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Abstract

Context: In continuous deployment, software and services are rapidly deployed

to end-users using an automated deployment pipeline. Defects in infrastructure as

code (IaC) scripts can hinder the reliability of the automated deployment pipeline.

We hypothesize that certain properties of IaC source code such as lines of code

and hard-coded strings used as configuration values, show correlation with defec-

tive IaC scripts.

Objective: The objective of this paper is to help practitioners in increasing the

quality of infrastructure as code (IaC) scripts through an empirical study that

identifies source code properties of defective IaC scripts.

Methodology: We apply qualitative analysis on defect-related commits mined

from open source software repositories to identify source code properties that

correlate with defective IaC scripts. Next, we survey practitioners to assess the

practitioner’s agreement level with the identified properties. We also construct

defect prediction models using the identified properties for 2,439 scripts collected

from four datasets.

Results: We identify 10 source code properties that correlate with defective IaC

scripts. Of the identified 10 properties we observe lines of code and hard-coded

string i.e. putting strings as configuration values, to show the strongest correlation
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with defective IaC scripts. According to our survey analysis, majority of the prac-

titioners show agreement for two properties: include, the property of executing

external modules or scripts, and hard-coded string. Using the identified proper-

ties, our constructed defect prediction models show a precision of 0.70∼0.78, and

a recall of 0.54∼0.67.

Conclusion: Based on our findings, we recommend practitioners to allocate suffi-

cient inspection and testing efforts on IaC scripts that include any of the identified

10 source code properties of IaC scripts.

Keywords:

configuration as code, continuous deployment, defect prediction, devops,

empirical study, infrastructure as code, puppet

1. Introduction

Continuous deployment is the process of rapidly deploying software or ser-

vices automatically to end-users [1]. The practice of infrastructure as code (IaC)

scripts is essential to implement an automated deployment pipeline, which fa-

cilitates continuous deployment [2]. Information technology (IT) organizations,

such as Netflix 1, Ambit Energy 2, and Wikimedia Commons 3, use IaC scripts to

automatically manage their software dependencies, and construct automated de-

ployment pipelines [2] [3]. Commercial IaC tools, such as Ansible 4 and Puppet 5,

provide multiple utilities to construct automated deployment pipelines. Use of IaC

1https://www.netflix.com/
2https://www.ambitenergy.com/
3https://commons.wikimedia.org/wiki/Main Page
4https://www.ansible.com/
5https://puppet.com/
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scripts has helped IT organizations to increase their deployment frequency. For

example, Ambit Energy, uses IaC scripts to increase their deployment frequency

by a factor of 1,200 6.

Similar to software source code, the codebase for IaC scripts in an IT orga-

nization can be large, containing hundreds of lines of code [4]. IaC scripts are

susceptible to human errors [3] and bad coding practices [5], which can eventu-

ally introduce defects in IaC scripts [6] [3]. Defects in IaC scripts can have serious

consequences for IT organizations who rely on IaC scripts to ensure reliability of

the constructed automated deployment pipelines. For example, in January 2017,

execution of a defective IaC script erased home directories of ∼270 users in cloud

instances maintained by Wikimedia Commons 7. In our paper, we focus on iden-

tifying source code properties that correlate with defective IaC scripts. Through

systematic investigation, we can identify a set of source code properties that cor-

relate with defective scripts. Practitioners may benefit from our investigation as

they can allocate sufficient inspection and testing efforts for the identified set of

source code properties in IaC scripts.

The objective of this paper is to help practitioners in increasing the quality

of infrastructure as code (IaC) scripts through an empirical study that identifies

source code properties of defective IaC scripts.

We answer the following research questions:

• RQ-1: What source code properties characterize defective infrastructure as

code scripts?

6https://puppet.com/resources/case-study/ambit-energy
7https://wikitech.wikimedia.org/wiki/Incident documentation/20170118-Labs
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• RQ-2: Do practitioners agree with the identified source code properties?

• RQ-3: How can we construct defect prediction models for infrastructure as

code scripts using the identified source code properties?

We use 94 open source software (OSS) repositories and collect 12,875 com-

mits that map to 2,439 Puppet scripts. Using 89 raters with software engineering

experience, we apply qualitative analysis to determine defect-related commits.

Using the defect-related commits we determine which of the 2,439 scripts are

defective. We apply qualitative analysis on defect-related commits to determine

which source code properties correlate with defective IaC scripts. We apply statis-

tical analysis to empirically validate the identified properties. We conduct a survey

to identify which of the identified properties practitioners agree with. Next, we

build defect prediction models using the identified properties and five statistical

learners: Classification and Regression Trees [7], K Nearest Neighbor classifica-

tion [8], Logistic Regression [9], Naive Bayes classification [8], and Random For-

est [10] to predict defective IaC scripts. We evaluate the prediction performance of

the constructed prediction models using 10×10-fold cross validation [8]. We also

compare the prediction performance of our property-based prediction model with

prediction approaches built using the (i) bag of words technique, which is used to

extract text features from IaC scripts [11], (ii) implementation smells identified by

Sharma et al. [12], and (iii) process metrics.

We list our contributions as following:

• A ranked order of source code properties that correlate with defective IaC

scripts;
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• An evaluation of how practitioners perceive the identified source code proper-

ties;

• A set of prediction models built using the identified source code properties to

predict defective IaC scripts; and

• A comparison of prediction performance for models constructed using source

code properties with text features [4], implementation smells [12] and process

metrics.

We organize the rest of the paper as following: we discuss related background

and academic work in Section 2. We discuss our methodology, datasets, and re-

sults respectively, in Section 3, Section 4, and Section 5. We discuss the implica-

tions of our findings in Section 6. We list the limitations of our study in Section 7.

Finally, we conclude our paper in Section 8.

2. Background and Related Work

In this section, we provide background on IaC scripts and briefly describe

related academic research.

2.1. Background

IaC is the practice of automatically defining and managing network and system

configurations, and infrastructure through source code [2]. Companies widely use

commercial tools such as Puppet, to implement the practice of IaC [2] [6] [13].

We use Puppet scripts to construct our dataset because Puppet is considered one of

the most popular tools for configuration management [6] [13] and has been used

by companies since 2005 [14]. Typical entities of Puppet include modules and
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1 #This is an example Puppet script
2 class (`example'
3 ){
4 token => ‘XXXYYYZZZ’
5
6 $os_name = ‘Windows’
7
8 case $os_name {
9 'Solaris': { auth_protocol => `http' }

10 'CentOS': { auth_protocol => getAuth() }
11 default: { auth_protocol => `https' }
12 }
13 } �

Comment

Attribute ‘token’

Variable ‘$os_name’

Case conditional Calling function
‘getAuth()’

1

Figure 1: Annotation of an example Puppet script.

manifests [15]. A module is a collection of manifests. Manifests are written as

scripts that use a .pp extension.

Puppet provides the utility ‘class’ that can be used as a placeholder for the

specified variables and attributes, which are used to specify configuration val-

ues. For attributes, configuration values are specified using the ‘=>’ sign. For

variables, configuration values are provided using the ‘=’ sign. Similar to gen-

eral purpose programming languages, code constructs such as functions/methods,

comments, and conditional statements are also available for Puppet scripts. For

better understanding, we provide a sample Puppet script with annotations in Fig-

ure 1.

2.2. Related Work

Our paper is related to empirical studies that have focused on IaC technolo-

gies, such as Puppet. Sharma et al. [12] investigated smells in IaC scripts and pro-

posed 13 implementation and 11 design smells. Hanappi et al. [16] investigated

how convergence of Puppet scripts can be automatically tested and proposed an

automated model-based test framework. Jiang and Adams [6] investigated the
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co-evolution of IaC scripts and other software artifacts, such as build files and

source code. They reported IaC scripts to experience frequent churn. Weiss et

al. [17] proposed and evaluated ‘Tortoise’, a tool that automatically corrects erro-

neous configurations in IaC scripts. Hummer at al. [18] proposed a framework to

enable automated testing of IaC scripts. Bent et al. [19] proposed and validated

nine metrics to detect quality issues in IaC scripts. Rahman et el. [20] investigated

which factors influence usage of IaC tools. In another work, Rahman et al. [21]

investigated the questions that programmers ask on Stack Overflow to identify the

potential challenges programmers face while working with Puppet. Rahman et

al. [22] performed a mapping study and identified lack of research studies related

to defects in IaC scripts. In another work, Rahman et al. [23] identified seven types

of security smells that are indicative of security weaknesses in IaC scripts. They

identified 21,201 occurrences of security smells that include 1,326 occurrences

of hard-coded passwords. The research study that is closest in spirit was con-

ducted by Rahman and Williams [4]. Rahman and Williams [4] identified certain

operations that correlate with defective scripts. Rahman and Williams [4] man-

ually identified if a script includes a certain operation. However, such analysis

is coarse-grained: they [4] suggested allocation of inspection efforts for an en-

tire script, which can be effort-intensive. We take a fine-grained approach, where

we identify source code properties that show correlation with defective scripts.

Our set of properties can help prioritize inspection efforts, for example, instead

of inspecting the entire script, practitioners may benefit from focusing on certain

properties.

Our paper is also closely related to research studies that have investigated code

properties that correlate with defects in source code. Nagappan and Ball [24] in-
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vestigated seven absolute code properties and eight relative code churn proper-

ties, and reported that relative code churn properties are better predictors of defect

density. Zheng et al. [25] investigated how static analysis can be used to iden-

tify defects in a large scale industrial software system. They [25] observed that

automated static analysis is a relatively affordable fault detection technique com-

pared to that of manual inspection. Zimmermann et al. [26] proposed a set of 14

static code properties for predicting defects in Eclipse and reported a precision

and recall of 0.63∼0.78, and 0.61∼0.78, respectively.

The above-mentioned research studies highlight the prevalence of source code

properties that correlate with defects in source code. We take motivation from

these studies and investigate which source code properties correlate with defective

IaC scripts.

3. Methodology

In this section we provide definitions and describe our methodology to answer

our research questions.

• Defect: An imperfection that needs to be replaced or repaired [27].

• Defect-related commit: A commit whose message indicates that an action

was taken related to a defect.

• Defective script: An IaC script which is listed in a defect-related commit.

3.1. Methodology for Dataset Construction

We describe the methodology to construct datasets as following:
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Repository  
Collection 

Commit 
Message 
Processing 

Determining 
Defect-
related 
Commits 

Constructivist 
Grounded 
Theory 

Code 
Property 

a

Principal 
Component 

Analysis 
Code 

Properties 

Use of 
Statistical 
Learners 

10 x 10 
Cross-Fold 
Validation  

b

Figure 2: Methodology: Figures 2a and 2b respectively summarizes the methodology for RQ-1

and RQ-3.

3.1.1. Repository Collection

We construct IaC-specific datasets to evaluate our methodology and build pre-

diction models. For our datasets we use OSS repositories maintained by four orga-

nizations: Mirantis 8, Mozilla 9, Openstack 10, and Wikimedia Commons 11. For

Mirantis, Mozilla, Openstack, and Wikimedia we respectively collect 26, 1594,

1253, and 1638 repositories. We apply the following selection criteria to con-

struct our datasets:

• Criteria-1: The repository must be available for download.

8https://github.com/Mirantis
9https://hg.mozilla.org/

10https://git.openstack.org/cgit
11https://gerrit.wikimedia.org/r/#/admin/projects/
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• Criteria-2: At least 11% of the files belonging to the repository must be IaC

scripts. Jiang and Adams [6] reported that in OSS repositories IaC scripts co-

exist with other types of files, such as Makefiles and source code files. They

observed a median of 11% of the files to be IaC scripts. By using a cutoff of

11% we assume to collect a set of repositories that contain sufficient amount of

IaC scripts for analysis.

• Criteria-3: The repository must have at least two commits per month. Munaiah

et al. [28] used the threshold of at least two commits per month to determine

which repositories have enough development activity for software organiza-

tions.

For filtering we use our own custom scripts. The repositories collected from

Mozilla are Mercurial repositories, whereas the repositories collected from Mi-

rantis, Openstack, and Wikimedia Commons are Git repositories.

3.1.2. Commit Message Processing

Prior research [29] [30] [31] leveraged OSS repositories that use version con-

trol systems (VCS) for defect prediction studies. We use two artifacts from the

VCS of the selected repositories from Section 3.1.1, to construct our datasets: (i)

commits that indicate modification of IaC scripts; and (ii) issue reports that are

linked with the commits. We use commits because commits contain information

on how and why a file was changed. Commits can also include links to issue re-

ports. We use issue report summaries because they can give us more insights on

why IaC scripts were changed in addition to what is found in commit messages.

We collect commits and other relevant information in the following manner:
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• First, we extract commits that were used to modify at least one IaC script.

A commit lists the changes made on one or multiple files [32].

• Second, we extract the message of the commit identified from the previous

step. A commit includes a message, commonly referred as a commit mes-

sage. The commit messages indicate why the changes were made to the

corresponding files [32].

• Third, if the commit message included a unique identifier that maps the

commit to an issue in the issue tracking system, we extract the identifier

and use that identifier to extract the summary of the issue. We use regular

expression to extract the issue identifier. We use the corresponding issue

tracking API to extract the summary of the issue; and

• Fourth, we combine the commit message with any existing issue summary

to construct the message for analysis. We refer to the combined message

as ‘extended commit message (XCM)’ throughout the rest of the paper. We

use the extracted XCMs to separate the defect-related commits from the

non-defect-related commits, as described in Section 3.1.3.

3.1.3. Determining Defect-related Commits

We use defect-related commits to identify the defective IaC scripts and the

source code properties that characterizes defective IaC scripts. We apply qual-

itative analysis to determine which commits were defect-related commits. We

perform qualitative analysis using the following three steps:

Categorization Phase: At least two raters with software engineering experience

determine which of the collected commits are defect-related. We adopt this
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approach to mitigate the subjectivity introduced by a single rater. Each rater

determines an XCM as defect-related if it represents an imperfection in an

IaC script. We provide raters with a Puppet documentation guide [15] so

that raters can obtain background on Puppet. We also provide the raters

the IEEE publication on anomaly classification [27] to help raters to gather

background of defect in software engineering. The number of XCMs to

which we observe agreements amongst the raters are recorded and the Co-

hen’s Kappa [33] score is computed.

Resolution Phase: Raters can disagree if a commit is defect-related. In these

cases, we use an additional rater’s opinion to resolve such disagreements.

We refer to the additional rater as the ‘resolver’.

Practitioner Agreement: To evaluate the ratings of the raters in the catego-

rization and the resolution phase, we randomly select 50 XCMs for each

dataset, and contact practitioners. We ask the practitioners if they agree to

our categorization of XCMs. High agreement between the raters’ catego-

rization and programmers’ feedback is an indication of how well the raters

performed. The percentage of XCMs to which practitioners agreed upon is

recorded and the Cohen’s Kappa score is computed.

Upon completion of these three steps, we can classify which commits and

XCMs are defect-related. We use the defect-related XCMs to identify the source

code properties needed to answer the research questions. From the defect-related

commits we determine which IaC scripts are defective, similar to prior work [30].

Defect-related commits list which IaC scripts were changed, and from this list we

determine which IaC scripts are defective.
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3.2. Qualitative Rating for Dataset construction

We construct four datasets by collecting repositories from Mirantis, Mozilla,

Openstack, and Wikimedia Commons. We apply the following phases using 89

raters:

• Categorization Phase:

– Mirantis: We recruit students in a graduate course related to soft-

ware engineering via e-mail. The number of students in the class was

58, and 32 students agreed to participate. We follow Internal Review

Board protocol (IRB), IRB#12130, in recruitment of students and as-

signment of defect categorization tasks. We randomly distribute the

1,021 XCMs amongst the students such that each XCM is rated by at

least two students. The average professional experience of the 32 stu-

dents in software engineering is 1.9 years. On average, each student

took 2.1 hours.

– Mozilla: One second year PhD student and one fourth year PhD stu-

dent separately apply qualitative analysis on 3,074 XCMs. The fourth

and second year PhD student, respectively, have a professional expe-

rience of three and two years in software engineering. The fourth and

second year PhD student, respectively, took 37.0 and 51.2 hours to

complete the categorization.

– Openstack: One second year PhD student and one first year PhD stu-

dent separately, apply qualitative analysis on 7,808 XCMs from Open-

stack repositories. The second and first year PhD student respectively,
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have a professional experience of two and one years in software engi-

neering. The second and first year PhD student completed the catego-

rization of the 7,808 XCMs respectively, in 80.0 and 130.0 hours.

– Wikimedia: 54 graduate students recruited from the ‘Software Se-

curity’ course are the raters. We randomly distribute the 972 XCMs

amongst the students such that each XCM is rated by at least two stu-

dents. According to our distribution, 140 XCMs are assigned to each

student. The average professional experience of the 54 students in

software engineering is 2.3 years. On average, each student took 2.1

hours to categorize the 140 XCMs. The IRB protocol was IRB#9521.

• Resolution Phase:

– Mirantis: Of the 1,021 XCMs, we observe agreement for 509 XCMs

and disagreement for 512 XCMs, with a Cohen’s Kappa score of 0.21.

Based on Cohen’s Kappa score, the agreement level is ‘fair’ [34].

– Mozilla: Of the 3,074 XCMs, we observe agreement for 1,308 XCMs

and disagreement for 1,766 XCMs, with a Cohen’s Kappa score of

0.22. Based on Cohen’s Kappa score, the agreement level is ‘fair’ [34].

– Openstack: Of the 7,808 XCMs, we observe agreement for 3,188

XCMs, and disagreements for 4,620 XCMs. The Cohen’s Kappa score

was 0.21. Based on Cohen’s Kappa score, the agreement level is

‘fair’ [34].

– Wikimedia: Of the 972 XCMs, we observe agreement for 415 XCMs,

and disagreements for 557 XCMs, with a Cohen’s Kappa score of

0.23. Based on Cohen’s Kappa score, the agreement level is ‘fair’ [34].
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The first author of the paper was the resolver and resolved disagreements

for all four datasets. In case of disagreements the resolver’s categorization

is considered as final.

We observe that the raters’ agreement level to be ‘fair’ for all four datasets.

One possible explanation can be that the raters agreed on whether an XCM

is defect-related but disagreed on which category of the defect is related to.

For defect categorization, fair or poor agreement amongst raters however,

is not uncommon. Henningsson et al. [35] also reported a low agreement

amongst raters.

Practitioner Agreement: We report the agreement level between the raters’

and the practitioners’ categorization for randomly selected 50 XCMs as fol-

lowing:

– Mirantis: We contact three practitioners and all of them respond.

We observe an 89.0% agreement with a Cohen’s Kappa score of 0.8.

Based on Cohen’s Kappa score, the agreement level is ‘substantial’ [34].

– Mozilla: We contact six practitioners and all of them respond. We

observe a 94.0% agreement with a Cohen’s Kappa score of 0.9. Based

on Cohen’s Kappa score, the agreement level is ‘almost perfect’ [34].

– Openstack: We contact 10 practitioners and all of them respond. We

observe a 92.0% agreement with a Cohen’s Kappa score of 0.8. Based

on Cohen’s Kappa score, the agreement level is ‘substantial’ [34].

– Wikimedia: We contact seven practitioners and all of them respond.

We observe a 98.0% agreement with a Cohen’s Kappa score of 0.9.

Based on Cohen’s Kappa score, the agreement level is ‘almost per-
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fect’ [34].

We observe that the agreement between ours and the practitioners’ categoriza-

tion varies from 0.8 to 0.9, which is higher than that of the agreement between

the raters in the Categorization Phase. One possible explanation can be related

to how the resolver resolved the disagreements. The first author of the paper has

industry experience in writing IaC scripts, which may help to determine catego-

rizations that are consistent with practitioners. Another possible explanation can

be related to the sample provided to the practitioners. The provided sample, even

though randomly selected, may include commit messages whose categorization

are relatively easy to agree upon.

3.3. RQ-1: What source code properties characterize defective infrastructure

as code scripts?

As the first step, we identify source code properties by applying qualitative

analysis called constructivist grounded theory [36]. We use defect-related XCMs

and the code changes performed in defect-related commits that we determined

in Section 3.1.3, to perform constructivist grounded theory. We use the defect-

related XCMs because these messages can provide information on how to identify

source code properties that are related to defects. Using only defect-related com-

mit messages may not capture the full context to determine defect-related com-

mits, so we also use code changes (commonly referred to as ‘diffs’ or ‘hunks’)

from defect-related commits. We use defect-related commits because defect-

related commits report what properties of the IaC source code are changed and

whether or not the changes were adding or deleting code [32].

Any variant of grounded theory includes three elements: ‘concepts’, ‘cate-

gories’, and ‘propositions’ [37]. By deriving propositions, we identify properties

16

Prep
rin

t



Defect-related XCM Concept Category Property 

fix	file	location	for	interfaces	change-
id			i0b3c40157	

correct	path	to	install	script	change-
id			i5ecd1dfd1	

bug	985995			fix	mercurial	paths;	
r=rail	

correct	path	to	‘drush	wrapper’	
change	id	i990e3d429	

‘fix	file	location’	

‘correct	path’	

‘fix	mercurial	paths’	

‘correct	path’	

File	location	needs	fixing	

Path	to	external	file	or	
script	needs	fixing	

Property: File 
 
Description: 
Scripts that set file 
paths can be 
defect-prone.	

Figure 3: An example of how we identify source code properties using constructivist grounded

theory.

and the description behind the identified properties. We use Figure 3 to explain

how we use the three grounded theory elements to identify a property. We first

start with defect-related XCMs and code changes from defect-related commits,

to derive concepts. According to Figure 3, from the defect-related XCM ‘fix file

location for interfaces change-id i0b3c40157’, we extract the concept ‘fix file lo-

cation’. Next, we generate categories from the concepts, for example, we use

the concept ‘fix file location’ to determine the category which states an erroneous

file location might need fixing. We use three concepts to derive category ‘Path to

external file or script needs fixing’. Finally, we use the categories ‘File location

needs fixing’ and ‘Path to external file or script needs fixing’ to derive a propo-

sition related to file location. This proposition gives us a property ‘File’ and the

description behind that property is ‘Scripts that set file paths can be defect-prone’.

Upon completion of constructivist grounded theory, we obtain a set of source
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code properties. We extract the count of each identified property using Pup-

peteer [12]. We use the Mann-Whitney U test [38] to compare the property count

for defective and neutral files. The null hypothesis is: the property is not differ-

ent between defective and neutral files. The alternative hypothesis is: property

is larger for defective files than neutral files. We consider a significance level of

95%. If p− value < 0.05, we reject the null hypothesis, and accept the alternative

hypothesis.

Along with Mann-Whitney U test, we also apply Cliff’s Delta [39] to compare

the distribution of each characteristic between defective and neutral files. Both,

Mann-Whitney U test and Cliff’s Delta are non-parametric. The Mann-Whitney U

test states if one distribution is significantly large/smaller than the other, whereas

effect size using Cliff’s Delta measures how large the difference is.

We use Romano et al. [40]’s recommendations to interpret the observed Cliff’s

Delta values. According to Romano et al. [40], the difference between two groups

is ‘large’ if Cliff’s Delta is greater than 0.47. A Cliff’s Delta value between 0.33

and 0.47 indicates a ‘medium’ difference. A Cliff’s Delta value between 0.14 and

0.33 indicates a ‘small’ difference. Finally, a Cliff’s Delta value less than 0.14

indicates a ‘negligible’ difference.

Relative Correlation Strength of Identified Source Code Properties: We

use the method of ‘feature importance’ which quantifies how important a feature

is for building a prediction model using the statistical learner, Random Forest [41].

The feature importance value varies from zero to one, and a higher value for a

source code property indicates higher correlation with the dependent variable. In

our case the dependent variable is if a script is defective or neutral. We use Ran-

dom Forests to build models using all the identified properties as independent
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variables, and a script of being defective or non-defective, as the dependent vari-

able. Upon construction of the model, we compute the feature importance of each

identified property provided by the Random Forest-based prediction model. To

ensure stability, we follow Genuer et al. [42]’s recommendations and repeat the

process 10 times. We report the median feature importance values for each prop-

erty, and also apply the Scott-Knott test to statistically determine which property

has more feature importance, and thereby exhibits more correlation with defective

scripts.

3.4. RQ-2: Do practitioners agree with the identified source code properties?

We conduct a survey to assess if practitioners agree with the identified set

of source code properties from Section 3.3. Each of the identified properties is

presented as a five-point Likert-scale question. Considering the importance of a

midpoint in Likert scale items [43], we use a five-point scale: ‘Strongly Disagree’,

‘Disagree’, ‘Neutral’, ‘Agree’, and ‘Strongly Agree’. The survey questions are

available online 12.

We deploy our survey to 350 practitioners from November 2017 to July 2018.

We obtain the e-mail addresses of practitioners from the collected repositories

mentioned in Section 3.1.1.

3.5. RQ-3: How can we construct defect prediction models for infrastructure

as code scripts using the identified source code properties?

As shown in Figure 2b, in this section, we provide the methodology to answer

RQ-3. We first apply log-transformation on the extracted counts for each source

12https://figshare.com/s/ad26e370c833e8aa9712
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code property. The application of log transformation on numerical features helps

in defect prediction and has been used in prior research [44]. As described in

Section 3.5.1 we apply principal component analysis (PCA). We use statistical

learners to construct defect prediction models, as shown in Section 3.5.2. We

evaluate the constructed prediction models using 10×10 cross-validation, and four

performance measures: AUC, F-Measure, precision, and recall (Section 3.5.3). In

Section 3.5.4, we also describe the methods to which we compare our source code

properties-based prediction model performance.

3.5.1. Principal Component Analysis

The identified source code properties using constructivist grounded theory

can show implicit correlation with each other, which needs to be accounted for.

We use principal component analysis (PCA) [8] to account for multi-collinearity

amongst features [8]. PCA has been extensively used in the domain of defect pre-

diction [45] [46]. PCA creates independent linear combinations of the features

that account for most of the co-variation of the features. PCA also provides a list

of components and the amount of variance explained by each component. These

principal components are independent and do not correlate or confound each other.

We compute the total amount of variance accounted by the PCA analysis to de-

termine what properties should be used for building prediction models. We select

the principal components that account for at least 95% of the total variance to

avoid overfitting. Principal components that account for at least 95% of the total

variance, are used as input to statistical learners. PCA will not capture the other

properties that are not included in our set of identified source code properties.
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3.5.2. Statistical Learners

Researchers use statistical learners to build prediction models that learn from

historic data and make prediction decisions on unseen data. We use the Scikit

Learn API [47] to construct prediction models using statistical learners. We use

five statistical learners that we briefly describe, and reasons for selecting these

learners, as following:

• Classification and Regression Tree (CART): CART generates a tree based

on the impurity measure, and uses that tree to provide decisions based on

input features [7]. We select CART because this learner does not make any

assumption on the distribution of features, and is robust to model overfit-

ting [8] [7].

• K Nearest Neighbor (KNN): The KNN classification technique stores all

available prediction outcomes based on training data and classifies test data

based on similarity measures. We select KNN because prior research has

reported that defect prediction models that use KNN perform well [48].

• Logistic Regression (LR): LR estimates the probability that a data point

belongs to a certain class, given the values of features [9]. LR provides

good performance for classification if the features are roughly linear [9]. We

select LR because this learner performs well for classification problems [9]

such as defect prediction [49] and fault prediction [48].

• Naive Bayes (NB): The NB classification technique computes the posterior

probability of each class to make prediction decisions. We select NB be-

cause prior research has reported that defect prediction models that use NB

perform well [48].
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• Random Forest (RF): RF is an ensemble technique that creates multiple

classification trees, each of which are generated by taking random subsets

of the training data [8] [10]. Unlike LR, RF does not expect features to be

linear for good classification performance. Researchers [50] recommended

the use of statistical learners that uses ensemble techniques to build defect

prediction models.

Prediction performance measures: We use four measures to evaluate pre-

diction performance of the constructed models:

• Precision: Precision measures the proportion of IaC scripts that are actually

defective given that the model predicts as defective. We use Equation 1 to

calculate precision.

Precision =
T P

T P + FP
(1)

• Recall: Recall measures the proportion of defective IaC scripts that are

correctly predicted by the prediction model. We use Equation 2 to calculate

recall.

Recall =
T P

T P + FN
(2)

• Area Under the Receiver Operating Characteristic Curve (AUC): AUC

uses the receiver operating characteristic (ROC). ROC is a two-dimensional

curve that plots the true positive rates against false positive rates. An ideal

prediction model’s ROC curve has an area of 1.0. A random prediction’s

ROC curve has an area of 0.5. We refer to the area under the ROC curve as

AUC throughout the paper. We consider AUC as this measure is threshold

independent unlike precision and recall [50], and recommended by prior

research [51].
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• F-Measure: F-Measure is the harmonic mean of precision and recall. In-

crease in precision, often decreases recall, and vice-versa [52]. F-Measure

provides a composite score of precision and recall, and is high when both

precision and recall is high.

Comparing prediction performance: To compare prediction performance

using different approaches we use the Scott-Knott test [53]. This variant of Scott-

Knott test does not assume input to be normal, and accounts for negligible effect

size [53]. The Scott-Knott test uses hierarchical clustering analysis to partition

the input data into significantly (α = 0.05) distinct ranks [53]. According to

the Scott-Knott test, an approach ranks higher if prediction performance of the

constructed model using that approach is significantly higher. We use Scott-Knott

test to compare for all four prediction performance measures: precision, recall,

AUC, and F-measure.

3.5.3. Evaluation Methods

We use 10×10-fold cross validation to evaluate our prediction models. We

use the 10×10-fold cross validation evaluation approach by randomly partitioning

the dataset into 10 equal sized subsamples or folds [8]. The performance of the

constructed prediction models is tested by using 9 of the 10 folds as training data,

and the remaining fold as test data. Similar to prior research [50], we repeat the

10-fold cross validation 10 times to avoid prediction errors. We report the median

prediction performance score of the 10 runs.

We provide a concrete example to illustrate the whole process. We first apply

log transformation on the count of the identified source code properties. Next, we

build models using the learners with CART, KNN, LR, NB, and RF. We evaluate

the constructed prediction models using 10×10-fold cross validation.
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3.5.4. Comparison Model Construction

For comparison we use three techniques: (i) the text feature-based technique [4],

(ii) implementation smells [12]; and (iii) process metrics. Rahman and Williams [4]

have reported that certain text features can be used to characterize defective IaC

scripts, and to build models to predict defective IaC scripts. Their findings are

consistent with prior work in other domains, which has shown that text features

are correlated with defects, and good predictors of defective artifacts [54]. We use

the ‘bag-of-words (BOW)’ [11] technique to construct prediction models to com-

pare our identified property-based prediction models. The BOW technique which

has been extensively used in software engineering [54], converts each IaC script

in the dataset to a set of words or tokens, along with their frequencies. Using the

frequencies of the collected tokens we create features.

Text Pre-processing: Before creating text features using bag-of-words, we

apply the following text pre-processing steps:

• First, we remove comments from scripts.

• Second, we split the extracted tokens according to naming conventions: camel

case, pascal case, and underscore. These splitted tokens might include numeric

literals and symbols, so we remove these numeric literals and symbols. We also

remove stop words.

• Finally, we apply Porter stemming [55] on the collected tokens. After com-

pleting the text pre-processing step we collect a set of pre-processed tokens for

each IaC script in each dataset. We use these sets of tokens to create feature

vectors as shown in Section 3.5.4.

Bag-of-Words (BOW): Using the BOW technique, we use the tokens ex-

24

Prep
rin

t



tracted from text pre-processing step. We compute the occurrences of tokens for

each script. By using the occurrences of tokens, we construct a feature vector.

Finally, for all the scripts in the dataset we construct a feature matrix.

ScriptX ScriptY 

ci, hg, include, 
template 

ci, dir, file, include, 
nagios 

Feature Vector 
<ci, dir, file, hg, include, nagios, 
template> 

ScriptX 
 

<1, 0, 0, 1, 1, 0, 1> 

ScriptY <1, 1, 1, 0, 1, 1, 0> 

Figure 4: A hypothetical example to illustrate the BOW technique discussed in Section 3.5.4.

We use a hypothetical example shown in Figure 4 to illustrate the BOW tech-

nique. In our hypothetical example, our dataset has two IaC scripts S criptX and

S criptY that respectively contain four and five pre-processed tokens. From the oc-

currences of tokens, we construct a feature matrix where the the token ‘ci’ appears

once for S criptX and S criptY .

Implementation smells: We also compare the performance of our prediction

models using source code properties with Sharma et al. [12]’s implementation

smells. These smells and their corresponding definitions are listed in Table 1.

Process Metrics: We use five commonly used process metrics to compare the

performance of our source code-based prediction models. These metrics are:

• Commits: Total number of commits made to a script. Similar to prior work,

we hypothesize more commits are indicative of defective scripts.
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Table 1: List of implementation smells proposed by Sharma et al. [12]

Smell Name Description

Missing Default Case The default case is missing

Inconsistent Naming Names deviates from convention recommended by configuration tool vendors

Complex Expression The script contains one or many difficult-to-understand complex expressions

Duplicate Entity The script contains duplicate hash keys or parameters

Misplaced Attribute Placement of attributes within a resource or a class does not follow a recommended order

Improper Alignment The code is not properly aligned

Invalid Property Value The script contains invalid value of a property or an attribute

Incomplete Tasks The script includes comments that has ‘fixme’ and ‘todo’ as keywords

Deprecated Statement

Usage

The script uses one of the deprecated statements

Improper Quote Usage Single and double quotes are misused in the script

Long Statement The script contains long statements

Incomplete Conditional A terminating ‘else’ clause in an if-else block

Unguarded Variable A variable is not enclosed in braces when being interpolated in a string
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• Developers: Total number of developers who made changes to a script. Sim-

ilar to prior work [56], we hypothesize more developers to be correlated

with defective scripts.

• Fix-related commits: Total number of commits that are used to fix a de-

fect. We determine fix-related commits if the word ‘fix’ appears in XCMs,

similar to prior work [57].

• Age: Age of a script measured in months. Age can be correlated with de-

fective scripts [58].

• Average Edit Time: The time difference between edits for a script. The time

between edits on a script is correlated with defective scripts [58].

Similar to our properties derived from constructivist grounded theory, we con-

struct defect prediction models using CART, LR, NB, and RF. We compute pre-

diction performance using 10×10-fold cross validation, and compute precision,

recall, AUC, and F-Measure. We use the Scott-Knott test to compare if the our

properties derived using the constructivist grounded theory process, significantly

outperforms the text feature-based analysis, implementation smell analysis, and

process metric analysis. If the text feature-based analysis is better than our de-

rived properties, then the Scott-Knott test will rank the text feature-based analysis

higher.

4. Datasets

We construct datasets using Puppet scripts from OSS repositories maintained

by four organizations: Mirantis, Mozilla, Openstack, and Wikimedia Commons.

27

Prep
rin

t



We select Puppet because it is considered as one of the most popular tools to

implement IaC [6] [13], and has been used by organizations since 2005 [14]. Mi-

rantis is an organization that focuses on the development and support of cloud

services such as OpenStack 13. Mozilla is an OSS community that develops, uses,

and supports Mozilla products such as Mozilla Firefox 14. Openstack foundation

is an OSS platform for cloud computing where virtual servers and other resources

are made available to customers 15. Wikimedia Foundation is a non-profit organi-

zation that develops and distributes free educational content 16.

4.1. Repository Collection

We apply the three selection criteria presented in Section 3.1.1 to identify the

repositories that we use for analysis. We describe how many of the repositories

satisfied each of the three criteria in Table 2. Each row corresponds to the count of

repositories that satisfy each criteria. For example, 26 repositories satisfy Criteria-

1, for Mirantis. We obtain 94 repositories to extract Puppet scripts from.

4.2. Commit Message Processing

We report summary statistics on the collected repositories in Table 3. Ac-

cording to Table 3, for Mirantis we collect 180 Puppet scripts that map to 1,021

commits. The constructed datasets used for empirical analysis are available on-

line 17.

13https://www.mirantis.com/
14https://www.mozilla.org/en-US/
15https://www.openstack.org/
16https://wikimediafoundation.org/
17https://figshare.com/s/ad26e370c833e8aa9712
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Table 2: Filtering criteria to construct defect datasets

Criteria Dataset

Mirantis Mozilla Openstack Wikimedia

Criteria-1 26 1,594 1,253 1,638

Criteria-2 20 2 61 11

Criteria-3 20 2 61 11

Final 20 2 61 11

Table 3: Summary statistics of constructed datasets

Statistic Dataset

Mirantis Mozilla Openstack Wikimedia

Puppet Scripts 180 580 1,383 296

Defective Puppet

Scripts

91 of 180,

50.5%

259 of 580,

44.6%

810 of 1383,

58.5%

161 of 296,

54.4%

Commits with Pup-

pet Scripts

1,021 3,074 7,808 972

Defect-related

Commits

344 of 1021,

33.7%

558 of 3074,

18.1%

1987 of 7808,

25.4%

298 of 972,

30.6%
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4.3. Defect Categorization

We also asked raters to identify defect categories using the defect type attribute

of the Orthogonal Defect Classification (ODC) scheme [59]. The ODC scheme

includes eight defect categories as shown in Table 4. We added the ‘Other’ cat-

egory to include defects that does not belong to any of the eight categories. We

report the defect categories and an example XCM for each category of defect type

in Table 4.

5. Empirical Findings

We report our findings in this section.

5.1. RQ-1: What source code properties characterize defective infrastructure

as code scripts?

We use the 558 defect-related commits collected from the Mozilla dataset to

identify source code properties of IaC scripts that correlate with defects. By apply-

ing constructivist grounded theory described in Section 3.1 we identify 12 proper-

ties of IaC scripts. Each of these properties are listed in Table 5 in the ‘Property’

column. A brief description of each identified property is listed in the ‘Descrip-

tion’ column.

We provide the distribution of each property for the four datasets in Table 6 and

Figure 5. In Table 6 we report the average and maximum value for each property.

Figure 5 presents the box plots for each property. We observe IaC scripts can be as

large as 1,287 lines of code. Size of IaC scripts further highlights the importance

on identifying source code properties: inspecting certain properties within a script

could require less effort then inspecting an entire script for an operation.
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Table 4: Determining defect categories based on ODC adapted from [59]

Category Definition Example XCM

Algorithm (AL) Indicates efficiency or correctness

problems that affect implementa-

tion of a feature and can be fixed by

re-implementing an algorithm or lo-

cal data structure

“fixing deeper hash

merging for firewall”

Assignment (AS) Indicates defects that are syntax-

related, which induces changes in a

few lines of code

“fix missing slash in

puppet file url”

Build/Package/Merge

(B)

Indicates defects due to mistakes

in change management, library sys-

tems, or version control system

“remove unnecessary

package ‘requires’

that are covered by

require package”

Checking (C) Indicates defects related to data val-

idation and value checking

“bug 1118354: ensure

deploystudio user uid

is >500”

Documentation (D) Indicates defects that affect mainte-

nance notes

“fix hadoop.pp docu-

mentation default”

Function (F) Indicates defects that affect signifi-

cant capabilities

“fix for jenkins swarm

slave variables”

Interface (I) Indicates defects in interacting with

other components, modules, or con-

trol blocks

“fix file location for in-

terfaces”

Other (O) Indicates a defect that does not be-

long to the categories: AL, AS, B,

C, D, F, I, N, and T

“fuel-stats nginx fix”

Timing/Serialization

(T)

Indicates errors that involve real

time resources and shared resources

“fix minimal available

memory check change-

id:iaad0”
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Table 5: Source code properties that characterize defective IaC scripts

Property Description Measurement Technique

Attribute Attributes are code properties where configuration

values are specified using the ‘=>’ sign

Count of ‘=>’ usages

Command Commands are source code properties that are used to

execute bash and batch commands

Count of ‘cmd’ syntax occur-

rences

Comment Comments are non-executable parts of the script that

are used for explanation

Count of comments

Ensure Ensure is a source code property that is used to check

the existence of a file

Count of ‘ensure’ syntax occur-

rences

File File is a source code property used to manage files,

directories, and symbolic links

Count of ‘file’ syntax occur-

rences

File mode File mode is a source code property used to set per-

missions of files

Count of ‘mode’ syntax occur-

rences

Hard-

coded

string

Configuration values specified as hard-coded strings Count of string occurrences

Include Include is a source code property that is used to exe-

cute other Puppet modules and scripts

Count of ‘include’ syntax occur-

rences

Lines of

code

Size of scripts as measured by lines of code can con-

tribute to defects

Total lines of code

Require Require is a function that is used to apply resources

declared in other scripts

Count of ‘require’ syntax occur-

rences

SSH KEY SSH KEY is a source code property that sets and up-

dates ssh keys for users

Count of ‘ssh authorized key’

syntax occurrences

URL URL refers to URLs used to specify a configuration Count of URL occurrences

32

Prep
rin

t



Table 6: Distribution of source code property values. Each tuple expresses the average and

maximum count for each property for scripts.

Property Mirantis Mozilla Openstack Wikimedia

Attribute (26.2, 249) (11.6, 229) (15.2, 283) (12.6, 232)

Command (0.3, 6) (0.3, 5) (0.2, 8) (0.4, 4)

Comment (16.2, 128) (4.1, 121) (33.5, 623) (13.8, 130)

Ensure (2.9, 42) (1.2, 22) (1.1, 55) (1.5, 28)

File (1.5, 25) (0.7, 10) (0.4, 15) (1.3, 27)

File mode (1.2, 17) (0.6, 12) (0.2, 11) (0.7, 18)

Hard-coded string (19.8, 203) (7.1, 364) (10.7, 212) (9.8, 235)

Include (5.7, 70) (4.9, 129) (2.6, 57) (4.1, 29)

Lines of code (97.5, 1287) (52.2, 1157) (88.2, 1222) (58.9, 464)

Require (2.0, 35) (0.7, 9) (0.5, 20) (1.2, 11)

SSH KEY (1.2, 17) (0.7, 12) (0.2, 11) (0.7, 18)

URL (0.5, 9) (1.3, 31) (0.8, 21) (0.4, 6)

Lines_of_code Require SSH_KEY URL

File File_mode Hard_coded_string Include

Attribute Command Comment Ensure

0 500 1000 0 500 1000 0 500 1000 0 500 1000

Mirantis

Mozilla

Openstack

Wikimedia

Mirantis

Mozilla

Openstack

Wikimedia

Mirantis

Mozilla

Openstack

Wikimedia

Value

O
rg

Figure 5: Distribution of property values for each dataset.
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The median values of 12 source code properties for both defective and non-

defective scripts in presented in Table 7. The ‘D’ and ‘ND’ respectively presents

the median values of each property for defective and non-defective scripts. For ex-

ample, in the case of the Mirantis, the median values for ‘attribute’ is respectively

23.0 and 6.5.

In Table 8, for each property we report the p-value and Cliff’s Delta values

respectively in the ‘p-value’ and ‘Cliff’ columns. We observe 10 of the 12 identi-

fied properties to show correlation with defective IaC scripts for all four datasets.

The Cliff’s Delta value is ‘large’ for lines of code for three of the four datasets.

The property ‘hard-coded string’ has a ‘large’ Cliff’s Delta value for Mirantis and

Wikimedia.

We report the feature importance values for each identified source code prop-

erty in Table 9. For three datasets, we observe ‘lines of code’ to show strongest

correlation with defective scripts. For Mirantis, we observe the strongest correla-

tion to be ‘hard-coded string’.

Our findings related to feature importance is in congruence with our find-

ings presented in Table 8. Cliff’s delta value is ‘large’ for ‘lines of code’ for

three datasets. Our feature importance analysis identifies ‘lines of code’ as the

property with the strongest correlation for three datasets. According to Table 9,

‘hard-coded string’ is identified as the strongest correlating property and also has

a ‘large’ Cliff’s Delta value for Mirantis.

The identified source code properties that may be compatible with automated

program repair tools such as, Tortoise [17] are: ‘attribute’, ‘file mode’, ‘file’,

‘hard-coded string’, and ‘URL’.
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Table 7: Median values of 12 source code properties for both defective and non-defective scripts.

Property Mirantis Mozilla Openstack Wikimedia

D ND D ND D ND D ND

Attribute 23.0 6.5 10.0 3.0 13.0 5.0 12.0 3.0

Comment 14.0 4.5 3.0 3.0 17.0 21.0 8.0 4.0

Command 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ensure 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0

File 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0

File mode 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Hard-coded

string

19.5 4.0 4.0 2.0 8.0 4.0 8.0 2.0

Include 5.0 1.0 4.0 2.0 2.0 1.0 4.0 1.0

Lines of Code 90.0 38.0 53.0 25.0 77.0 46.0 57.0 20.0

Require 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

SSH KEY 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

URL 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
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Table 8: Validation of identified source code properties. Highlighted cells in grey indicate

properties for which p-value < 0.05 for all four datasets.

Property Mirantis Mozilla Openstack Wikimedia

p-value Cliff p-value Cliff p-value Cliff p-value Cliff

Attribute < 0.001 0.47 < 0.001 0.40 < 0.001 0.34 < 0.001 0.47

Command < 0.001 0.24 < 0.001 0.18 < 0.001 0.06 < 0.001 0.18

Comment < 0.001 0.36 0.23 0.02 0.43 0.00 < 0.001 0.22

Ensure < 0.001 0.38 0.02 0.09 < 0.001 0.19 < 0.001 0.28

File < 0.001 0.36 < 0.001 0.18 < 0.001 0.08 < 0.001 0.31

File mode < 0.001 0.40 < 0.001 0.24 < 0.001 0.06 < 0.001 0.23

Hard-coded

string

< 0.001 0.55 < 0.001 0.40 < 0.001 0.37 < 0.001 0.54

Include < 0.001 0.32 < 0.001 0.31 < 0.001 0.22 < 0.001 0.37

Lines of code < 0.001 0.50 < 0.001 0.51 < 0.001 0.32 < 0.001 0.51

Require < 0.001 0.35 < 0.001 0.19 < 0.001 0.11 < 0.001 0.32

SSH KEY < 0.001 0.39 < 0.001 0.24 < 0.001 0.07 < 0.001 0.24

URL < 0.001 0.22 0.009 0.08 0.40 0.00 < 0.001 0.17
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5.2. RQ-2: Do practitioners agree with the identified source code properties?

As mentioned in Section 3.4 we conduct a survey with 350 practitioners to

quantify if practitioners agreed with our set of 12 source code properties. We ob-

tain a survey response rate of 7.4% (26 out of 350). The reported experience level

in Puppet is listed in Table 11. The ‘Experience’ column lists the categories for

experience in Puppet. The ‘Count’ column presents the number of practitioners

who identified with the corresponding experience level.

Of the 12 properties, practitioners showed the highest agreement with ‘in-

clude’, in contrary to our feature importance analysis. The least agreed property

is ‘File mode’. Reported agreement level by all practitioners is presented in Ta-

ble 10. For three properties we observe at least 50% of the practitioners to agree

with. These three properties are: ‘URL’, ‘hard-coded string’, and ‘include’.

We also compare practitioner survey responses and our feature importance

analysis by presenting the practitioner agreement level in Table 9. We also re-

port the percentage of practitioners who agreed or strongly agreed with a certain

property in the ‘Practitioner Agreement’ column. According to survey results,

majority of the practitioners agreed with ‘include’ in contrary to the feature im-

portance analysis for the four datasets.

On the contrary to our statistical analysis, we observe practitioners to show

highest agreement with ‘include’. One possible explanation can be related to the

exposure and use of Puppet. Perhaps, use of Puppet is relatively new for infras-

tructure automation, and not all practitioners aware of other uses of Puppet.

To gain further insights we invited 20 practitioners for an interview from De-

cember 15, 2018 to March 25, 2019. Three practitioners responded. We asked

practitioners on why they disagreed with the identified source code properties.
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Table 10: Survey responses from practitioners. Of the 12 properties majority of the practitioners

agreed with ‘include’.

Strongly dis-

agree (%)

Disagree

(%)

Neutral

(%)

Agree

(%)

Strongly

agree (%)

Attribute 11.5 26.9 34.6 23.0 3.8

Comment 15.3 38.4 23.0 15.3 7.7

Command 3.8 3.8 46.1 30.7 15.3

Ensure 3.8 38.4 38.4 7.7 11.53

File 3.8 15.3 50.0 23.0 7.7

File mode 3.8 19.2 61.5 11.5 3.8

Hard-coded string 3.8 11.5 26.9 46.1 11.5

Include 3.8 11.5 23.0 46.1 15.3

Lines of code 7.7 15.3 34.6 34.6 7.7

Require 3.8 23.0 30.7 34.6 7.7

Ssh key 3.8 15.3 57.7 15.3 7.7

URL 3.8 11.5 30.7 46.1 3.8

Table 11: Reported practitioner experience in Puppet script development

Experience (Years) Count

< 1 1 (3.9%)

1-2 6 (23.0%)

3-5 11 (42.3%)

6-10 7 (26.9%)

> 10 1 (3.9%)
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One practitioner only agreed with ‘include’, stating “‘include’ shows correlation

with defects because these (include) often leads to errors”. The second practi-

tioner stated that he doesn’t hard code configuration values in his Puppet scripts,

and that is why he disagreed with properties ‘hard-coded string’, ‘file mode’, and

‘SSH KEY’. He added he used the data lookup system called Hiera 18 to man-

age configurations. The third practitioner disagreed with ‘ensure’, as according

to his experience this property is used to prevent defects. The practitioner agreed

that properties, which are used to refer an external module or execute an external

command such as ‘include’, ‘command’, and ‘exec’ are correlated with defects.

Observations obtained from our interview analysis suggest that the reasons for

disagreements can be attributed to the experience of the practitioners.

Despite the disagreements between our empirical findings and practitioner re-

sponses, our findings can be helpful. Our findings can inform practitioners on the

existence of source code properties that require sufficient inspection and testing

efforts. Based on our findings practitioners can benefit from rigorous inspection

and testing when any of the 10 identified properties appear in an IaC script.

We also observe some level of congruence between our statistical analysis and

survey responses. The second most agreed upon property is ‘hard-coded string’,

which is identified as the most correlated property for Mirantis. So, both based on

survey data and feature importance analysis, we can conclude presence of ‘hard-

coded string’ in IaC scripts make scripts defect-prone.

18https://puppet.com/docs/puppet/5.4/hiera intro.html
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5.3. RQ-3: How can we construct defect prediction models for infrastructure

as code scripts using the identified source code properties?

As described in Section 3.5, we use PCA analysis to construct prediction mod-

els needed for RQ-3. We report the number of principal components that account

for at least 95% of the data variability in Table 12. The column ‘Property-based’

provides the number of principal components that account for 95% of the total

variance where we used 12 source code properties to construct prediction models.

For example, the number of principal components that account for at least 95%

of the data variability for the ‘Property-based’ approach and the ‘Bag-of-words’

approach is respectively, 1 and 50.

The median AUC values are presented in Table 13. The column ‘Property-

based’ provides the median AUC values using the 12 identified properties. For

AUC the property-based prediction model outperforms the bag-of-words tech-

nique for three datasets, but is tied with the bag-of-words approach for one dataset.

LR provided the highest median AUC for two datasets using our 12 properties.

We report the median precision, recall, and F-measure values for 10 × 10 cross

validation, for all learners and all datasets respectively in Tables 14, 15, and 16.

The column ‘Property-based’ provides the median AUC values using the 12 iden-

tified properties, whereas, the ‘Bag-of-words’ column presents the median predic-

tion performance values for the bag-of-words technique. As shown in Table 14,

for NB we observe the highest median precision for all four datasets, where the

median precision is greater than 0.80. According to Table 15, CART provides

the highest median recall for two datasets, whereas the highest median recall is

obtained for KNN and LR respectively for Mirantis and Openstack. CART, KNN,

and LR provides the highest median F-measure for two datasets according to Ta-
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Table 12: Number of principle components used for prediction models

Dataset Property-based Bag-of-words

Mirantis 1 50

Mozilla 1 140

Openstack 2 400

Wikimedia 2 150

Table 13: AUC for each model building technique. The highlighted cell in grey indicates the best

technique, as determined by the Scott-Knott test.

Dataset Property-based Bag-of-words

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.65 0.67 0.71 0.62 0.65 0.61 0.65 0.57 0.64 0.66

MOZ 0.71 0.66 0.69 0.66 0.69 0.52 0.48 0.51 0.60 0.56

OST 0.52 0.54 0.63 0.66 0.54 0.55 0.55 0.64 0.63 0.56

WIK 0.64 0.65 0.68 0.64 0.64 0.57 0.52 0.47 0.68 0.61

ble 16. For three measures precision, recall, and F-measure, our property-based

prediction models outperform the bag-of-words technique.

In Tables 17, 18, 19, and 20 we respectively compare the median AUC, pre-

cision, recall and F-measure values using our set of source code properties and

Sharma et al. [12]’s implementation smells. We observe that our set of source

code properties outperforms the implementation smell-based model for AUC and

precision. In case of recall, implementation smells perform better than the source

code properties for three datasets. For F-measure, implementation smell-based

models outperform our source code property-based models for one dataset. Based

on our findings, we suggest that if false positives is not a concern and practition-

ers want to identify all defective scripts, implementation smells may be a better
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Table 14: Precision for each model building technique. The highlighted cell in grey indicates the

best technique, as determined by the Scott-Knot test.

Dataset Property-based Bag-of-words

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.65 0.69 0.78 0.80 0.68 0.62 0.74 0.63 0.75 0.69

MOZ 0.68 0.63 0.73 0.85 0.67 0.51 0.41 0.48 0.39 0.58

OST 0.60 0.62 0.70 0.84 0.62 0.63 0.64 0.65 0.76 0.64

WIK 0.67 0.68 0.74 0.85 0.68 0.60 0.60 0.51 0.76 0.64

Table 15: Recall for each model building technique. The highlighted cell in grey indicates the best

technique, as determined by the Scott-Knott test.

Dataset Property-based Bag-of-words

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.66 0.70 0.63 0.34 0.66 0.69 0.49 0.48 0.45 0.64

MOZ 0.66 0.61 0.54 0.37 0.64 0.25 0.22 0.21 0.39 0.27

OST 0.60 0.60 0.67 0.42 0.58 0.62 0.50 0.57 0.46 0.57

WIK 0.67 0.67 0.63 0.35 0.63 0.65 0.24 0.30 0.59 0.64

Table 16: F-measure for each model building technique. The highlighted cell in grey indicates the

best technique, as determined by the Scott-Knott test.

Dataset Property-based Bag-of-words

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.67 0.70 0.70 0.48 0.67 0.66 0.59 0.64 0.63 0.67

MOZ 0.67 0.62 0.62 0.52 0.65 0.34 0.29 0.29 0.48 0.37

OST 0.60 0.61 0.68 0.56 0.60 0.62 0.56 0.61 0.58 0.60

WIK 0.67 0.67 0.68 0.50 0.66 0.63 0.35 0.38 0.66 0.65
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Table 17: Comparing AUC between our identified source code properties and IaC implementation

smells proposed by Sharma et al. [12] for each model building technique. The highlighted cell in

grey indicates the best technique, as determined by the Scott-Knott test.

Dataset Property-based Implementation Smells [12]

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.65 0.67 0.71 0.62 0.65 0.48 0.44 0.49 0.49 0.46

MOZ 0.71 0.66 0.69 0.66 0.69 0.60 0.57 0.64 0.62 0.59

OST 0.52 0.54 0.63 0.66 0.54 0.48 0.48 0.50 0.52 0.49

WIK 0.64 0.65 0.68 0.64 0.64 0.47 0.48 0.45 0.50 0.46

Table 18: Comparing precision between our identified source code properties and IaC implemen-

tation smells proposed by Sharma et al. [12] for each model building technique. The highlighted

cell in grey indicates the best technique, as determined by the Scott-Knott test.

Dataset Property-based Implementation Smells [12]

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.65 0.69 0.78 0.80 0.68 0.52 0.48 0.52 0.51 0.51

MOZ 0.68 0.63 0.73 0.85 0.67 0.60 0.55 0.73 0.77 0.58

OST 0.60 0.62 0.70 0.84 0.62 0.57 0.57 0.58 0.74 0.57

WIK 0.67 0.68 0.74 0.85 0.68 0.52 0.53 0.52 0.61 0.52

approach compared to our source code property-based approach.

In Tables 21, 22, 23, and 24 we respectively compare the median AUC, preci-

sion, recall and F-measure values using our set of source code properties and the

process metrics: commits, developers, fix-related commits, age, and average edit

time.

For AUC, process metrics perform better than our set of source code proper-

ties. With respect to precision, our source code-based prediction models is better

than process metrics for three datasets. For two datasets source code properties
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Table 19: Comparing recall between our identified source code properties and IaC implementation

smells proposed by Sharma et al. [12] for each model building technique. The highlighted cell in

grey indicates the best technique, as determined by the Scott-Knott test.

Dataset Property-based Implementation Smells [12]

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.66 0.70 0.63 0.34 0.66 0.90 0.52 0.97 0.23 0.83

MOZ 0.66 0.61 0.54 0.37 0.64 0.47 0.48 0.41 0.32 0.48

OST 0.60 0.60 0.67 0.42 0.58 0.84 0.86 0.91 0.09 0.96

WIK 0.67 0.67 0.63 0.35 0.63 0.93 0.80 0.90 0.05 0.81

Table 20: Comparing F-measure between our identified source code properties and IaC implemen-

tation smells proposed by Sharma et al. [12] for each model building technique. The highlighted

cell in grey indicates the best technique, as determined by the Scott-Knott test.

Dataset Property-based Implementation Smells [12]

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.67 0.70 0.70 0.48 0.67 0.66 0.50 0.68 0.68 0.31

MOZ 0.67 0.62 0.62 0.52 0.65 0.53 0.52 0.53 0.45 0.53

OST 0.60 0.61 0.68 0.56 0.60 0.71 0.69 0.73 0.16 0.72

WIK 0.67 0.67 0.68 0.50 0.66 0.67 0.64 0.66 0.09 0.63
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Table 21: Comparing AUC between our identified source code properties and process metrics

for each model building technique. The highlighted cell in grey indicates the best technique, as

determined by the Scott-Knott test.

Dataset Property-based Process

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.65 0.67 0.71 0.62 0.65 0.60 0.63 0.76 0.73 0.64

MOZ 0.71 0.66 0.69 0.66 0.69 0.60 0.58 0.63 0.75 0.54

OST 0.52 0.54 0.63 0.66 0.54 0.56 0.58 0.73 0.63 0.57

WIK 0.64 0.65 0.68 0.64 0.64 0.55 0.60 0.67 0.62 0.53

Table 22: Comparing precision between our identified source code properties and process metrics

for each model building technique. The highlighted cell in grey indicates the best technique, as

determined by the Scott-Knott test.

Dataset Property-based Process

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.65 0.69 0.78 0.80 0.68 0.63 0.64 0.80 0.83 0.66

MOZ 0.68 0.63 0.73 0.85 0.67 0.57 0.55 0.71 0.75 0.53

OST 0.60 0.62 0.70 0.84 0.62 0.64 0.65 0.78 0.79 0.64

WIK 0.67 0.68 0.74 0.85 0.68 0.60 0.64 0.74 0.67 0.57

outperform process metrics based on recall and F-measure values. Based on our

findings we recommend to explore both types of metrics: source code-based and

process metrics for IaC defect prediction models.

6. Discussion

We discuss our findings with possible implications as following:
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Table 23: Comparing recall between our identified source code properties and process metrics

for each model building technique. The highlighted cell in grey indicates the best technique, as

determined by the Scott-Knott test.

Dataset Property-based Process

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.66 0.70 0.63 0.34 0.66 0.62 0.73 0.72 0.59 0.65

MOZ 0.66 0.61 0.54 0.37 0.64 0.57 0.52 0.40 0.24 0.49

OST 0.60 0.60 0.67 0.42 0.58 0.60 0.65 0.72 0.42 0.65

WIK 0.67 0.67 0.63 0.35 0.63 0.50 0.58 0.57 0.60 0.48

Table 24: Comparing F-measure between our identified source code properties and process metrics

for each model building technique. The highlighted cell in grey indicates the best technique, as

determined by the Scott-Knott test.

Dataset Property-based Process

CART KNN LR NB RF CART KNN LR NB RF

MIR 0.67 0.70 0.70 0.48 0.67 0.62 0.68 0.76 0.69 0.66

MOZ 0.67 0.62 0.62 0.52 0.65 0.57 0.54 0.51 0.36 0.51

OST 0.60 0.61 0.68 0.56 0.60 0.62 0.65 0.75 0.54 0.65

WIK 0.67 0.67 0.68 0.50 0.66 0.55 0.61 0.65 0.63 0.52
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6.1. Implications for Practitioners

Prioritization of Inspection Efforts: Our findings have implications on how

practitioners can prioritize inspection efforts for IaC scripts. The identified 12

source code properties can be helpful in early prediction of defective scripts. As

shown in Tables 8 and 9, ‘hard-coded string’ is correlated with making defective

IaC scripts, and therefore, test cases can be designed by focusing on string-related

values assigned in IaC scripts.

Code inspection efforts can also be prioritized using our findings. Accord-

ing to our feature importance analysis, ‘attribute’ is correlated with defective

IaC scripts. IaC scripts with relatively large amount of ‘attributes’ can get extra

scrutiny. From Table 9 we observe other IaC-related source code properties that

contribute to defective IaC scripts. Examples of such properties include: setting

a file path (‘file’), and executing external modules or scripts (‘include’). Practi-

tioners might benefit from code inspection using manual peer reviews for these

particular properties as well.

We also observe that IaC scripts can be as large; for example as large as 1,287

lines of code. To prioritize inspection efforts we advise practitioners to focus

on the identified 12 source code properties. Large scripts further highlights the

importance on identifying source code properties i.e. take a fine-grained approach.

Tools: Prior research [60] observed that defect prediction models can be help-

ful for programmers who write code in general purpose programming languages.

Defect prediction of software artifacts is now offered as a cloud-service, as done

by DevOps Insights 19. For IaC scripts we observe the opportunity of creating a

19https://www.ibm.com/cloud/devops-insights
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new set of tools and services that will help in defect mitigation. Toolsmiths can

use our prediction models to build tools that pinpoint the defective IaC scripts that

need to be fixed. Such tools can explicitly state which source code properties are

more correlated with defects than others and need special attention when making

changes. We recommend practitioners to explore source code-based properties

along with process metrics, as process metrics might be better with respect to

prediction performance.

6.2. Future Research

Our paper provides opportunity for further research in the area of defect pre-

diction of IaC scripts. Sophisticated statistical techniques, such as topic modeling

and deep learning, can be applied to discover more IaC-related source code prop-

erties. Researchers can also investigate how practitioners in real life perceive and

use defect prediction models for IaC scripts.

7. Threats to Validity

We discuss the limitations of our paper as following:

• Conclusion Validity: Our approach is based on qualitative analysis, where

raters categorized XCMs, and assigned defect categories. We acknowledge

that the process is susceptible human judgment, and the raters’ experience

can bias the categories assigned. The accompanying human subjectivity can

influence the distribution of the defect category for IaC scripts of interest.

We mitigated this threat by assigning at leeast two raters for the same set of

XCMs. Next, we used a resolver, who resolved the disagreements. Further,
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we cross-checked our categorization with practitioners who authored the

XCMs, and observed ‘substantial’ to ‘almost perfect’ agreement.

For RQ-2 the survey response rate was 7.4%. We acknowledge that the

survey response rate was low and our findings may not be generalizable.

• Internal Validity: We have used a combination of commit messages and

issue report descriptions to determine if an IaC script is associated with a

defect. We acknowledge that these messages might not have given the full

context for the raters. Other sources of information such as practitioner

input and code changes that take place in each commit could have provided

the raters better context to categorize the XCMs.

We acknowledge that our set of properties is not comprehensive. We derived

these properties by applying qualitative analysis on defect-related commits

of one dataset. We mitigated this limitation by applying empirical analy-

sis on three more datasets, and quantify if the identified properties show

correlation with defective scripts.

Multiple raters may miss a defect-related commit, which may impact the

distribution of the defect-related commits in our constructed datasets.

• Construct validity: Our process of using human raters to determine defect

categories can be limiting, as the process is susceptible to mono-method

bias, where subjective judgment of raters can influence the findings. We

mitigated this threat by using multiple raters.

Also, for Mirantis and Wikimedia, we used graduate students who per-

formed the categorization as part of their class work. Students who partic-

ipated in the categorization process can be subject to evaluation apprehen-
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sion, i.e. consciously or sub-consciously relating their performance with

the grades they would achieve for the course. We mitigated this threat by

clearly explaining to the students that their performance in the categoriza-

tion process would not affect their grades.

The raters involved in the categorization process had professional experi-

ence in software engineering for at two years on average. Their experience

in software engineering may make the raters curious about the expected out-

comes of the categorization process, which may affect the distribution of the

categorization process. Furthermore, the resolver also has professional ex-

perience in software engineering and IaC script development, which could

influence the outcome of the defect category distribution.

• External Validity: Our scripts are collected from the OSS domain and not

from proprietary sources. Our findings are subject to external validity, as

our findings may not be generalizable.

We construct our datasets using Puppet, which is a declarative language.

Our findings may not generalize for IaC scripts that use an imperative form

of language.

8. Conclusion

In continuous deployment, IT organizations rapidly deploy software and ser-

vices to end-users using an automated deployment pipeline. IaC is a fundamental

pillar to implement an automated deployment pipeline. Defective IaC scripts can

hinder the reliability of the automated deployment pipeline. Characterizing source

code properties of IaC scripts that correlate with defective IaC scripts can help
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identify signals to increase the quality of IaC scripts. We apply qualitative analy-

sis to identify 12 source code properties that correlate with defective IaC scripts.

We observe 10 of the 12 properties to show correlation with defective IaC scripts

for all four datasets. The properties that show the strongest correlation are ‘lines

of code’ and ‘hard-coded string’. In contrast to our empirical analysis, we observe

practitioners to agree most with the ‘URL’ property. Using our 12 properties we

construct defect prediction models, which outperform the bag-of-words technique

with respect to precision, recall, and F-measure. We hope our paper will facilitate

further research in the area of defect analysis for IaC scripts.
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