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Abstract—In software engineering, validation and verification
(V&V) resources are limited and characterization of defective
software source files can help in efficiently allocating V&V
resources. Similar to software source files, defects occur in the
scripts used to automatically manage configurations and software
deployment infrastructure, often known as infrastructure as code
(IaC) scripts. Defects in IaC scripts can have dire consequences,
for example, creating large-scale system outages. Identifying the
characteristics of defective IaC scripts can help in mitigating
these defects by allocating V&V efforts efficiently based upon
these characteristics. The objective of this paper is to help software
practitioners to prioritize validation and verification efforts for
infrastructure as code (IaC) scripts by identifying the charac-
teristics of defective IaC scripts. Researchers have previously
extracted text features to characterize defective software source
files written in general purpose programming languages. We
investigate if text features can be used to identify properties
that characterize defective IaC scripts. We use two text mining
techniques to extract text features from IaC scripts: the bag-
of-words technique, and the term frequency-inverse document
frequency (TF-IDF) technique. Using the extracted features
and applying grounded theory, we characterize defective IaC
scripts. We also use the text features to build defect prediction
models with tuned statistical learners. We mine open source
repositories from Mozilla, Openstack, and Wikimedia Commons,
to construct three case studies and evaluate our methodology. We
identify three properties that characterize defective IaC scripts:
filesystem operations, infrastructure provisioning, and managing
user accounts. Using the bag-of-word technique, we observe
a median F-Measure of 0.74, 0.71, and 0.73, respectively, for
Mozilla, Openstack, and Wikimedia Commons. Using the TF-
IDF technique, we observe a median F-Measure of 0.72, 0.74,
and 0.70, respectively, for Mozilla, Openstack, and Wikimedia
Commons.

I. INTRODUCTION

With respect to money, personnel, and time, validation
and verification (V&V) of software source files is an ex-
pensive procedure, and V&V efforts should be allocated
efficiently [1] [2] [3]. Previously, researchers [4] [5] [6]
have investigated which characteristics are related to defective
software source files. Using the identified characteristics, soft-
ware practitioners can make informed decisions on prioritizing
V&V efforts, by looking at software source files that contain
the identified characteristics [7] [8].

Continuous deployment (CD) is a software development
methodology that helps information technology (IT) organiza-
tions to deploy software rapidly [9] [10]. In CD, configurations
and infrastructure specifics of the deployment environment is
treated as code in form of scripts, known as infrastructure

as code (IaC) scripts [11] [12]. Similar to software source
files, practitioners change IaC scripts frequently [12] [13], and
inadvertently introduce defects [12]. Defects in IaC scripts can
have serious consequences, for example, in 2016 the Phabri-
cator service of Wikimedia Commons became unavailable due
to an erroneous configuration in an IaC script [14]. Through
qualitative and quantitative analysis we can identify properties
that characterize defective IaC scripts. Such characterization
can help IT organizations to efficiently allocate their V&V
efforts by focusing on scripts that contain the identified
properties.

In prior work, researchers have used text features to char-
acterize defective software source files written in general
purpose programming languages (GPLs), such as Java [15] [5].
IaC scripts use domain specific languages (DSLs) [16]. The
syntax and semantics of DSLs are fundamentally different
from GPLs [17] [18] [19], and through systematic investigation
we can determine if text-based features can be used effectively
for characterizing and predicting defective IaC scripts.

The objective of this paper is to help software practitioners
to prioritize validation and verification efforts for infrastruc-
ture as code (IaC) scripts by identifying the characteristics of
defective IaC scripts.

We answer the following research questions:
RQ-1: Which are the characteristics of defective infrastruc-
ture as code (IaC) scripts? How frequently do the identified
characteristics appear in IaC scripts?
RQ-2: How can we build prediction models for defective
infrastructure as code scripts using text features?
We characterize defective IaC scripts by extracting text

features. We use two text mining techniques to extract text
features: the ‘bag-of-words (BOW)’ technique [20] and the
‘term frequency-inverse document frequency (TF-IDF)’ tech-
nique [21]. We apply feature selection [22] on the extracted
features using principal component analysis (PCA) to ac-
count for collinearity and identify text features that are more
correlated with defective IaC scripts. We apply the Strauss-
Corbin Grounded Theory (SGT) [23] on text features that
correlate with defective IaC scripts to characterize properties
of defective IaC scripts. We quantify the count of each
identified property that appear in IaC scripts. We construct
defect prediction models using the text features and Random
Forest (RF) [24]. We also tune the parameters of RF, to achieve
better prediction performance. We evaluate the performance
of the constructed prediction models using two metrics: area
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under the receiver operating characteristic curve (AUC) and F-
Measure. We evaluate our methodology by constructing three
datasets collected from three organizations namely, Mozilla,
Openstack, and Wikimedia Commons. We mine open source
repositories from these organizations to construct the three
datasets. The count of IaC scripts is 580, 1383, and 296 re-
spectively, for Mozilla, Openstack, and Wikimedia Commons.

We list our contributions as following:
• A list of properties that characterizes defective IaC scripts
• Defect prediction models that predict defective IaC scripts
We organize rest of the paper as following: in Section II we

provide necessary background and related work. In Section III
we describe our methodology. In Section IV we describe our
case studies. We use Sections V and VI respectively, to report
our empirical findings, and discuss our findings. We present
the limitations of our paper in Section VII. We finally conclude
the paper in Section VIII.

II. BACKGROUND AND RELATED WORK

In this section we briefly describe prior work and necessary
background needed for the paper.

A. Related Work

Our paper is related to prior research that studied quality
issues of IaC scripts. Sharma et al. [25] investigated smells
in IaC scripts and proposed 13 implementation and 11 design
configuration smells. Hanappi et al. [26] proposed an auto-
mated model-based testing framework for IaC scripts. Jiang
and Adams [13] investigated the co-evolution of IaC scripts
and other software artifacts, such as build files and source
code. They observed that IaC scripts churn frequently, which
can potentially introduce defects. The above-mentioned studies
motivate us to study the characteristics of defective IaC scripts.

Prior research has used text mining techniques such as BOW
and TF-IDF to characterize and predict security and non-
security defects. Scandariato et al. [5] mined token frequencies
from 20 Android applications and used the mined text features
to predict vulnerabilities that appear in these applications.
Walden et al. [27] applied BOW-based text mining technique
on web application source code to predict if the web appli-
cations contain vulnerabilities. They observed that for their
selection of web applications text mining works better for
vulnerability prediction than that of static code metrics. Perl et
al. [28] applied the BOW model on commit messages extracted
from version control repositories to predict security defects in
66 Github projects. Hovsepyan et al. [29] mined text features
from source code of 18 versions of a mobile application,
and used the text features to predict vulnerable files. They
reported an average precision and recall of 0.85 and 0.88.
Mizuno et al. [30] extracted patterns of tokens from source
code using spam filter technique to predict fault prone modules
for two projects: argUML and eclipse BIRT. Hata et al. [15]
mined text features on source code from 10 releases of five
projects using the spam filter technique. They observed with
logistic regression, text-based features outperform source code
metrics with respect to building fault prediction models. The

above-mentioned studies demonstrate the use of text features
in software defect analysis, and motivate us to extract text
features via text mining techniques. We use the text features
to characterize defective IaC scripts.

B. Background

IaC script is the technology of automatically defining
and managing computing and network configurations, and
infrastructure through source code [11]. IaC scripts use do-
main specific language (DSL) [16]. DevOps organizations
widely use commercial tools, such as Puppet to implement
IaC [11] [13] [16]. IaC scripts are also known as configuration
as code scripts [25] [11] or configuration scripts [31].

class yum-repo::epel {  
         include yum-repo::dir 
         $repo_name = 'epel' 
         $repo_url = "http://puppet/yum/mirrors/epel/6/latest/"                        
         file { 
                "/etc/yum.repos.d/base.repo": 
                             content  =>   template("yum-repo/repo.erb"); 
         }  
} 
 
 
 
 
 

Declaring	a	‘class’	

Built-in	resource	type	‘file’	

‘content’	is	an	
a6ribute	of	built-in	
resource	type	‘file’	 Hash	arrow	symbol	

to	assign	a	value	to	
an	a6ribute	

‘Include’	to	execute	third-party	scripts	

Use	of	template	

Fig. 1: Annotation of a Puppet script retrieved from Mozilla.

We provide background on Puppet scripts, because we use
Puppet scripts to construct our case studies, as described in
Section IV. Typical entities of Puppet scripts include modules,
manifests, and resources [32]. A module is a collection of man-
ifests. A manifest is composed of resources, and declarations
of resource types. Manifests are written as scripts that use a .pp
extension. As shown in Figure 1, a manifest script can contain
a ‘class’ which is a named block of Puppet code. Classes in
Puppet scripts are not related to OOP technology, and act as a
placeholder for Puppet code elements. Each configuration item
is referred as a ‘resource’. A resource in Puppet has a type, a
title, and a mapping of attributes. The resource type determines
how the mapping of attributes will be used. For example, a
resource of type ‘file’ can have an attribute called ‘content’
to specify which artifact will be used to provide necessary
content. Content of files can be rendered using templates,
as indicated by the ‘template’ method. Execution of external
library or modules are also possible using the ‘include’ syntax.
For better understanding, we provide a sample Puppet code
retrieved from Mozilla 1 with annotations in Figure 1. The
code snippet highlighted in red indicates a defect.

III. METHODOLOGY

We first provide definitions, then we describe our method-
ology.
• Defect: An imperfection in an IaC script that needs to

be replaced or repaired. We follow the IEEE definition of
defects [33].

1http://tiny.cc/bg-pupp



• Defect-related commit: A commit whose message indicates
that an action was taken related to a defect.

• Defective script: An IaC script which is listed in a defect-
related commit.

A. Dataset Construction

Our methodology of dataset construction involves three
steps: repository collection (Section III-A1), commit message
processing (Section III-A2), and determining defect-related
commits (Section III-A3).

1) Repository Collection: Researchers [34] [35], in prior
work on defect prediction, used datasets from public software
data archives such as Tera-PROMISE and NASA. But these
datasets are derived from OOP-based systems [36] [35], and
not from IaC scripts. Thus, we need to construct IaC script-
specific datasets to evaluate our methodology and build pre-
diction models. We use open source repositories to construct
our datasets. An open source repository contains valuable
information about the development process of an open source
project, but the project might have a short development pe-
riod [37]. This observation motivates us to identify repositories
for mining by using these criteria:
• Criteria-1: The repository must be available for download.
• Criteria-2: At least 11% of the files belonging to the repos-

itory must be IaC scripts. Jiang and Adams [13] reported
that in open source repositories IaC scripts co-exist with
other types of files, such as Makefiles and source code files.
They observed a median of 11.1% of the files to be IaC
scripts. By using a cutoff of 11% we assume to collect a set
of repositories that contain sufficient amount of IaC scripts
for analysis.

• Criteria-3: The repository must have at least two commits
per month. Munaiah et al. [37] used the threshold of at least
two commits per month to determine which repositories
have enough development activity for software organiza-
tions. We use this threshold to filter repositories that contain
projects with short development activity.
2) Commit Message Processing: Prior research [38], [39]

leveraged open source repositories that use version control
systems (VCS) for defect prediction studies. We use two
artifacts from VCS of the selected repositories from Sec-
tion III-A1, to construct our datasets: (i) commits that indicate
modification of IaC scripts; and (ii) issue reports that are linked
with the commits. We use commits because commits contain
information on how and why a file was changed. Commits
can also include links to issue reports. We use issue report
summaries because they can give us more insights on why IaC
scripts were changed in addition to what is found in commit
messages. We collect commits and other relevant information
as following:
• First, we extract commits that were used to modify at least

one IaC script. A commit lists the changes made on one or
multiple files [40].

• Second, we extract the message of the commit identified
from the previous step. A commit includes a message, com-
monly referred as a commit message. The commit messages

indicate why the changes were made to the corresponding
files [40].

• Third, if the commit message included a unique identifier
that maps the commit to an issue in the issue tracking
system, we extract the identifier and use that identifier to
extract the summary of the issue. We use regular expression
to extract the issue identifier. We use the corresponding issue
tracking API to extract the summary of the issue; and

• Fourth, we combine the commit message with any exist-
ing issue summary to construct the message for analysis.
We refer to the combined message as ‘combined commit
message (COCM)’ throughout the rest of the paper. We use
the extracted COCMs to separate the defect-related commits
from the non defect-related commits, as described in III-A3.

3) Determining Defect-related Commits: We use defect-
related commits to identify the defective IaC scripts, and
the metrics that characterizes defective IaC scripts. We apply
qualitative analysis to determine which commits were defect-
related commits. Qualitative analysis provides the opportunity
to improve the quality of the constructed dataset [41]. We
perform qualitative analysis using the following three steps:

Categorization Phase: At least two raters with software
engineering experience determine which of the collected
commits are defect-related. We adopt this approach to miti-
gate the subjectivity introduced by a single rater. Each rater
determine a COCM as defect-related if the COCM represents
an imperfection in an IaC script. We provide raters with
an electronic handbook on IaC scripts [32], and the IEEE
publication on anomaly classification [33]. We also record
agreement between raters and the Cohen’s Kappa [42] score,
for all COCMs.
Resolution Phase: Raters can disagree if a COCM is defect-
related. In these cases, we use an additional rater’s opinion to
resolve such disagreements. We refer to the additional rater
as the ‘resolver’.
Practitioner Agreement: To evaluate the ratings of the raters
in the categorization and the resolution phase, we randomly
select 50 COCMs for each dataset, and contact practitioners.
We ask the practitioners if they agree to our categorization of
COCMs. High agreement between the raters’ categorization
and programmers’ feedback is an indication of how well
the raters performed. The percentage of COCMs to which
practitioners agreed upon should be recorded and the Cohen’s
Kappa score should be computed.

Upon completion of these three steps, we can classify which
commits and COCMs are defect-related. From the defect-
related commits we determine which IaC scripts are defective,
similar to prior work [39]. Defect-related commits list which
IaC scripts were changed, and from this list we determine
which IaC scripts are defective. From the defective and non-
defective scripts we extract text features using two steps:
text preprocessing and text feature extraction, respectively
discussed in Section III-A4 and Section III-A5.

4) Text Preprocessing: We apply text pre-processing in the
following steps:
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• First, we remove comments from scripts.
• Second, we split the extracted tokens according to naming

conventions: camel case, pascal case, and underscore. These
splitted tokens might include numeric literals and symbols,
so we remove these numeric literals and symbols. We also
remove stop words.

• Finally, we apply Porter stemming [43] on the collected
tokens. After completing the text preprocessing step we
collect a set of pre-processed tokens for each IaC script in
each dataset. We use these sets of tokens to create feature
vectors as shown in Sections III-A5 and III-A5.
5) Text Feature Extraction: We use two text mining tech-

niques to extract text features: ‘bag-of-words (BOW)’ [20] and
‘term frequency-inverse document frequency (TF-IDF)‘ [21].
The BOW technique which has been extensively used in
software engineering [28] [27] [29], converts each IaC script
in the dataset to a set of words or tokens, along with their
frequencies. Using the frequencies of the collected tokens
we create features. Similar to BOW, the TF-IDF technique
is also popular in software engineering [44] [45]. The TF-IDF
technique accounts for the relative frequency of tokens that
appear in scripts. Along with BOW, we also include TF-IDF,
as prior research has demonstrated that TF-IDF can help in
building better prediction models [21].

Bag-of-Words: Using the BOW technique, we use the
tokens extracted from Section III-A4. We compute the occur-
rences of tokens for each script. By using the occurrences of
tokens we construct a feature vector. Finally, for all the scripts
in the dataset we construct a feature matrix.

ScriptA	 ScriptB	

build,	git,	include,	
template	

build,	dir,	file,	include,	
os	

Feature	Vector	
<build,	dir,	file,	git,	include,	os,	
template>	

ScriptA	
	

<1,	0,	0,	1,	1,	0,	1>	

ScriptB	 <1,	1,	1,	0,	1,	1,	0>	

Fig. 2: A hypothetical example to illustrate the BOW technique
discussed in Section III-A5.

We use a hypothetical example shown in Figure 2 to
illustrate the BOW technique. In our hypothetical example,
our dataset has two IaC scripts ScriptA and ScriptB that
respectively contain four and five pre-processed tokens. From
the occurrences of tokens, we construct a feature matrix where
the the token ‘build’ appears once for ScriptA and ScriptB.

TF-IDF: The TF-IDF technique computes the relative
frequency of a token compared to other tokens, across all
documents [21]. In our experimental setting, the tokens that we
apply TF-IDF on, are extracted from IaC scripts, as discussed

in Section III-A4. The documents are the IaC scripts from
which we extracted the tokens. For a script s, and a token t,
we calculate the TF-IDF as following:
• Calculate TF: We calculate TF of token t in script s using

Equation 1:

TF (t, s) =
occurences of token t in script s
total count of tokens in script s

(1)

• Calculate IDF: We calculate IDF of token t using Equa-
tion 2:

IDF (t) =

log10

(
total count of scripts in the dataset

count of scripts in which token t appears at least once

)
(2)

• Calculate TF-IDF: We calculate TF-IDF of token t using
Equation 3:

TF − IDF (t, s) = TF (t, s) ∗ IDF (t) (3)

We use a hypothetical example to illustrate how the TF-
IDF vectorization process works as shown in Figure 3. In our
hypothetical example, our dataset has two IaC scripts ScriptA
and ScriptB that respectively contain four and five pre-
processed tokens. The total unique tokens in our hypothetical
dataset is seven because two tokens appear in both scripts.
Using Equation 1 we calculate the TF metric for each of
these tokens and for both scripts: ScriptA and ScriptB. For
example, the TF metric for token ‘template’ and ScriptA is
0.25, as the token ‘template’ appears once in ScriptA, and
the total count of tokens in ScriptA is 4. Next, we show the
calculation of metric IDF for all tokens using Equation 2. For
the token ‘template’ we observe IDF to be 0.3, as it appears
in one of the two scripts in our hypothetical dataset. Finally,
using Equation 3, we determine the TF-IDF scores for token
‘template’. For ScriptA and ScriptB token ‘template’ has a
TF-IDF score of 0.07, and 0.0, respectively.

Upon completion of this step we create a feature vector for
each script in the dataset.

6) Feature Selection: Feature selection is the process of
eliminating features that have minimal influence on prediction
performance [46] [22]. For each IaC script we extract text
features as tokens using the bag-of-word and TF-IDF tech-
niques. All of the identified tokens might not be correlated
with defective IaC scripts and might not contribute in building
defect prediction models. The text features that have mini-
mal correlation with defective IaC scripts can be eliminated
via feature selection. We use principal component analysis
(PCA) [22] for feature selection because PCA accounts for
multi-collinearity amongst features [22] and identifies the
strongest patterns in the data [22]. PCA creates independent
linear combinations of the features that account for most of
the co-variation of the features. PCA also provides a list of
components and the amount of variance explained by each
component. These principal components are independent and
do not correlate or confound each other. For feature selection,
we compute the total amount of variance accounted by the
PCA analysis to determine what text features should be used
for building prediction models. We select the count of principal
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ScriptA	

build	 git	 template	include	

ScriptB	

build	 dir	 include	file	 os	

a

ScriptA	 ScriptB	

build	 0.25	 0.20	

dir	 0.00	 0.20	

file	 0.00	 0.20	

git	 0.25	 0.00	

include	 0.25	 0.20	

os	 0.00	 0.20	

template	 0.25	 0.00	

b

Token	 IDF	

build	 0.00	

dir	 0.30	

file	 0.30	

git	 0.30	

include	 0.00	

os	 0.30	

template	 0.30	

c

ScriptA	 ScriptB	

build	 0.00	 0.00	

dir	 0.00	 0.06	

file	 0.00	 0.06	

git	 0.07	 0.00	

include	 0.00	 0.00	

os	 0.00	 0.06	

template	 0.07	 0.00	

d
Fig. 3: A hypothetical example to illustrate out feature vectorization technique using TF-IDF. Figure 3a presents the pre-
processed tokens of two scripts: ScriptA and ScriptB. Figure 3b presents the TF values for both scripts. Figure 3c presents
the IDF scores for the unique seven tokens. Finally, TF-IDF scores for each script and token is presented in Figure 3d.

components that account for at least 95% of the total variance
to avoid overfitting. The identified components include text
features that correlate with defective scripts.

We use the identified components using PCA analysis to
answer RQ-1 and RQ-2. As will be described in Section III-B,
to answer RQ-1, we apply qualitative analysis on the text
features that correlate with defective IaC scripts. Next, as will
be described in Section III-C to answer RQ-3, we use the
identified principal components as input to statistical learners
for building defect prediction models.

B. RQ-1: Characteristics of Defective IaC Scripts
The text features included in the identified principal com-

ponents from Section III-A6 are correlated with defective
IaC scripts. However, these text features are tokens, which
might be insufficient to produce actionable information for
practitioners. We address this issue by applying qualitative
analysis on the identified tokens. We apply a qualitative
analysis called Strauss-Corbin Grounded Theory (SGT) [23].
SGT is a variant of Grounded Theory (GT) [23] [47] that
allows for specification of research questions and is used to
characterize properties from textual artifacts [23] [47] [48].
SGT includes three elements: ‘codes’, ‘low-level concept’,
and ‘high-level conclusion’. In SGT, a ‘high-level conclusion’
represents an attribute or property [23], and by deriving these
high-level conclusions, we identify properties that characterize
defective scripts.

We use an example in Figure 4 to explain how we use
the three SGT elements. We first start with text features that
characterize defective IaC scripts determined by our PCA
analysis to derive necessary codes. These codes are formed
using text features that share a common attribute. In the
example, we separate the text features into two codes: one
code is related to directories, and the other code is related to
files. Next we generate low-level concepts from the codes by
creating a higher level of abstraction than text features. For
example, the low-level concept ‘directory-related action and
attributes’ was determined by the 11 tokens identified as codes.
The final step is to draw high-level conclusions by identifying
similarities between the low-level concepts. In the example,
the two low-level concepts are related to performing filesystem
operations. We use these two low-level concepts to determine

a high-level conclusion ‘Filesystem operations appear more
in defective IaC scripts’. This high-level conclusion identifies
one of the properties that characterize defective IaC scripts
which is, in defective IaC scripts more filesystem operations
are performed.

The second part of RQ1 is focused on the frequency of
the identified properties that characterize defective scripts.
By quantifying the frequency of the identified properties, we
can identify how many scripts can be prioritized for V&V
using that particular property. We determine the frequency of
each property by counting for how many scripts the property
appears at least once, in the following two-step process:
• Step 1-Keyword Search: First, we identify if any of the

text features used as codes for a property, appears at least
once in any of the IaC scripts. As a hypothetical example,
if any of the following text features ‘dir’, and ‘file’, that
are used as codes for a property, appear at least once in
a script, then that script is considered for further analysis.
Completion of Step 1 will provide a list of scripts which
need further inspection in Step 2.

• Step 2-Manual Examination: The identified scripts in Step
1 can yield false positives, for example, a script can contain
the text feature ‘file’, even though the script is unrelated
with filesystem operations. We apply manual analysis to
determine which scripts actually contain the property of
interest. We consider a script to contain a property if:
– the script uses the required IaC syntax to implement

the property. (for example, to implement a filesystem
operation in Puppet a script must use the ‘file’ syntax2);
or

– the comments in the script reveals the property of inter-
est (‘This script changes permission of file a.txt’ is an
example comment that reveals that the script performs a
filesystem operation)

Upon completion of the above-mentioned two-step process,
we will identify which properties appear in how many scripts.

C. RQ-2: Building Prediction Models

We answer RQ-2 in the following manner:

2https://puppet.com/docs/puppet/5.3/types/file.html

Prep
rin

t



Text Features in Defective Scripts Codes Low-level Concept High-level Conclusion 

access,	check,	
copi,	cwd,	dir,	
directori,	ensur,	
exe,	file,	filenam,	
json,	mode,	path,	
permiss,	script,	
usr	
	

access,	check,	copi,	
cwd,	dir,	directori,	
ensur,	mode,	path,	
permiss,	usr	

File-related	ac9on	and	
a:ributes	

Directory-related	ac9on	
and	a:ributes	 Filesystem 

operations appear 
more in defective 
IaC scripts	

access,	check,	copi,		
ensur,	exe,	file,	filenam,	
json,	mode,	path,	
permiss,		script	

Fig. 4: An example of how we use Strauss-Corbin Grounded Theory (SGT) to characterize defective IaC scripts.

1) Statistical Learner: Researchers use statistical learners
to build prediction models that learn from historic data and
make prediction decisions on unseen data. We use Random
Forest (RF), an ensemble technique that creates multiple
classification trees, each of which are generated by taking
random subsets of the training data [24] [22]. We select RF,
as RF does not make any assumptions on the relationship
between independent variables and the dependent variable. Re-
searchers [49] recommended the use of statistical learners that
uses ensemble techniques to build defect prediction models.

Prediction performance measures: We use two perfor-
mance metrics to evaluate our prediction models:
• Area Under The Receiver Operating Characteristic

Curve (AUC): AUC uses the receiver operating charac-
teristic (ROC). ROC is a two-dimensional curve that plots
the true positive rates against false positive rates. An ideal
prediction model’s ROC curve has an area of 1.0. A random
prediction’s ROC curve has an area of 0.5. We refer to the
area under the ROC curve as AUC throughout the paper.
We consider AUC as this measure is threshold independent
unlike precision and recall [49], and recommended by prior
research [50].

• F-Measure: F-Measure is the harmonic mean of precision
and recall. Precision calculates the proportion of IaC scripts
that are actually defective given that the model predicts
as defective. Recall calculates the proportion of defective
IaC scripts that are correctly predicted by the prediction
model. Increase in precision, often decreases recall, and
vice-versa [51] [52]. F-Measure provides a composite score
of precision and recall, and is high when both precision and
recall is high.
2) Automated Parameter Tuning for Learners: We use

differential evolution (DE) [53], a search-based algorithm,
to automatically tune the parameters of RF. We select DE
because using DE as a parameter tuning technique, researchers
have observed improved prediction performance for software
defects [35]. For a given measure of quality, and a set of input
parameters that needs to be tuned, DE iteratively identifies
the combination of parameter values for which the given
measure of quality is optimal. Each combination of parameter
value is referred as a ‘candidate solution’ in DE. DE achieves
optimization by generating a population of candidate solutions
and creating new candidate solutions by combining existing
ones. Four attributes of DE can be set to control the generation

of populations: GENERATION , POPULATION , cross-
over probability (CR), and mutation constant (F ). In our case,
parameters of each statistical learner is the set of input param-
eters that need to be tuned. The given measure of quality is the
prediction performance measure. We set GENERATION ,
POPULATION , CR, and F to respectively, 50, 10, 0.50,
and 0.50. As we use two prediction performance measures
AUC and F-Measure, we repeat the above-mentioned process
separately for AUC and F-Measure. When AUC is set as the
given measure of quality, as output DE provides the best AUC
it was able to achieve. In case of F-Measure, DE provides the
best F-Measure it was able to achieve as output. We determine
the parameters of RF for tuning from Fu et al.’s paper [35].

3) 10-fold Cross Validation: We use 10-fold cross valida-
tion to evaluate the constructed prediction models. In 10-Fold
cross validation evaluation approach, the dataset is partitioned
into 10 equal sized subsamples or folds [22]. The performance
of the constructed prediction models are tested by using nine
of the 10 folds as training data, and the remaining fold as test
data. Similar to prior work [49], we repeat the 10-fold cross
validation 10 times to assess prediction stability.

IV. CASE STUDIES

We use Puppet scripts from open source repositories main-
tained by three organizations: Mozilla, Openstack, and Wiki-
media Commons. We select Puppet because it is considered
as one of the most popular tools for configuration manage-
ment [13] [16], and has been used by IT organizations since
2005 [54]. Mozilla is an open source software community that
develops, uses, and supports Mozilla products such as Mozilla
Firefox 3. Openstack foundation is an open-source software
platform for cloud computing where virtual servers and other
resources are made available to customers 4. Wikimedia Foun-
dation is a non-profit organization that develops and distributes
free educational content 5. Using the open source repositories
we construct three datasets where each Puppet script is labeled
as defective or non-defective.

A. Repository Collection

We apply the three selection criteria presented in Sec-
tion III-A1 to identify the repositories that we use for analysis.

3https://www.mozilla.org/en-US/
4https://www.openstack.org/
5https://wikimediafoundation.org/



We describe how many of the repositories satisfied each of the
three criteria as following:
• Criteria-1: Altogether, 1594, 1253, and 1638 reposito-

ries were publicly available to download respectively, for
Mozilla, Openstack, and Wikimedia Commons. We down-
load the repositories respectively from their respective on-
line project management systems (Mozilla [55], Open-
stack [56], and Wikimedia [57]). The Mozilla repositories
were Mercurial-based, whereas, Openstack and Wikimedia
repositories were Git-based.

• Criteria-2: For Criteria-2, we stated that at least of 11%
of all the files belonging to the repository must be Puppet
scripts. For Mozilla, 2 of the 1,594 repositories for Mozilla
satisfied Criteria-2. For Openstack, 61 of the 1253 repos-
itories satisfied Criteria-2. For Wikimedia Commons, 11
out of the 1,638 repositories satisfied Criteria-2. Altogether
74 of the 4,485 repositories satisfy Criteria-2, indicating
the amount of IaC scripts to be small compared to the
organizations’ overall codebase.

• Criteria-3: As Criteria-3, we stated that the repository must
have at least two commits per month. The 2, 61, and
11 selected repositories that satisfy Criteria-2 also satisfy
Criteria-3.

B. Commit Message Processing

For the Mozilla, Openstack, and Wikimedia repositories, we
collect 3074, 7808, and 972 commits, respectively. As shown
in Table I, for Mozilla we collect 580 Puppet scripts that map
to 3,074 commits from the two repositories. For Openstack, we
collect 1,383 Puppet scripts that map to 7,808 commits from
the 61 repositories. For Wikimedia, we collect 296 Puppet
scripts that map to 972 commits from the 11 repositories. Of
the 3074, 7808, and 972 commits, 2764, 2252, and 210 commit
messages included unique identifiers that map to issues in
their respective issue tracking systems. Using these unique
identifiers to issue reports, we construct the COCMs.

C. Determining Defect-related Commits

We categorize COCMs to classify which collected commits
are defect-related, using the following phases:
• Categorization Phase:

– Mozilla: Two graduate students, separately, apply qualita-
tive analysis on 3,074 COCMs. The first and second rater,
respectively, have a professional experience of three and
two years in software engineering. The first and second
rater respectively took 37.0 and 51.2 hours to complete
the categorization.

– Openstack: Two graduate students, separately, apply
qualitative analysis on 7,808 COCMs from Openstack
repositories. The first and second rater, respectively, have
a professional experience of two and one years in software
engineering. The first and second rater completed the
categorization of the 7,808 XCMs respectively, in 80.0
and 130.0 hours.

– Wikimedia: We recruit students in a graduate course
related to software engineering titled ‘Software Security’,

via e-mail. The number of students in the class was
74, and 54 students agreed to participate. We follow
IRB protocol (IRB#9521) in recruitment of students and
assignment of defect categorization tasks. We randomly
distribute the 972 COCMs amongst the students such that
each COCM is rated by at least two students. The average
professional experience of the 54 students in software
engineering is 2.3 years. On average, each student took
2.1 hours to categorize the 140 XCMs.

• Resolution Phase:
– Mozilla: Of the 3,074 COCMs, we observe agreement for

2,122 COCMs and disagreement for 952 COCMs, with
a Cohen’s Kappa score of 0.6. Based on Cohen’s Kappa
score, the agreement level is ‘moderate’ [58].

– Openstack: Of the 7,808 COCMs, we observe agreement
for 3,188 COCMs, and disagreements for 4,620 COCMs.
The Cohen’s Kappa score was 0.4. Based on Cohen’s
Kappa score, the agreement level is ‘fair’ [58].

– Wikimedia: Of the 972 COCMs, we observe agreement
for 557 COCMs, and disagreements for 415 COCMs, with
a Cohen’s Kappa score of 0.7. Based on Cohen’s Kappa
score, the agreement level is ‘substantial’ [58].

The first author of the paper is the resolver, and resolve
disagreements for all three datasets.

• Practitioner Agreement: Following our methodology (Sec-
tion III-A3), we report the agreement level between the
raters’ and the practitioners’ categorization for randomly
selected 50 COCMs:
– Mozilla: We contact six programmers and all of them

responded. We observe a 94.0% agreement with a Co-
hen’s Kappa score of 0.9, which according to Landis and
Koch [58] indicates ‘almost perfect’ agreement.

– Openstack: We contact 10 programmers and all of them
responded. We observe a 92.0% agreement with a Co-
hen’s Kappa score of 0.8, which according to Landis and
Koch [58] indicates ‘substantial’ agreement.

– Wikimedia: We contact seven programmers and all of
them responded. We observe a 98.0% agreement with
a Cohen’s Kappa score of 0.9, which indicates ‘almost
perfect’ agreement [58].

Finally, upon applying qualitative analysis we identify
defect-related commits. These defect-related commits list the
changed Puppet scripts which we use to identify the defective
Puppet scripts. We present the count of defect-related commits,
and defective Puppet scripts in Table I. We observe for
Mozilla, 18.1% of the commits are defect-related, even though
89.9% of the commits included identifiers to issues. According
to our qualitative analysis, for Mozilla, issue reports exist
that are not related to defects such as, installation issues 6,
and new features 7. In case of Openstack and Wikimedia,
respectively, 28.8% and 16.4% of the Puppet-related commits
include identifiers that map to issues. The constructed datasets

6https://bugzilla.mozilla.org/show bug.cgi?id=773931
7https://bugzilla.mozilla.org/show bug.cgi?id=868974
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TABLE I: Defect Datasets Constructed for the Paper
Properties Dataset

Mozilla (MOZ) Openstack (OST) Wikimedia
(WIK)

Time Period Aug,2011-
Sep,2016

Mar,2011-
Sep,2016

Apr,2005-
Sep,2016

Puppet
Code Size
(LOC)

30,272 122,083 17,439

Puppet
Commits

3074 of 60992,
5.0%

7808 of 31460,
24.8%

972 of 14717,
6.6%

Defect-
related
Commits

558 of 3074,
18.1%

1987 of 7808,
25.4%

298 of 972,
30.6%

Defective
Puppet
Scripts

259 of 580,
44.6%

810 of 1383,
58.5%

161 of 296,
54.4%

are available online [59].

V. RESULTS

In this section we present our empirical findings.

A. RQ-1: Characteristics of Defective Infrastructure as Code
Scripts

We identify 2280, 3542, and 2398 unique text features
from all IaC scripts for Mozilla, Openstack, and Wikimedia,
respectively. By applying PCA analysis, we observe that
respectively for Mozilla, Openstack, and Wikimedia 393, 437,
and 327 components account for at least 95% of the total
variance when BOW is applied. When TF-IDF is applied we
observe 557, 485, and 662 components account for 95% of
the total variance. For both BOW and TF-IDF, the components
identify text features that are correlated with defective scripts.
As described in Section III-B, we use these text features to
derive properties that characterize defective IaC scripts using
SGT. We identify three properties that characterize defective
IaC scripts. These properties are: ‘filesystem operations’, ‘in-
frastructure provisioning’, and ‘managing user accounts’. All
three properties are derived from text features using BOW and
TF-IDF. Each of these properties correspond to an operation
executed in an IaC script. We list the identified properties that
characterize defective IaC scripts with example code snippets
in Table II. We list each property in the ‘Characteristic’
column, and a corresponding example code snippet in the
‘Example Code Snippet’ column. We briefly describe each
property as following:
• Filesystem operations: Filesystem operations are related

to performing file input and output tasks, such as setting
permissions of files and directories. For example, in Table II
we report a code snippet that assigns permission mode
‘0444’ to the file ’/etc/firejail/thumbor.profile’. The file is
assigned to owner ‘root’, and belongs to the group ‘root’.

• Infrastructure provisioning: This property relates to setting
up and managing infrastructure for specialty systems, such
as data analytics and database systems. From our quali-
tative analysis, we identify four types of systems that are
provisioned: build systems, data analytics systems, database
systems, and web server systems. Cito et al. [60] observed

that IaC tools have become essential in cloud-based provi-
sioning, and our finding provides further evidence to this
observation. Vendors for IaC tools such as Puppet 8 adver-
tise automated provisioning of infrastructure as one of the
major capabilities of IaC tools, but our results indicate that
the capability of provisioning via IaC tools can introduce
defects.

• Managing user accounts: This property of defective IaC
scripts is associated with setting up accounts and user
credentials. In Table II, we provide an example on how
user ‘puppetsync’ is created. One of the major tasks of
system administrators is to setup and manage user accounts
in systems [61]. IaC tools, such as Puppet, provide API
methods to create and manage users and their credentials
in the system. According to some practitioners [62], IaC
tools, such as Puppet, can only be beneficial for managing a
small number of users, and managing large number of users
increases the chances of introducing defects in scripts.

B. Frequency of the Identified Characteristics

As described in Section III-B, we apply a two-step process
to calculate the frequency of the properties that characterize
defective scripts. After executing Step-1, we identify 37.5%,
51.0%, and 31.3% of Mozilla scripts to contain the property
filesystem operations, infrastructure provisioning, and manag-
ing user accounts. For Openstack, we identify 50.9%, 42.1%,
and 65.0% of the scripts to contain the three properties.
For Wikimedia, we identify 67.2%, 26.7%, and 41.9% of
the scripts respectively, to contain the properties: filesystem
operations, infrastructure provisioning, and managing user
accounts.

Finally, after completion of Step 2, we report the frequency
of identified properties that characterize defective IaC scripts
in Table III. The ‘Characteristics’ column represents a prop-
erty, and in the ‘Frequency’ column we report the frequency
of each property. We observe that for Mozilla 21.7% of scripts
contain filesystem operations. The ‘Infrastructure provisioning
(total)’ row presents the summation of the four provisioning-
related operations: provisioning of (i) build, (ii) data analytics,
(iii) database, and (iv) web server systems. We observe the
reduction in the count of scripts for which each property is
observed, upon application of Step-2. Our findings hint that
the keyword-based matching technique can generate a lot of
false positives, and manual inspection can filter out these false
positives, as demonstrated by Bosu et al. [63], for detecting
vulnerable code changes.

Table III also indicates how many scripts can be prioritized
for V&V efforts. For example, considering filesystem opera-
tions for Mozilla, 21.7% of the total scripts can be prioritized.
As shown in the ‘Total’ row, considering all three properties,
namely filesystem, infrastructure provisioning, and managing
user accounts, then instead of using all 580 IaC scripts for
V&V, 180 (31.1%) of them can be prioritized. Similarly,
considering all three properties, 34.5% and 42.9% of all scripts

8https://puppet.com/products/capabilities/automated-provisioning
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TABLE II: Characteristics of Defective IaC Scripts
Characteristic Example Code Snippet
Filesystem operations

file {’/etc/firejail/thumbor.profile’:
ensure => present,
owner => ’root’,
group => ’root’,
mode => ’0444’,
source => ’puppet:///modules/thumbor/thumbor.profile’,

}

Infrastructure provisioning Build systems

exec {
’add-builder-to-mock_mozilla’:
command => "/usr/bin/gpasswd -a ${users::builder::username} mock_mozilla",
unless => "/usr/bin/groups ${users::builder::username} | grep ’\\<mock_mozilla\\>’",
require => [Class[’packages::mozilla::mock_mozilla’], Class[’users::builder’]];

}

Data analytics systems

service {’elasticsearch’:
ensure => running,
enable => true,
require => [

Package[’elasticsearch’, ’openjdk-7-jre-headless’],
File[’/var/run/elasticsearch/’],

]
}

Database systems

mysql::user { $extension_cluster_db_user:
password => $extension_cluster_db_pass,
grant => "ALL PRIVILEGES ON ${extension\_cluster\_shared\_db\_name}.*"

}

Web server systems

file{’/etc/apache2/ports.conf’:
content => template(’apache/ports.conf.erb’),
require => Package[’apache2’],
notify => Service[’apache2’],

}

Managing User Accounts
user {

’puppetsync’:
managehome => true,
home => $homedir,
password => ’*’, # unlock the account without setting a password
comment => "synchronizes data between puppet masters";

}

TABLE III: Frequency of Identified Characteristics
Characteristics Frequency

MOZ OST WIK
Filesystem operations 21.7% 14.5% 23.4%
Infrastructure provisioning
(build systems)

2.8% 0.0% 0.0%

Infrastructure provisioning
(data analytics systems)

2.7% 6.2% 5.4%

Infrastructure provisioning
(database systems)

0.8% 7.7% 4.3%

Infrastructure provisioning
(web server systems)

0.6% 5.0% 8.2%

Infrastructure provisioning
(total)

6.9% 18.9% 17.9%

Managing user accounts 2.5% 1.1% 1.6%
Total 31.1% 34.5% 42.9%

respectively in Openstack and Wikimedia can be prioritized for
V&V.

C. RQ-2: Building Defect Prediction Models

We report the median AUC and F-Measure for RF when
parameter tuning is applied in Table IV. The ‘BOW’ and ‘TF-
IDF’ columns, respectively, present the median AUC and F-
Measure scores for each dataset when the bag-of-words and
TF-IDF techniques were used, respectively. For example, for
the Mozilla dataset we observe a median AUC of 0.76 when
RF is used, when parameter tuning is applied. Considering

TABLE IV: Performance of Defect Prediction Models
Dataset AUC F-

Measure
BOW TF-IDF BOW TF-IDF

MOZ 0.76 0.75 0.74 0.72
OST 0.59 0.55 0.71 0.74
WIK 0.68 0.56 0.73 0.70

median AUC, from Table IV we observe the highest predic-
tion performance is observed for Mozilla (median AUC =
0.76), and the lowest for Openstack (median AUC = 0.59).
We also observe that for median AUC, the BOW technique
provides better prediction performance. Considering median
F-Measure, the BOW technique performs better for Mozilla
and Wikimedia, whereas the TF-IDF technique performs better
for the Openstack dataset. One possible explanation can be
related to the amount of text features: the BOW technique
may work better for smaller datasets, with smaller amount of
text features, whereas TF-IDF works better for datasets with
larger amount of text features.

VI. DISCUSSION

We discuss our findings with possible implications:
Prioritizing V&V Efforts: As shown in Table II and Ta-
ble III, one property that characterizes defective IaC scripts
is performing file-related operations. Erroneous file mode
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and file path can make filesystem operations more sus-
ceptible to defects. Filesystem operations are performed in
21.7%, 14.5%, and 23.4% of the scripts respectively for
Mozilla, Openstack, And Wikimedia. To perform file opera-
tions practitioners have to provide configuration values such
as file location and permissions. While assigning these values
practitioners might be inadvertently making mistakes and
introducing defects to IaC scripts. Software teams can take
our findings into account, and prioritize their V&V efforts
accordingly. They can write tests dedicated for scripts that
are used to perform filesystem operations such as setting file
locations and permissions. They can also benefit from extra
inspection efforts to check if proper configuration values are
being assigned in these particular scripts.
Cito et al. [60] interviewed practitioners and observed that
in cloud-based application development, use of IaC tools
such as Puppet, is fundamental to automated provisioning of
development and deployment infrastructure. Findings from
our research provides further evidence to their observations.
We also observe that infrastructure provisioning can be a
source of defects for IaC scripts. Infrastructure provisioning
using IaC scripts involves executing a sequence of com-
plex steps, for example installation of third-party packages,
ensuring scalability, and handling the sensitive information
of systems [54] [64] [65]. While implementing these steps,
practitioners might be introducing defects inadvertently. As
shown in Table III infrastructure provisioning appears respec-
tively for 6.9%, 18.9%, and 17.9% of Mozilla, Openstack,
and Wikimedia scripts.
Similar recommendations apply for managing user accounts
as well. Similar to filesystem operations, IaC tools provide
the options to setup and manage users [32], and practitioners
have to provide the proper configuration values in the re-
quired format. Our research indicates the practice of setting
up user accounts is susceptible to defects, and IaC scripts that
are used for user account management should be prioritized
for more V&V. Compared to filesystem operations, scripts
used for managing users is smaller: 2.5%, 1.1%, and 1.6%
respectively, for Mozilla, Openstack, and Wikimedia.
Tools: Our answer to RQ-2 provides evidence that text
features can be a strategy to build defect prediction models
for IaC scripts. Building defect prediction models for IaC
scripts also provide the opportunity of creating new tools and
services for IaC scripts. For software production code, such
as C++ and Java code, tools and services exist that predict
which source code files can be defect-prone. Toolsmiths can
apply text mining on IaC scripts to build defect prediction
models for IaC scripts.
Future Research: We investigate two techniques to mine
text features. Researchers can investigate if other techniques
such as topic modeling [66] and word2vec [67] can be
applied to extract text mining features for defect prediction of
IaC scripts. Future research can investigate how to improve
the accuracy of text feature-based defect prediction models.
Researchers can also investigate how text-based features
compare with code metrics and process metrics.

VII. LIMITATION

We discuss the limitations of our paper as following:
Text Mining Techniques: We have used two text mining
techniques, and we acknowledge that our use of two tech-
niques is not comprehensive. We observe the opportunity
to apply sophisticated text mining techniques, such as deep
learning for text-based feature discovery. We also acknowl-
edge, some defects such as incorrect file paths may not be
captured using text features. We advocate for mining new
sets of metrics such as code metrics, and process metrics,
as text feature-based defect prediction can sometimes yield
a median accuracy less than 60%, as shown in Table IV.
Granularity of Prediction: We predict defects at the script
level. Our analysis does not include which lines of an IaC
script might be defective. In the future, we plan to create
models that predict defects at the line level. Furthermore, in
our paper, we have not investigated if the amount of text
features have an impact of prediction performance, and will
include this investigation in future.
Bias: The constructed datasets are subject to bias of the raters
who categorized the COCMs. We mitigate this bias by letting
at least two raters review each COCM. For Openstack and
Wikimedia around 50% of the COCMs were resolved by the
first author, which makes the final categorization biased.
Datasets: We use three datasets to evaluate our methodology.
We acknowledge that more datasets can help generalizing
our findings. Also, the datasets do not include temporal
information i.e. we do not account for presence or absence
of defects across time. We plan to include more datasets in
future that will also account for the temporal information for
defects in IaC scripts.

VIII. CONCLUSION

IaC scripts provide practitioners the opportunity to build
automated deployment pipelines. Similar to software code,
IaC scripts can be defective. We focus on identifying char-
acteristics of defective IaC scripts. By applying text mining
techniques, and qualitative analysis we identify three proper-
ties that characterize defective scripts: filesystem operations,
infrastructure provisioning, and managing user accounts. We
observe these three properties appear, respectively, in 31.1%,
34.5%, and 42.9% scripts of the Mozilla, Openstack, and
Wikimedia dataset. Next, we build prediction models using
statistical learners and parameter tuning of statistical learners.
Using the BOW technique, we have observed a median F-
Measure of 0.74, 0.71, and 0.73 respectively for Mozilla,
Openstack, and Wikimedia. With the TF-IDF technique, we
have observed a median F-Measure of 0.72, 0.74, and 0.70
respectively for Mozilla, Openstack, and Wikimedia. We hope
our findings will facilitate further research in the area of defect
analysis of IaC scripts.
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