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Abstract

Context: The dire consequences of the COVID-19 pandemic has influ-
enced development of COVID-19 software i.e., software used for analysis and
mitigation of COVID-19. Bugs in COVID-19 software can be consequential,
as COVID-19 software projects can impact public health policy and user
data privacy. Objective: The goal of this paper is to help practitioners and
researchers improve the quality of COVID-19 software through an empirical
study of open source software projects related to COVID-19. Methodology:
We use 129 open source COVID-19 software projects hosted on GitHub to
conduct our empirical study. Next, we apply qualitative analysis on 550
bug reports from the collected projects to identify bug categories. Findings:
We identify 8 bug categories, which include data bugs i.e., bugs that occur
during mining and storage of COVID-19 data. The identified bug categories
appear for 7 categories of software projects including (i) projects that use
statistical modeling to perform predictions related to COVID-19, and (ii)
medical equipment software that are used to design and implement medi-
cal equipment, such as ventilators. Conclusion: Based on our findings, we
advocate for robust statistical model construction through better synergies
between data science practitioners and public health experts. Existence of
security bugs in user tracking software necessitates development of tools that
will detect data privacy violations and security weaknesses.

1 Introduction

The novel Coronavirus disease (COVID-19) is a worldwide pandemic that spreads
through droplets generated from coughs or sneezes and by touching contaminated
surfaces John Hopkins University (2020). As of May 31 2020, COVID-19 has
caused 370,247 deaths across the world John Hopkins University (2020). Apart
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from causing thousands of deaths and creating long term health repercussions
for vulnerable populations, COVID-19 has severely impacted the economic sector.
According to a recent study Erin Duffin (2020), due to COVID-19 gross domestic
product (GDP) will decrease from 3.0% to 2.4% worldwide. As of May 28 2020,
nearly 41 million citizens reported unemployment in USA alone Mitchell Hartman
(2020). More than 3.9 billion people around the world were under some form of
stay at home order due to COVID-19 Alasdair Sandford (2020).

Health care professionals are at the frontline of combating COVID-19. Prac-
titioners from other domains, such as software engineering have also joined forces
to analyze and mitigate the negative consequences of COVID-19. For example,
statistical modeling was used to build a software that identifies pneumonia caused
by COVID-19 from lung scan images Tom Simonite (2020). The software was
used in 34 Chinese hospitals Tom Simonite (2020). In response to the food insecu-
rity caused by COVID-19, practitioners have created an interactive visualization
software that displays free meal sites across USA Why Hunger (2020). The cre-
ators of the software envision in building a social movement to eradicate hunger
and address economic inequalities. As another example, Apple and Google have
jointly announced of creating a software framework that will help practitioners
build tools to trace COVID-19 infection status of mobile app users Apple (2020).
The above-mentioned examples show COVID-19 software i.e., software used for
analysis and mitigation of COVID-19, to have near-term and long-term effects on
public health and society.

Despite the above-mentioned advancements, COVID-19 software projects are
susceptible to bugs. Let us consider Figure 1 in this regard. Figure 1 provides
a snapshot of a bug report related to statistical modeling Begley (2020a). We
observe when implementing a statistical model the practitioners did not consider
the correlation between intensive care unit (ICU) bed availability and death rate
prediction. Furthermore, the number of ICU beds is incorrectly assumed to be
40,000 instead of 1,000.

We hypothesize systematic analysis can reveal bug categories including statis-
tical modeling bugs similar to Figure 1. In prior work researchers Garcia et al.
(2020); Rahman et al. (2020); Linares-Vásquez et al. (2017); Catolino et al. (2019);
Thung et al. (2012); Wan et al. (2017) have documented the importance of bug
categorization. For example, for autonomous vehicle software Garcia et al. 2020
stated that categorization of bugs can help to construct bug detection and test-
ing tools. Linraes-Vásquez et al. 2017 stated categorizing vulnerabilities can help
Android practitioners “in focusing their verification and validation activities”. Ac-
cording to Catolino et al. 2019, “understanding the bug type represents the first
and most time-consuming step to perform in the process of bug triage”.

In prior work, researchers have categorized bugs for infrastructure as code
(IaC) Rahman et al. (2020), autonomous vehicle Garcia et al. (2020), and machine
learning Thung et al. (2012); Islam et al. (2019) software. However, COVID-19
software is different from previously studied software in the following aspects: (i)
development context : unlike previously studied software projects, COVID-19 soft-
ware is developed in response to a pandemic that infected 6.1 million individuals
in five months John Hopkins University (2020), and (ii) public health: unlike pre-
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Figure 1: An example of a bug report related to statistical modeling in a software
project called ‘neherlab/covid19 scenarios’.

viously studied software projects, COVID-19 software has direct implications on
public health and relevant policy making for inhabitants in 188 countries.

In response to the pandemic, researchers have conducted studies related to
modeling Dehning et al. (2020); Yang and Wang (2020); Tamm (2020), biological
science Jin et al. (2020); Wang et al. (2020); De Clercq (2006); Helms et al. (2020),
social science Van Bavel et al. (2020); Pulido et al. (2020); Evans et al. (2020);
Will (2020); Jarynowski et al. (2020), and policy making Corey et al. (2020);
Mello and Wang (2020); Rourke et al. (2020); Kraemer et al. (2020). However,
characterization of bugs in COVID-19 software remains an unexplored area.

The scope of our paper is to get a systematic understanding of bugs in COVID-
19 software projects. In our paper, we refer to COVID-19 software projects as
software projects that were created to analyze and mitigate the consequences of
COVID-19. These projects were created in response to a global pandemic that
created a worldwide impact on public health, economy, and societal activities.
Our hypothesis is that the utility of COVID-19 software projects and the urgency
associated with these projects can yield (i) manifestation of bugs unique to the
COVID-19 reality, and (ii) bug resolution time. Furthermore, from our empirical
analysis what categories of bugs appear for what types of COVID-19 software
projects.

The goal of this paper is to help practitioners and researchers improve the
quality of COVID-19 software through an empirical study of open source software
projects related to COVID-19.

We answer the following research questions:

• RQ1 : What categories of open source COVID-19 software projects
exist? We identify seven categories of software project related to COVID-19:
aggregation, education, medical equipment, mining, user tracking, statistical
modeling, and volunteer management.

• RQ2 : What categories of bugs exist in open source COVID-19
software projects? How frequently do the identified bug categories
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appear? What is the resolution time for the identified bug cate-
gories? We identify eight bug categories: algorithm, data, dependency,
documentation, performance, security, syntax, and user interface. Except
for mining and medical equipment projects, for types of COVID-19 software
projects the most frequently occurring bug category is UI.

• RQ3 : How similar are the identified bug categories to that with
previously studied software projects? Identified bug categories for
COVID-19 software projects also appear for other software types, but their
manifestation of the bugs is different for COVID-19 software projects.

Contributions: We list our contributions as follows:

• A categorization of bugs that appear in COVID-19 software projects;

• A categorization of OSS projects related to COVID-19;

• An empirical study that identifies what category of bugs appear for what
category of COVID-19 software projects; and

• A comparison of bug categories for COVID-19 software projects to that with
previously studied software projects.

We organize rest of the paper as following: We discuss related work in Section 2.
We provide the methodology to answer the three research questions in Section 3
and provide the results in Section 4. We discuss our results with a summary of
our findings in Section 5. We provide the limitations of our paper in Section 6.
Finally, we conclude the paper in Section 7. Our constructed dataset is available
as a public, citable repository Rahman and Farhana (2020).

Overview of the Empirical Study An overview of our paper is available in
Figure 2. First, we mine software projects related to COVID-19 from GitHub by
applying a filtering criteria based on number of issues, number of developers etc.
Next, we apply qualitative analysis technique called open coding Saldana (2015) on
the README files of the collected open source software (OSS) projects to identify
what categories of OSS projects exist related to COVID-19. After characterizing
the collected software projects, we again apply open coding on 550 bug reports
from the collected OSS projects to identify bug categories. We also quantify the
frequency and resolution time of each bug category across the identified project
categories. Finally, we conduct a scoping review Munn et al. (2018) to find the
similarities in bug categories between COVID-19-related software projects and
other categories of software projects.

2 Related Work

Our paper is related with prior research that has focused on categorization of bugs
in OSS projects. Mockus et al. 2002 studied the contribution nature in OSS Apache
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Figure 2: An overview of our empirical study.

and Mozilla projects. They Mockus et al. (2002) observed contributors who submit
bug reports are approximately 8.2 times higher in number than contributors who
address bugs in bug reports. Ma et al. 2017 investigated Python GitHub projects
that are used in the scientific domain, and observed developers to use stack traces,
as well as communicate with upstream developers, to identify root causes of bugs.
Zhang et al. 2019 examined bug reports for mobile and desktop software hosted
on GitHub, and identified differences on how the reports are constructed. Ray et
al. 2014 studied the correlations between bugs and the language the software is
being developed, and reported a modest correlation using an empirical study of
729 GitHub projects. Categorization of domain-specific OSS bugs has also been
investigated: Thung et al. 2012, Garcia et al. 2020, Wan et al. 2017, Islam et
al. 2019, and Rahman et al. 2020 in separate research papers used OSS projects
to classify bug categories respectively, for machine learning, autonomous vehicle,
blockchain, deep learning, and IaC.

Our paper is also related with publications that have investigated the impact
of COVID-19 on software development. Ralph et al. 2020 surveyed 2,225 practi-
tioners and reported fear related to COVID-19 to affect productivity of software
practitioners. Butler and Jaffe 2020 conducted a diary study with 435 practitioners
and reported practitioners to face challenges, such as having too many meetings
and feeling overworked while working from home due to COVID-19. Oliveira et
al. 2020 surveyed 413 practitioners from Brazil and reported practitioners’ per-
ceived productivity to increase due to ewer interruptions.

From the above-mentioned discussion we observe bugs in software projects
related to COVID-19 to be an under-explored area. While there exists several bug
categorization studies Thung et al. (2012); Garcia et al. (2020); Wan et al. (2017);
Islam et al. (2019); Rahman et al. (2020) no studies exist for COVID-19-related
projects. The bug categorization-related studies for IaC, block chain, and deep
learning motivated us to derive bug categories and quantify the identified bug
categories. Wan et al. 2017’s paper on blockchain bugs motivated us to study bug
resolution time for each identified bug category. In our paper, we study COVID-19
software bugs in the following manner:

• categories of bugs;
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• frequency of identified bug categories;

• resolution time of identified bug categories; and

• categories of software projects.

3 Methodology

In this section we provide the methodology to answers research questions: RQ1,
RQ2, and RQ3.

3.1 Methodology for RQ1: What categories of open source
COVID-19 software projects exist?

We define COVID-19 software projects as software projects used for analysis and
mitigation of COVID-19. We hypothesize multiple categories of COVID-19 soft-
ware projects to exist in the OSS domain. We validate our hypothesis by system-
atically categorizing COVID-19 software projects. Our categorization will pro-
vide insights on how the software development community has responded to the
COVID-19 pandemic. We answer RQ1 by completing the following steps:

3.1.1 Dataset Collection

We conduct our empirical analysis by collecting COVID-19 software projects
hosted on GitHub. To collect these projects we use GitHub’s search utility GitHub
(2020c), where we first identified projects tagged as ‘covid-19’. We use the search
string ‘covid-19’, as it is a topic designated for COVID-19 by GitHub GitHub
(2020a). Our assumption is that by using a GitHub-designated tag we can collect
OSS projects hosted on GitHub that are related to COVID-19.

OSS projects hosted on GitHub are susceptible to quality issues, as GitHub
users often host repositories for personal purposes that re not reflective of real-
world software development (Munaiah et al., 2017). Upon collection of the projects
we apply a set of filtering criteria so that we can identify projects that contain
sufficient data for analysis. We describe the filtering criteria below:

• Criterion-1: The project must have at least 2 developers. Our assumption is
that this criterion will filter out projects used for personal purposes.

• Criterion-2: The project has at least 5 open issues. We use this filtering
criterion to identify projects that are actively maintained. Our assumption is
that by using this criterion we will able to identify COVID-19 software projects
that are not used for personal purposes as well as projects that are active. Prior
research Agrawal et al. (2018) has also used the count of issues to filter OSS
projects hosted on GitHub to conduct empirical studies.

• Criterion-3: The project must have at least two commits per month. Munaiah
et al. 2017 used the threshold of at least two commits per month to determine
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which projects have enough development activity for software organizations. We
use this threshold to filter projects with short development activity.

• Criterion-4: The README of the project is written in English. README
projects related to COVID-19 can be non-English. We do not include non-
English projects as raters who will perform categorization are not familiar with
non-English languages, such as Spanish and Cantonese.

• Criterion-5: The project is related with COVID-19. We use the ‘topic’ 1 fea-
ture of GitHub to search and identify COVID-19 software projects. However,
practitioners can mislabel projects using the ‘topic’ feature of GitHub poten-
tially including projects in our dataset that are not related with COVID-19. For
example, from manual inspection we observe the ‘RehanSaeed/Schema.NET’ 2

project to be tagged as ‘covid-19’, even though it is not related with COVID-19.
In fact, the project is used to convert blob objects into C# classes.

3.1.2 Qualitative Analysis of README files

We apply a qualitative analysis called open coding Saldana (2015) on the content of
README files for each of the downloaded projects from Section 3.1.1. README
files describe the content of the project and give GitHub users an overview of
the software project Prana et al. (2019). We hypothesize that by systematically
analyzing the content of the README files we can derive what types of software
projects are developed that are related to COVID-19.

In open coding a rater identifies and synthesizes patterns within unstructured
text Saldana (2015). We select open coding because we can obtain detailed in-
formation on the software project categories. We use a hypothetical example to
demonstrate our process of open coding in Figure 3. First, we collect text from
the README files for each of the collected projects from Section 3.1.1. Next,
we extract text snippets that describe the purpose of the software project. For
example, from the raw text ‘The COVID-19 Vulnerability Index (CV19 Index) is
a predictive model that identifies people who are likely to have a heightened vul-
nerability to severe complications from COVID-19 ’ we extract the text snippet
‘a predictive model ’, as the extracted text snippet describes the purpose of the
software project. Next, from the text snippets ‘a predictive model ’ and ‘modelling
estimated deaths’ we generate an initial category called ‘Models to predict ’. Two
initial categories ‘Models to predict ’ and ‘Models to understand ’ are combined into
one category ‘Statistical modeling ’, as they both indicate the descriptions of the
software projects to be related with statistical modeling.

The first and second author conduct the open coding process separately. Both
authors used Excel spreadsheets to conduct the open coding process manually. The
first and second author respectively an experience of 10 and 6 years in software
engineering and has experience in conducting open coding upon software project
artifacts, such as commit messages Rahman et al. (2020) and Stack Overflow

1https://github.com/topics
2https://github.com/RehanSaeed/Schema.NET
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README excerpt Raw Text Initial Category Category

The COVID-19 Vulnerability Index 
(CV19 Index) is a 
predictive model that 
identifies people who are likely to 
have a 
heightened vulnerability to 
severe complications from COVID-
19

COVID-19 Agent-based Simulator 
(Covasim): 
a model for understanding novel 
coronavirus epidemiology

Code for modelling estimated 
deaths and cases for COVID19

a predictive 
model 

a model for 
understanding 

modelling 
estimated deaths 

Models to predict

Models to 
understand

Statistical 
modeling

Figure 3: A hypothetical example to demonstrate our process of open coding to
categorize COVID-19 software projects.

posts Farhana et al. (2019). Upon completion of the open coding process, the
first and second author identify agreements and disagreements. Disagreements are
resolved upon discussion, Agreement rate is calculated using Cohen’s Kappa Cohen
(1960). During the discussion phase both authors agreed present their justification,
and recheck the category derivation based on the discussion and revisiting content.
The mapping determined upon discussion is considered final. One project can map
to multiple categories.

3.1.3 Closed Coding

We apply closed coding Crabtree and Miller (1999) to identify which project maps
to the identified categories from Section 3.1.2. Closed coding is the qualitative
analysis technique where a rater maps an artifact to a pre-defined category by
inspecting the artifact Crabtree and Miller (1999). The first and second author
separately conduct closed coding on the collected README files. Both authors
use Excel spreadsheets to conduct closed coding. After completing the closed
coding process the first and second authors identify agreements and disagreements.
Agreement rate is recorded using Cohen’s Kappa Cohen (1960). Disagreements are
resolved using discussion. During the discussion phase both authors present their
justification for disagreements. Next, based on the discussion the authors recheck
the labeling based on the justification and content analysis. The categorization
determined upon discussion is considered final.

3.1.4 Rater Verification

The derived categories are susceptible to the bias of the first and second author.
We mitigate the limitation by allocating an additional rater who applied closed
coding for a subset of the README files. The additional rater who is not an
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author of the paper, is a fourth year PhD candidate in the Department of Com-
puter Science at Tennessee Technological University. The rater has a professional
experience of 2 years in software engineering and has conduced qualitative anal-
ysis on software artifacts, such as bug reports. We randomly allocate a set of
100 README files mined from 100 projects to the rater. The rater applies closed
coding on the content of the README files, to identify the mapping between each
project and identified categories. Upon completion of closed coding we calculate
Cohen’s Kappa Cohen (1960) between the rater and the first author, as well as
with the second author, separately.

3.2 Methodology for RQ2: What categories of bugs exist
in open source COVID-19 software projects? How fre-
quently do the identified bug categories appear? What
is the resolution time for the identified bug categories?

In this section, we answer “RQ2: What categories of bugs appear in
COVID-19 software projects? How frequently do the identified bug cat-
egories appear? What is the resolution time for each bug category?”
A categorization of bugs for COVID-19 software projects can inform practition-
ers and researchers about how software related to COVID-19 is developed and in
which areas they can help. Furthermore, educators can learn about the software
bugs that occur in a software related to a pandemic and disseminate these findings
in the classroom. Frequency of the identified bug categories can help us under-
stand what categories of software tend to contain what types of software bugs and
provide quality improvement suggestions accordingly. Quantifying the resolution
time for bugs in software projects can help software engineering researchers pro-
vide actionable guidelines to practitioners. For example, Wan et al. 2017 observed
that for blockchain software projects security bugs can take longer to fix compared
to other bug categories. Based on their findings Wan et al. 2017 recommended
that blockchain project maintainers can adopt security analysis and repair tools to
fix security bugs quickly. We provide the methodology to identify bug categories,
quantify bug category frequency, and bug resolution time below:

Methodology to Identify Bug Categories: We identify bug categories
using the following steps:

• Step#1-Filtering : We collect the 4,405 issue reports from the 129 projects
and manually inspect each issue report. We do not rely on automated ap-
proach, such as keyword search or using bug labels, as automated approaches
tend to generate false positives, which may bias research results Herzig et al.
(2013). While inspecting each issue report we use the following IEEE defini-
tion for bugs: “an imperfection that needs to be replaced or repaired” IEEE
(2010), similar to prior work 2020. By completing this step we will obtain
a set of closed issues reports that correspond to bugs. We use closed re-
ports because as open bug reports are often incomplete and may not help in
identifying bugs Wan et al. (2017).
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Bug report excerpt Raw Text Initial Category Category

fix historical nyc data transition to 
borough/county level reporting

Temperature data not saved in the 
backend

Rajasthan district names are 
wrong 

fix nyc data

data not saved in 
the backend 

district names 
are wrong

Data bugs related 
to location

Data bugs related 
to storage

Data Bugs

Figure 4: A hypothetical example to demonstrate our process of open coding to
identify bug categories for software projects.

The first and second author manually inspect individually to identify what
issue reports correspond to bugs. We record agreement rate and Cohen’s
Kappa Cohen (1960) between the first and second author. Disagreements
between the first and second author is resolved through discussions. The pro-
cess is subjective and susceptible to the bias of the first and second author.
We mitigate the bias by using an additional rater, who inspected randomly
inspected 100 issue reports and classified them as bug reports and non-bug
reports. The additional rater is the fourth year PhD candidate at Tennessee
Technological University who is also involved in rater verification for RQ1.

• Step#2-Open coding : We apply open coding Saldana (2015) on the content of
the collected bug reports from Step#1. Our open coding process is illustrated
in Figure 4 using an example. First, we extract raw text from bug report
titles and description, from which we generate initial categories. Next, we
merge initial categories based on the commonalities and generate categories.

Similar to deriving project categories, the first and second author separately
apply the process of open coding to generate bug categories. Upon com-
pletion of the process we quantify agreement rate and measure Cohen’s
Kappa Cohen (1960). For disagreements we conduct discussion. Generated
categories upon discussion is considered final.

Methodology to Quantify Bug Category Frequency: We apply the fol-
lowing steps to quantify the frequency of identified bug categories:

• Step#1-Closed coding : We apply closed coding Crabtree and Miller (1999) to
map each identified category to the bug reports that we study. The first and
second author separately apply closed coding for the collected bugs from
Step#1. Upon completion, we calculate the agreement rate and Cohen’s
Kappa Cohen (1960). Disagreements are resolved using discussion.
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• Step#2-Metric calculation: We quantify the frequency of the identified bug
categories using two metrics: ‘Proportion of Bugs Across All Projects (Bug-
PropAll)’ and ‘Proportion of Bugs For a Certain Project Category (BugProp-
Categ)’. We use Equations 1 and 2 to respectively calculate ‘BugPropAll’
and ‘BugPropCateg’. The ‘BugPropAll’ metric using Equation 1 provides a
holistic overview of the frequency of identified bug categories. The ‘BugProp-
Categ’ metric using Equation 2 provides a granular overview of bug category
frequency for each software project types identified from Section 4.1.2.

• Step#3-Rater verification: The use of first and second author as raters to
conduct closed coding is susceptible to rater bias. We mitigate this limitation
by allocating an additional rater. We assign randomly selected 250 bug
reports to the additional rater who apply closed coding. We provide the
additional rater with a document that provides definitions of each identified
category with examples.

Similar to our process of rater verification for project categorization, the
additional rater is the fourth year PhD candidate in the Department of
Computer Science in Tennessee Technological University. The fourth year
PhD candidate is involved in the rater verification process for identifying
project categories and labeling issue reports as bug reports.

BugPropAll(x) =

# of bug reports labeled as category x

total # of bug reports
∗ 100%

(1)

BugPropCateg(x, y) =

# of bug reports labeled as x, belonging to project type y

total # of bug reports for project type y
∗ 100%

(2)

Methodology to Quantify Bug Resolution Time We use the open and
closing timestamp for each closed bug report in our dataset to quantify the reso-
lution time for each bug category, similar to Wan et al. 2017. We calculate bug
resolution time by computing the number of hours that have elapsed between
when the bug report is opened and closed, and not re-opened again, as per our
dataset , which was downloaded on April 04, 2020. We report bug resolution time
for all bug categories, as well as for bug reports that belong to certain categories
of software projects.

3.3 Methodology to Answer RQ3: How similar are the iden-
tified bug categories to that with previously studied
software projects?

We conduct a scoping review of publications related to software bug categoriza-
tion. Using a scoping review, researchers can synthesize results using a limited
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search Anderson et al. (2008). According to Munn et al. 2018 “Researchers may
conduct scoping reviews instead of systematic reviews where the purpose of the
review is to identify knowledge gaps, scope a body of literature, clarify concepts or
to investigate research conduct.”. Unlike a systematic literature review, a scoping
review is less comprehensive, and can be used as a precursor to conduct a system-
atic literature review. Scoping review can be useful to collect emerging evidence,
which eventually can be used to inform further research decisions Anderson et al.
(2008). For example, if a researcher is inexperienced in the domain of software
fuzzing, and wants to get an understanding of existing topics such as practices and
techniques to implement fuzzing, then a scoping review could be useful to that
researcher of interest.

We conduct a scoping review by identifying well-known venues where software
engineering research is published. We select five conferences: International Con-
ference on Software Engineering (ICSE), Symposium on Foundations of Software
Engineering (FSE), International Conference on Automated Software Engineer-
ing (ASE), International Conference on Mining Software Repositories (MSR), and
International Symposium on Software Testing and Analysis (ISSTA). We select
these conferences because these conferences are considered reputed venues to pub-
lish literature related to software engineering 3, and sponsored by special interest
groups of the Association of Computing Machinery (ACM). We select conferences
as they tend to have a shorter review cycle and are more likely to include recent
advances in the field of interest Vardi (2009). We conduct the review by applying
the following steps:

• Step-1 : We download all papers from 2010 to 2020 for each of the four confer-
ences. We select papers from 2010 to 2020 to identify and synthesize state of the
art bug taxonomies and categories used for a wide range of software projects.
Papers that studied bug categories prior to 2010 may not give us an understand-
ing of the state of art. Our hypothesis is that by identifying papers from the
last 10 years we will get a better overview of what types of bugs appear for a
wide range of software projects.

• Step-2 : We read the title, abstract, and keywords to determine if the down-
loaded papers are related to software bug categorization.

• Step-3 : Upon completion of Step-2, one rater reads each collected paper, and
identifies topics discussed in the paper of interest using qualitative analysis. For
each paper the rater determines if the paper focuses on bug categorization. If
so, the rater documents the bug categories for the reported software project.

Upon completion of the above-mentioned steps, we derive reported bug cate-
gories for multiple software projects.

3csrankings.org
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Table 1: Filtering of COVID-19 projects used in paper.

Criteria GitHub
Initial 3,276
Criterion-1 (Devs >= 2) 1,287
Criterion-2 (Open issues >= 5) 169
Criterion-3 (Commits/month >= 2) 154
Criterion-4 (README is English) 131
Criterion-5 (Actually COVID-19) 129
Final 129

Table 2: Attributes of studied COVID-19 projects.

Attributes Total
Commits 38,152
Developers 2,243
Duration 12/2019-03/2020
Files 24,839
Issues 4,405
Languages 18
Releases 286
Projects 129

4 Results

In this section, we provide answers to the three research questions, RQ1, RQ2,
and RQ3.

4.1 Answer to RQ1: What categories of open source
COVID-19 software projects exist?

We answer RQ1 by first providing summary statistics of our dataset in Sec-
tion 4.1.1. Next, we report categories of the projects in Section 4.1.2.

4.1.1 Summary of Dataset

Altogether we download 129 projects for analysis. Using the search feature we
identify 3,276 public projects upon which we apply our filtering criterion. A com-
plete breakdown of our filtering criterion is available in Table 1. Attributes of the
projects is available in Table 2. ‘Languages’ in Table 2 correspond to the count of
main programming languages of the collected projects as determined by GitHub’s
linguist tool GitHub (2020b). Example languages include JavaScript, Python and
R.

A temporal evolution of the 129 COVID-19 software projects based on creation
date is available in Figure 5. We observe sharp increase in project creation after
Feb 29, 2020.
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Figure 5: Temporal evolution of COVID-19 software projects based on their cre-
ation date. We observe sharp increase in project creation after Feb 29, 2020.

4.1.2 Categorization of COVID-19 Software Projects

We identify 7 categories of COVID-19 software projects. We describe each of the
categories below in an alphabetic order:

I: Aggregation :: This category includes software projects that curate data
related to COVID-19 and present collected COVID-19 data in an aggregated for-
mat using visualizations. The purpose of these projects is to help users understand
the spread of the COVID-19 disease over time and location. Software projects
that belong to this category can be country specific as done in ‘juanmnl/covid19-
monitor’ juanmnl (2020) and ‘dsfsi/covid19za’ Marivate and Combrink (2020)
respectively, for Ecuador and South Africa. Aggregation of COVID-19 data can
also be at a global level, for example, ‘boogheta/coronavirus-countries’ boogheta
(2020) is a software that aggregates COVID-19 data across the world and allows
software users to compare the reported cases on a country-by-country basis.

II: Education :: This category includes projects that provide utilities on
educating people about COVID-19. Lack of knowledge related to infections and
symptoms can contribute to rapid spreading of COVID-19. The purpose of these
projects is to build software, where users can ask questions and obtain answers. We
observe two categories of software: first, question and answer websites similar to
Stack Overflow 4, such as ‘nthopinion/covid19’ nthopinion (2020), where users can
ask questions about COVID-19, and other users answer such questions. Second, we
observe bot-specific software, such as ‘deepset-ai/COVID-QA’ deepset ai (2020)
that provides answers for questions related to COVID-19 automatically.

III: Medical equipment :: This category includes projects to curate and
maintain source code for the design and implementation of medical equipment used
to treat COVID-19. The purpose of these projects is to create designs of COVID-19
related medical equipment, such as ventilators at scale, so that the growing need

4https://stackoverflow.com/
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of medical equipment in hospitals is satisfied. One example of such repository
is ‘makers-for-life/makair’ makers-for life (2020), which states the following in
it’s README page: “Aims at helping hospitals cope with a possible shortage of
professional ventilators during the outbreak. Worldwide. ... We target a per-unit
cost well under 500 EUR, which could easily be shrunk down to 200 EUR or even
100 EUR per ventilator given proper economies of scale, as well as choices of
cheaper on-the-shelf components”. The project includes design of the proposed
ventilators as CAD files, as well as relevant firmware available as C++ code files.

Another example is the ‘popsolutions/openventilator’ popsolutions (2020),
which aims to provide cheap but reliable ventilators to treat COVID-19 in econom-
ically under-developed regions of the world. The software project initiated from a
Facebook group called ‘Open Source COVID-19 Medical Supplies’ 5, where mem-
bers discussed the scarcity of ventilators and the importance of creating cheap
ventilators through efficient design. In the project we notice developers to create,
build, and share designs using OpenSCAD scripts. OpenSCAD is an open source
tool to build computer-aided design (CAD) objects 6.

IV: Mining :: This category includes projects that provide APIs to mine
COVID-19 data from data sources, such as the US Center for Disease Control and
Prevention (CDC) CDC (2020), the World Health Organization (WHO) 2020, and
data reported from local institutions. The purpose of this category of software is
to provide utilities for software developers so that they can get real-time access
to COVID-19 data to build aggregation software, discussed above. Because of
the nature of the pandemic, access to real-time data is pivotal for accurate ag-
gregation and analysis. The mining tools help developers to get such support.
Mining software can be location specific, for example ‘dsfsi/covid19africa’ Mari-
vate et al. (2020) is dedicated to curate and collate COVID-19 related data for
African countries.

V: User tracking :: This category includes software projects that collects
information from users regarding their COVID-19 infection status. Tracking of
user information can happen voluntarily, where the user voluntarily self reports
COVID-19 infection status. The ‘enigmampc/SafeTrace’ enigmampc (2020) soft-
ware is an example where users self report their infection status as well as location
history. Tracking of user information can also be done using inference, as done
in ‘OpenMined/covid-alert’ OpenMined (2020), where the software collects user’s
location information to predict if the user is in a location with high infection den-
sity. One utility of these projects is to identify high-risk locations so that users can
have an understanding of which nearby location can be avoided. Self reporting
software have yielded benefits for China and South Korea Huang et al. (2020).

VI: Statistical modeling :: This category includes software that use sta-
tistical models to predict attributes related to COVID-19. The purpose of the
projects is to make predictions for the future based on existing data. Example
usage of statistical models include (i) predicting death rate as done in ‘Imperial-
CollegeLondon/covid19model’ ImperialCollegeLondon (2020), (ii) automating the

5https://www.facebook.com/groups/opensourcecovid19medicalsupplies/
6https://www.openscad.org/
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Table 3: Summary statistics of projects that belong to each category. Based on
project count ‘Aggregation’ is the most frequent category as highlighted in green.

Proj.
Categ.

Projects Com. Devs Files Iss. Rele.

Aggregation 50 14,985 663 8,641 908 72
Mining 35 9,671 894 6,714 515 21
Stat.
model.

22 7,214 429 3,464 491 38

Education 9 4,550 196 1,696 406 14
User track 9 2,020 152 2,291 119 286
Volunteer. 7 2,186 143 2,041 320 0
Med.
equip.

3 859 38 790 14 63

process of lung segmentation with computerized tomography (CT) scan, as done
in ‘JoHof/lungmask’ JoHof (2020), (iii) predicting the impact of the COVID-19
pandemic on hospital demands as done in ‘neherlab/covid19 scenarios’ neherlab
(2020), and (iv) predicting presence of COVID-19 with X-ray images using deep
learning as done in ‘elcronos/COVID-19’ elcronos (2020).

VII: Volunteer management :: This category includes software used to
efficiently manage volunteering effort. The purpose of this software is to build
software platforms so that users can volunteer and participate in activities to help
distressed families and communities. One example is the ‘covid-volunteers’ help-
withcovid (2020) software, which provides a web portal where users can sign up
for 650 projects that include donation of masks, personal protective equipment
(PPEs), and testing of COVID-19 7. Platforms can be global, such as ‘covid-
volunteers’, and also regional, for example ‘Applifting/pomuzeme.si’ Applifting
(2020) creates a web portal so that people inside Czech Republic can volunteer.

4.1.3 Frequency of the Identified Categories

Based on project count aggregation is the most frequent category. Along with
project count, we provide summary statistics of projects that belong to each cat-
egory in Table 3. We also observe on average user tracking projects to be more
frequently released compared to other project types.

We identify four software projects that belong to multiple categories. As an ex-
ample, the ‘soroushchehresa/awesome-coronavirus’ soroushchehresa (2020) project
belongs to the categories: aggregation, mining, and statistical modeling.

4.1.4 Rater Agreement

We report agreement rate for three steps: open coding, closed coding, and rater
verification.
Open coding : After completing open coding, the first and second author respec-
tively, identified 7 and 10 categories. The agreement rate is 70.0%, and the Co-
hen’s Kappa is 0.7, indicating ‘substantial’ agreement Landis and Koch (1977).

7https://helpwithcovid.com/medical
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The authors disagreed on ‘Volunteering software related to local communities’,
‘Education bots’, and ‘Aggregated visualizations’, additional categories identified
the second author.

Disagreements were resolved through discussion. Both authors provided justi-
fications for their categorization. The first author pointed out that the category
‘Education bots’ can be merged with ‘Education’ as the category ‘Education’
encompasses all categories of knowledge software, such as bots and web applica-
tions. The first author also pointed out that ‘Volunteering software related to
local communities’ can be merged with ‘Volunteer management’, as the category
is an extension of the category ‘Volunteer management’. Furthermore, the first
author also pointed out that ‘Aggregated visualizations’ can be merged with ‘Ag-
gregation’, as ‘Aggregation’ includes software that aggregates COVID-19 data and
displays aggregated data with visualizations. The second author was convinced
by the first authors’ justification and updated her derived list of categories.
Closed coding : During closed coding the first and second author mapped each
of the 129 project to an existing category. The agreement rate is 93.8%. The
Cohen’s Kappa is 0.92. The authors disagreed on the labeling of 8 projects, which
are resolved through discussion. During the discussion phase both authors agreed
present their justification, and recheck the labeling based on the justification and
content analysis. The categorization determined upon discussion is considered
final.
Rater verification: We also measured the agreement rate between an additional
rater and the authors for categorizing README files of projects. Cohen’s Kappa
between the additional rater and the first author for a randomly selected set of 50
README files is 0.73, indicating ‘substantial’ agreement Landis and Koch (1977).
Cohen’s Kappa between the additional rater and the second author for a randomly
selected set of 50 README files is 0.73, indicating ‘substantial’ agreement Landis
and Koch (1977). The agreement rate between the additional rater and the first
and second author is respectively, 78.0% and 76.0%.

4.2 Answer to RQ2: What categories of bugs exist in open
source COVID-19 software projects? How frequently
do the identified bug categories appear? What is the
resolution time for the identified bug categories?

We answer RQ2 by first providing a breakdown of how we obtained our bug reports
in Table 4 and 5. As shown in Table 5, the categories with the most and least
bug reports is respectively, aggregation and medical equipment. One project can
belong to multiple categories, and that is why the total count of bug reports do
not total to 550.

Next, we describe the identified bug categories in Section 4.2.1 by applying
open coding on the collected 550 bug reports. The frequency of the identified bug
categories is provided in Section 4.2.2. We provide details of rater verification in
Section 4.2.3. Finally, we provide the bug resolution time in Section 4.2.4.
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Table 4: Filtering of bug reports from COVID-19 software projects.

Initial 4,095
Criterion-1 (Closed issues) 2,965
Criterion-2 (Valid bug reports) 550
Final 550

Table 5: Count of bug reports for each category of COVID-19 software projects.
Aggregation-related projects have the highest amount of bug reports.

Project category Count (%)
Aggregation 220 (40%)
Mining 150 (27.3%)
Stat. Model. 98 (17.8%)
Education 58 (10.5%)
Volunteer. 40 (7.3%)
User Track 31 (5.6%)
Med. Equip. 4 (0.7%)

4.2.1 Bug Categories of COVID-19 Projects

We identify 8 bug categories, which we describe below alphabetically:
I: Algorithm :: This category corresponds to bugs when implementation

of an algorithm does not follow expected behavior. An algorithm is a sequence
of computational steps that transform input into output Cormen et al. (2009).
We observe algorithm bugs to include two sub-categories: (i) bugs related to
statistical modeling algorithms, where statistical modeling results are incorrect
due to incorrect assumptions and/or implementations, and (ii) bugs related to
incorrect logic implemented in the software.

Example : We provide examples for the two sub-categories:

• Statistical modeling: In a bug report titled “Death rates should increase
when ICU’s are overwhelmed” Begley (2020a), a practitioner describes how
incorrect assumption can result in incorrect modeling behavior. The practi-
tioner discusses that bed space is correlated with estimation of fatality rate.
When bed space of hospitals are exhausted hospitals will not be able to treat
new COVID-19 new patients, which could potentially increase the fatality
rate.

The bug report provides evidence that if the context of COVID-19 is not
correctly incorporated in statistical models, them models will provide incor-
rect results. Incorrect statistical models can be consequential, as countries
are adopting public health policies specific to COVID-19. For example re-
searchers have critiqued the statistical models derived by the Institute for
Health Metrics and Evaluation at the University of Washington (IHME), and
advised USA policy makers to use the modeling results with caution Begley
(2020b).

• Incorrect logic: In a bug report titled “Fix Prefecture Sorting” reustle (2020),
a practitioner describes a sorting bug which occurs when trying to visualize
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COVID-19 cases based on prefectures in Japan. A prefecture is an adminis-
trative jurisdiction in a country similar to a state or province Hu and Qian
(2017). The bug occurred due to an incorrect logic that did not perform
sorting by prefectures.

II: Data :: This category corresponds to bugs that occur during mining
and storage of COVID-19 data. As discussed in Section 4.1.2 we observed our
dataset to include projects that mine and aggregate COVID-19 data. We observe
four sub-categories of data bugs: (i) storage: bugs that occur while storing data
in a database, (ii) mining: bugs that occur while retrieving data from data APIs,
(iii) location: bugs where location information in stored data is incorrect, and (iv)
time series: bugs that correspond to missing data for a certain time period.

Example : We provide examples for each of these sub-categories below:

• Storage: In a bug report titled “Temperature data not saved in the back-
end” pavel ilin (2020), a practitioner describes a bug where patient temper-
ature data is inserted in the front-end but not stored in the database.

• Mining: Bugs occur when COVID-19-related data is being mined. A practi-
tioner describes a mining bug in a bug report titled “CDC Children scraper is
outdated” Timoeller (2020). The mining tool mines data related to children
affected by COVID-19.

• Location: In a bug report titled “Rajasthan District names are wrong”, a
practitioner describes that inserted location data for an Indian state called
‘Rajasthan’ is wrong SinghRajenM (2020).

• Time series: Missing data was reported for a project and reported in a bug
report titled “Data has a gap between 2020-3-11 and 2020-3-24 ” zbraniecki
(2020).

III: Dependency :: This category corresponds to bugs that occur when
execution of the software is dependent on a software artifact that is either missing
or incorrectly specified. For COVID-19 projects, an artifact can be an API or a
build artifact.

Example : In a bug report titled “Missing PostGIS” vaclavpavlicek (2020),
a practitioner describes that installation and execution of the software is prohib-
ited due to a software package called ‘PostGIS’, which is used to store spatial
and geographic measurements, such as area, distance, polygon, and perimeter in
PostgreSQL databases.

IV: Documentation :: This category corresponds to bugs that occur when
incorrect and/or incomplete information in specified in release notes, maintenance
notes, and documentation files, such as README files.

Example : In a bug report titled “Missing code of conduct”, a practitioner
describes a ‘CODE OF CONDUCT.md’ file to be missing in a Markdown file
that describes how practitioners can contribute to the project mdeous (2020).
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V: Performance :: This category corresponds to bugs that cause perfor-
mance discrepancies for the software. Performance bugs are manifested in slow
response of the web or mobile app.

Example : In a bug report titled “Cluster animation slowing down the browser.
It also takes much time”, a practitioner describes how a performance bug related to
an animation feature is slowing down a Firefox browser on Windows 10 Subratappt
(2020). The performance bug was reported for a website called ‘covid19india.org’ 8,
which aggregates COVID-19 data for India and displays them.

VI: Security :: This category corresponds to bugs that violate confiden-
tiality, integrity, or availability for the software.

Example : In a bug report titled “Fix password reset procedure” landovsky
(2020), a practitioner describes a password reset bug, where the password reset
procedure ends arbitrarily after 500 login attempts.

VII: Syntax :: This category corresponds to bugs related with the syntax
of the programming languages used to develop the software.

Example : We notice bugs related to data types in ‘neherlab/covid19 scenarios’.
In the bug report titled “Fix types and linting errors” ivan aksamentov (2020), a
practitioner describes how linting and type checking was disabled for the project,
which led to bugs related to linting and type checking.

VIII: UI :: This category corresponds to bugs that involve the user inter-
face (UI) of the software. UI bugs include navigation-related bugs on web pages,
bugs related to accessibility, displaying incorrect images, links, and color, and
responsiveness.

Example : In a bug report titled “accessibility fixes” abquirarte (2020) de-
scribes a UI bug related to accessibility. According to the bug report, a screen
reader incorrectly renders check marks and crosses in front of the “Do’s and Don’t
as M’s and N’s”.

4.2.2 Frequency of Identified Bug Categories

Based on the ‘Proportion of Bugs Across All Projects (BugPropAll)’ metric we
observe UI bugs to be the most frequent category, whereas documentation is the
least frequent category. We provide a compete breakdown of the metric in Ta-
ble 6. Data bugs have four sub-categories: storage, mining, location, and time
series. The frequency for storage, mining, location, and time series is respectively,
4.7%, 5.8%, 87.2%, and 2.3%. Algorithm bugs have two sub-categories: statistical
modeling and wrong logic. The frequency for statistical modeling and wrong logic
is respectively, 42.3% and 57.7%.

We observe bug category frequency to vary for different categories of projects.
We provide the ‘Proportion of Bugs For a Certain Project Category (BugProp-
Cat)’ values for each project category in Table 7. ‘AGG’, ‘MINE’, ‘STA’, ‘EDU’,
‘TRAK’, ‘VOL’ and ‘EQU’ respectively, corresponds to the seven project cate-
gories: aggregation, mining, statistical modeling, education, user tracking, volun-
teer management system, and medical equipment.

8https://www.covid19india.org/
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Table 6: Frequency of identified bug categories. UI-related bugs are the most
frequent.

Bug category BugPropAll (%)
UI 38.2
Data 30.9
Dependency 18.9
Algorithm 7.8
Syntax 6.7
Security 2.5
Performance 1.6
Documentation 1.4

Table 7: Bug category frequency for each identified project type. All values are
presented in (%).

AGG MINE STA EDU TRAK VOL EQU
Bug
categ.
Algorithm 6.8% 6.7% 22.4% 3.4% 0.0% 2.5% 0.0%
Data 28.6% 60.6% 13.2% 15.5% 0.0% 12.5% 0.0%
Dependency 16.3% 18.0% 18.3% 24.1% 9.7% 27.5% 75.0%
Document 0.9% 1.3% 1.0% 0.0% 0.0% 10.0% 0.0%
Performance 2.7% 2.0% 0.0% 0.0% 3.2% 0.0% 0.0%
Security 1.8% 0.0% 3.0% 3.4% 6.4% 12.5% 0.0%
Syntax 5.9% 3.3% 14.3% 17.2% 3.2% 10.0% 0.0%
UI 50.0% 12.0% 34.7% 44.8% 77.4% 32.5% 25.0%

According to Table 7, except for mining and medical equipment software, the
dominant bug category is UI. One possible explanation can be the analyzed soft-
ware projects have UIs, which may have contributed to the frequency of UI bugs.
For mining software the dominant bug category is data bugs i.e., bugs that occur
due to storing and processing of COVID-19 data. For medical equipment software
the dominant bug category is dependency. We also notice algorithm bugs to be the
second most frequent bug category for statistical modeling software. Similar to
prior work on machine learning Thung et al. (2012), we expected algorithm bugs
to be the most dominant category for statistical modeling. Statistical modeling
software also have UIs for user interaction, and the count of UI bugs may have
foreshadowed the count of algorithm bugs.

4.2.3 Rater Agreement and Verification

We report agreement rate for four steps: issue labeling, open coding, closed coding,
and rater verification.
Labeling issues as bugs: While labeling collected issue reports as bug reports and
non-bug reports the agreement rate is 96.5% and the Cohen’s Kappa is 0.9.
Open coding to identify bug categories: The first and second author respectively,
identified 9 and 10 categories. The agreement rate is 72.7%, and the Cohen’s
Kappa is 0.70, indicating ‘substantial’ agreement Landis and Koch (1977). The
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first author identified ‘database’ as a category not identified by the second author.
Upon discussion both authors agreed that ‘database’ is related to data storage
and belongs to the data category. The second author identified two additional
categories ‘Public health data’ and ‘Type errors’. After discussing the definitions
of all categories both authors agreed that ‘Public health data’ and ‘Type errors’
can respectively, be merged with data and syntax.
Closed coding to quantify bug category frequency : During closed coding the first
and second author mapped each project to an existing category. The agreement
rate is 95.1% and the Cohen’s Kappa is 0.93. The authors disagreed on the labeling
of 27 bug reports, which are resolved through discussion.
Rater verification: For the randomly selected 250 issue reports we allocate an ad-
ditional rater who manually identified which of the issue reports are bug reports
and non-bug reports. The Cohen’s Kappa between the additional rater and the
first author is 0.80, indicating ‘substantial’ agreement Landis and Koch (1977).
The Cohen’s Kappa between the additional rater and the second author is 0.84,
indicating ‘perfect’ agreement Landis and Koch (1977). The agreement rate be-
tween the additional rater and the first and second author is respectively, 89.0%
and 93.0%.

We have also measured the agreement rate between an additional rater and the
authors for categorizing bug reports. Cohen’s Kappa between the additional rater
and the first author for a randomly selected set of 250 bug reports is 0.65, indi-
cating ‘substantial’ agreement Landis and Koch (1977). Cohen’s Kappa between
the additional rater and the second author for a randomly selected set of 250 bug
reports is 0.68, indicating ‘substantial’ agreement Landis and Koch (1977). The
agreement rate between the additional rater and the first and second author is
respectively, 78.0% and 81.6%.

4.2.4 Resolution Time of Identified Bug Categories

We provide bug resolution time as measured in hours for all bug categories in
Table 8. From Table 8 we observe that based on min and median bug resolution
times security bugs take the longest to resolve, followed algorithm bugs. We also
observe data bugs to take as long as 548 hours to resolve.

A breakdown of bug resolution time across the seven project categories is
provided in Table 9. The ‘All’ row in Table 9 shows the minimum, median, and
maximum bug resolution time for all bug categories measured in hours.

In Table 9 we observe four instances where the minimum bug resolution time is
less than 6 minutes (< 0.1 hours). One possible explanation can be practitioners’
habit of opening a bug report after they have developed the fix for a bug Wan
et al. (2017); Thung et al. (2012). In such cases, practitioners notice the bug
early, construct the fix for the bug, and then submit the bug report by opening
and closing the bug report promptly.

Median bug resolution duration for each project type and bug category is
provided in Table 10. ‘AGG’, ‘MINE’, ‘STA’, ‘EDU’, ‘TRAK’, ‘VOL’ and ‘EQU’
respectively, corresponds to the seven project categories: aggregation, mining,
statistical modeling, education, user tracking, volunteer management system, and
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Table 8: Resolution time of identified bug categories. Resolution times is measured
in hours. Median resolution time is highest for security bugs.

Bug category Min Median Max
Security 1.240 13.9 144.6
Algorithm 0.041 13.5 172.7
Syntax 0.004 12.1 174.2
UI 0.003 11.8 254.2
Data 0.003 8.4 548.0
Performance 0.961 7.1 104.4
Dependency 0.014 2.4 379.4
Documentation 0.013 1.4 76.8

Table 9: Resolution time of bug categories grouped by project categories. We mea-
sure resolution time in hours. Median bug resolution time is highest for projects
related to medical equipment software.

Project category Min Median Max
Medical Equipment 5.0 29.4 46.4
Volunteer Management System 0.013 21.1 174.2
User Tracking 0.124 16.5 294.5
Education 0.121 11.2 294.5
Aggregation 0.003 8.7 379.4
Statistical Modeling 0.004 7.2 168.3
Mining 0.005 2.5 548.1
All 0.003 7.4 548.0

medical equipment. We observe median bug resolution time to vary across bug
categories as well as for project categories.

4.3 Answer to RQ3: How similar are the identified bug
categories to that with previously studied software
projects?

We report our findings in Table 11. The ‘Bug category’ column presents the bug
categories identified for COVID-19 software projects, whereas, the ‘Other software

Table 10: Median bug resolution time for each bug category and each project
type measured in hours. ‘—’ indicates categories for which no bug reports exist.

AGG MINE STA EDU TRAK VOL EQU
Bug cat.
Algorithm 9.8 10.8 13.9 10.1 — 13.5 —
Data 12.2 4.4 15.2 17.0 — 42.0 —
Dependency 5.6 0.1 0.3 4.5 5.3 2.9 22.4
Document 1.3 39.0 1.5 — — 6.9 —
Performance 7.1 36.6 — — 1.5 — —
Security 8.1 — 3.1 84.1 13.9 20.4 —
Syntax 12.1 4.7 11.4 8.6 16.9 79.3 —
UI 8.3 2.7 13.1 16.8 18.7 21.9 46.4
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Table 11: Comparison of bug categories of COVID-19 software projects with that
of other software project categories.

Bug category Other software projects
Security IaC Rahman et al. (2020), OSS GitHub projects Ray et al.

(2014)
Algorithm Autonomous vehicle Garcia et al. (2020), OSS GitHub

projects Ray et al. (2014)
Syntax IaC Rahman et al. (2020), deep learning Islam et al. (2019),

OSS GitHub projects Ray et al. (2014)
UI Blockchain Wan et al. (2017)
Data Deep learning Islam et al. (2019)
Performance OSS GitHub projects Ray et al. (2014)
Dependency IaC Rahman et al. (2020)
Documentation Autonomous vehicle Garcia et al. (2020), IaC Rahman et al.

(2020)

projects’ column presents the software projects for which the bug category was
observed according to papers identified from our scoping review. We observe
bug categories for COVID-19 software projects to also be observable for other
categories of software projects, such as deep learning and automated vehicle.

5 Discussion

In this section, we first provide a summary of our findings in Section 5.1. Next,
we provide a discussion on the implications of our findings in Section 5.2.

5.1 Summary

Project category: Aggregation
Definition: Aggregate COVID-19 data and present using visualizations
Count : 50 out of 129 (38.7%)
Most frequent bug category: UI bugs
Median bug resolution time: 8.7 hours

Project category: Mining
Definition: Mine COVID-19 data
Count : 35 out of 129 (27.1%)
Most frequent bug category: Data bugs
Median bug resolution time: 2.5 hours

Project category: Statistical modeling
Definition: Use of statistical models to make COVID-19 predictions
Count : 22 out of 129 (17.0%)
Most frequent bug category: UI bugs
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Median bug resolution time: 7.2 hours

Project category: Education
Definition: Educate people about COVID-19
Count : 9 out of 129 (6.9%)
Most frequent bug category: UI bugs
Median bug resolution time: 11.2 hours

Project category: User tracking
Definition: Track user data related to COVID-19
Count : 9 out of 129 (6.9%)
Most frequent bug category: UI bugs
Median bug resolution time: 16.5 hours

Project category: Volunteer management
Definition: Efficiently manage volunteering effort related to COVID-19
Count : 7 out of 129 (5.4%)
Most frequent bug category: UI bugs
Median bug resolution time: 21.1 hours

Project category: Medical equipment
Definition: Source code for design and implementation of medical devices
Count : 3 out of 129 (2.3%)
Most frequent bug category: Dependency bugs
Median bug resolution time: 29.4 hours

5.2 Implications

We discuss the implications of our findings below:
Security and privacy implications of user tracking software: From

Table 3 we observe 9 projects to be related with user tracking. While the benefits
of user tracking software has been documented for countries, such as Russia and
South Korea Crowell Morning (2020), this category of software can have negative
impacts on privacy of end-users. Data generated from user tracking software can
be leveraged for marketing purposes. We make the following recommendations to
preserve privacy of user data in user tracking software:

• Policy makers should construct policies specific to COVID-19 software that
collects user data.

• Practitioners who develop user tracking software should leverage existing
privacy policy frameworks, such as the ‘National Institute of Standards and
Technology (NIST) Privacy Framework’ National Institute of Standard and
Technology (2020).
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• Privacy researchers can build tools that will automatically detect and report
privacy policy violations.

Evidence from Table 7 shows that security bugs to exist for user tracking soft-
ware. We advocate security researchers to systematically investigate if user track-
ing software includes security bugs. Recent news articles suggest that user tracking
software, such as contract tracing apps may become more and more prevalent as
Apple and Google are already providing frameworks to build software that tracks
user data Apple (2020). Our hypothesis is that availability of these frameworks
will facilitate rapid development and deployment of mobile apps that collect user
data. Security weaknesses in these apps can provide malicious users opportunity
to conduct large-scale data breaches. We notice anecdotal evidence in this regard:
a researcher has identified vulnerabilities in a user tracking app that could leak
user location data Greenberg (2020). Panelists at EuroCrypt 2020, a cryptog-
raphy research conference, discussed limitations of user tracking mobile apps for
COVID-19 with respect to API design, indoor location tracking, and informing
users about privacy risks EuroCrypt (2020a) EuroCrypt (2020b).

Towards constructing correct statistical models: From Section 4.2.1 we
have observed statistical modeling bugs to exist. Bugs related to statistical model-
ing can be consequential because based on the predictions generated by statistical
models, policy makers enforce public health policies. One possible explanation for
buggy statistical models can be attributed to the quality of datasets using which
statistical models are build Koerth et al. (2020). For example, fatality predic-
tion models that are built using the ‘Diamond Princess Cruise Ship Dataset’ may
not be applicable for a specific geographic region with low population density.
Another possible explanation can be a lack of context and knowledge related to
public health specific that hinders model builders to identify appropriate inde-
pendent variables to construct the models. Incorrect estimation of hospital beds
from our discussion in Section 4.2.1 is one example. Other examples of indepen-
dent variables related to public health includes staff availability, count of known
cases, hospitalization rate etc. Attia (2020). According to a health expert Attia
(2020), statistical models that predicted 2.4 million US residents to die, assumed
a hospitalization rate of 15-20%, which in reality was 5%.

Based on our findings and above-mentioned explanations we make two recom-
mendations:

• Automated testing for COVID-19 modeling : We hope to see novel research
in the domain of COVID-19 that will test the correctness of constructed
statistical models used in forecasting in an automated manner. In recent
years, we have seen research efforts that test deep learning models Tian
et al. (2018); Pei et al. (2017); Ma et al. (2018). We expect similar research
pursuits for COVID-19 statistical modeling.

• Better synergies between data science and public health practitioners: Con-
struction and verification of COVID-19 statistical modeling should involve
practitioners from public health and data science. Public health practitioners
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within a specific locality can provide necessary context that data scientists
can incorporate in their statistical models.

Implications for Educators: Our findings have implications for educators
involved in teaching the following topics:

• Data science: Educators who teach data science can use the examples of
statistical modeling bugs to highlight the value of considering the full context
and related limitations that accompany statistical modeling.

• Information security and privacy : User tracking software can be discussed in
information security and privacy courses to demonstrate the value of protect-
ing user data. Such discussion can also include privacy policy frameworks
that are already in place, such as the NIST Privacy framework National
Institute of Standard and Technology (2020).

• Software engineering : Our categorization of bugs related to COVID-19 soft-
ware development can be discussed to demonstrate that understanding and
repair of bugs requires contextualization.

Benchmark for practitioners and researchers: Tables 6— 10 can be
used as a measuring stick by practitioners and researchers who are involved with
COVID-19 software projects. Practitioners can estimate their bug resolution ef-
forts by comparing median resolution times for bugs in their COVID-19 software
projects to that of Tables 8, 9, and 10.

Compared to prior work related to blockchain and machine learning Thung
et al. (2012); Wan et al. (2017), median bug resolution time is lower for COVID-19
software projects. We provide two possible explanations: one possible explanation
can be related to the sense of urgency. Practitioners may have realized that bugs in
COVID-19 software projects could hamper the analysis or mitigation of COVID-
19, and therefore, needs immediate attention. Another possible explanation can
be the limitations of our dataset. The age of our software projects do not exceed
four months and that may have biased median bug resolution time. We advocate
for future research that will confirm or refute our explanations.

Recurrence-related implications: Researchers Kissler et al. (2020); Chen
et al. (2020) have provided evidence that support the recurring nature of COVID-
19. About the recurrence of COVID-19 Kissler et al. 2020 stated “a resurgence in
contagion could be possible as late as 2024.”. We hypothesize that COVID-19’s
recurrence will lead to more COVID-19 software building. Whether or not our
findings hold for these newly constructed COVID-19 software can be validated
through a replication of our paper. We expect to observe more categories of
COVID-19 software projects as well as more bug categories.

5.3 Differences between COVID-19 Software Projects and
Other Software Projects

We provide the differences that we have noticed between COVID-19 software
projects and other software projects, which we discuss in the following subsec-
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tions:

5.3.1 Differences in Bug Manifestation

A non-COVID-19 software project does not have the context of public health con-
sequences that are associated with a COVID-19 software project. We define a
COVID-19 software project to be a software project that is related with analyzing
and mitigating the consequences of COVID-19. By definition, we include soft-
ware projects that are directly capture the consequences related to public health,
and is absent from a traditional software project. We observe empirical evidence
that shows the unique context of COVID-19 to yield differences in bugs and bug
resolution time when compared with other software projects.

Let us consider the case of algorithm bugs. Algorithm bugs manifest in
COVID-19 projects as well as in machine learning and autonomous vehicle
projects. A machine learning project that uses statistical modeling can have algo-
rithm bugs that generates erroneous predictions. For a COVID-19 software project
that predicts death rates, a bug related to the modeling algorithm can have serious
consequences, as public health policies are derived based on these models, as it
occurred during incorrect estimation of hospitalization rate Attia (2020). As dis-
cussed in Section 4.3 algorithm-related bugs also appear for autonomous vehicles
but presence of such bugs manifest in components unique to autonomous vehicle
projects, such as lane positioning and navigation, and traffic light processing.

We have observed that data bugs appear for both deep learning projects and
COVID-19 software projects. The difference is for COVID-19 we have the con-
cepts of location, as practitioners tend to miss important location-related data for
COVID-19, e.g., not able to identify states in India that are observing an outbreak
of COVID-19. In the case of deep learning projects, data bugs are related with
structure and type of training data.

As another example, dependency-related bugs appear for both IaC scripts and
COVID-19 software projects. In the case of IaC, dependency-related bugs are re-
lated to an IaC-related artifact, such as Puppet manifest, class, or a module, upon
which execution of an IaC script is dependent upon Rahman et al. (2020). For
COVID-19 software project dependencies are related with API and build artifacts,
such as Maven dependencies. This difference with respect to dependent artifacts
also highlight the differences between COVID-19 software projects and IaC-based
software projects.

In short, our findings suggest that while commonalities for bug categories be-
tween COVID-19 software projects and other software projects, the manifestation
and artifacts related to the bug categories are different from other categories of
software projects.

5.3.2 Difference in Bug Resolution Time

Our findings indicate that median bug resolution time is lower for OVID-19 soft-
ware projects than that of blockchain and machine learning projects. Based on
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our findings, we conjecture that the sense of urgency might have motivated prac-
titioners to fix bugs in COVID-19 software projects.

5.3.3 Differences with Existing Healthcare-related Software Projects

Our findings also demonstrate differences between COVID-19 software projects
and other projects related to healthcare domain. To illustrate these differences we
use Janamanchi et al. 2009’s work. Janamanchi et al. 2009 studied 174 open-source
software projects related to the health domain and identified 11 categories of soft-
ware projects that do not include the three categories of projects that we have
identified for COVID-19 software projects: volunteer management, user tracking,
and education. The inception and spread of COVID-19 have motivated software
practitioners to create a wide range of software projects, such as projects related to
user tracking and volunteer management so that people are aware about the conse-
quences and hygiene practices related to COVID-19. In the context of COVID-19
software projects, projects related to user tracking focus on tracking user location
data emitted from smartphones to assess the proximity of individuals who might
be exposed to COVID-19. Software projects related to volunteer management are
related with managing volunteers to address COVID-19-related societal issues,
such as food banking. A pandemic of this nature was not experienced by health
professionals prior to 2020. Existing research related to software projects that
belong to health domain were not able to perform characterization of COVID-19
software projects and identify project categories unique to COVID-19. Janmanchi
et al. 2009 did not systematically study the types of bugs that appear in health
care software project. Our paper complements Janamanchi et al. 2009’s work by
studying healthcare-related projects that are related with COVID-19 by charac-
terizing the bugs and the types of software projects related to COVID-19 in which
the bugs appear in.

6 Threats to Validity

We describe the limitations of our paper as following:
Conclusion validity: We have used raters who derived the software and

bug categories. Both raters are authors of the paper. Our derived categoires are
susceptible to the authors’ bias. We mitigate this limitation by allocating another
rater who is not the author of the paper who verified our ratings.

Our categories might not be comprehensive because our categorization for
projects and bugs is limited to the dataset that we collected. The bug resolu-
tion time could be limiting as our dataset includes projects that have a duration
of four months.

We use the topic ‘covid-19’ to identify and filter COVID-19 software projects
from GitHub. Any software project that is not labeled as ‘covid-19’ will not be
included in our dataset.

Our datasets have limited lifetime as the COVID-19 was discovered in Decem-
ber 2019, and the lack of maturity in our datasets may influence our analysis. We
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mitigate this limitation by identifying projects using a filtering criteria so that we
can identify projects with sufficient development activity.

Internal validity: For RQ1 and RQ2 we use ourselves, the authors of the
paper, as raters who conduct open and closed coding on README files and bug
reports. Our research is susceptible to mono-method bias, as our categorization
and labeling may be influenced by the authors’ implicit expectations and hypothe-
ses about the study.

External validity: Our findings are not comprehensive. We have not ana-
lyzed projects hosted outside GitHub and private projects hosted on GitHub. We
mitigate this limitation by analyzing 129 software projects that belong to 7 cat-
egories. Also, as we have used open coding to determine categories, our findings
may not be identified by other raters. We mitigate this limitation by conducting
rater verification, where we use a rater who is not the author of the paper.

7 Conclusion

The COVID-19 pandemic has impacted people all over the world causing thou-
sands of deaths. Software practitioners have joined the fight in combating the
spread and mitigating the dire consequences of COVID-19. An understanding of
COVID-19 software categories and software bugs can give us clues on how the
software engineering community can help even further in combating COVID-19.

We conduct an empirical study with 129 COVID-19 software projects hosted
on GitHub. We identify 7 categories of software projects: aggregation, mining,
statistical models, education, volunteer management, user tracking, and medical
equipment. By applying open coding on 550 bug reports, we identify 8 categories of
bugs: algorithm, data, dependency, documentation, performance, security, syntax,
and UI. We observe bug category frequency to vary with project categories, e.g.,
for mining projects data-related bugs is the most frequently occurring category.

Our findings have implications for educators, practitioners, and researchers.
Educators can use our categorization of COVID software projects and related
bugs to educate students about the security and privacy implications of COVID-
19 software. Privacy researchers can build tools that will check if user tracking
software related to COVID-19 are not leaking user data. Practitioners in the data
science domain can learn from our categorization of statistical modeling bugs
to understand limitations of constructed statistical models and verify underlying
assumptions that accompany constructed statistical models. Based on our findings
we also advocate for better synergies between data scientists and public health
experts so that statistical modeling bugs can be mitigated. We hope our paper
will advance further research in the domain of COVID-19 software.
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