have investigated
programmer behaviors in IDEs. Amann et al. [1] mined program-
ming interactions of 6,300 hours of work time, and observed pro-
grammers to spend a considerable amount of time working outside
the IDE. Parnin and Gorg [6] proposed a novel technique to create
usage contexts in order to facilitate better exploration of program-
mers’ behaviors. Posnett et al. [8] and Scalabrino et al. [12] explored
techniques to quantify programmer comprehension efforts. Xia et
al. [14] conducted a filed study of 78 programmers, and observed
that on average programmers spend 58% of their time on program
comprehension activities. Minelli et al. [5] observed programmers
to spend 70% of their time for program comprehension.

3 CONCLUSION
In our paper, by using Halstead’s metrics, we have investigated if
comprehension effort is related with other programming activities
namely, editing, navigation, and debugging. We have observed that
when programmers work with methods that demand high com-
prehension effort, they navigate and make edits at a significantly

slower rate. We also do not observe any significant differences in
debugging and build behavior, when programmers are associated
with methods that demand high comprehension effort. We conclude
that the relationship between program comprehension effort and
the four studied programming activities is nuanced.
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