Poster: Defect Prediction Metrics for Infrastructure as Code
Scripts in DevOps

Akond Rahman, Jonathan Stallings, and Laurie Williams
North Carolina State University
aarahman@ncsu.edu,jwstalli@ncsu.edu,andlawilli3@ncsu.edu

ABSTRACT

Use of infrastructure as code (IaC) scripts helps software teams
manage their configuration and infrastructure automatically. Infor-
mation technology (IT) organizations use IaC scripts to create and
manage automated deployment pipelines to deliver services rapidly.
IaC scripts can be defective, resulting in dire consequences, such
as creating wide-scale service outages for end-users. Prediction of
defective IaC scripts can help teams to mitigate defects in these
scripts by prioritizing their inspection efforts. The goal of this paper
is to help software practitioners in prioritizing their inspection efforts
for infrastructure as code (IaC) scripts by proposing defect prediction
model-related metrics. IaC scripts use domain specific languages
(DSL) that are fundamentally different from object-oriented pro-
gramming (OOP) languages. Hence, the OOP-based metrics that
researchers used in defect prediction might not be applicable for
IaC scripts. We apply Constructivist Grounded Theory (CGT) on
defect-related commits mined from version control systems to iden-
tify metrics suitable for IaC scripts. By applying CGT, we identify 18
metrics. Of these metrics, 13 are related to IaC, for example, count
of string occurrences in a script. Four of the identified metrics are
related to churn, and one metric is lines of code.

CCS CONCEPTS

« Software and its engineering — Software defect analysis;

KEYWORDS

Continuous Deployment, DevOps, Infrastructure as Code, Metrics

ACM Reference format:

Akond Rahman, Jonathan Stallings, and Laurie Williams. 2018. Poster: De-
fect Prediction Metrics for Infrastructure as Code Scripts in DevOps. In
Proceedings of 40th International Conference on Software Engineering Com-
panion, Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18 Companion),
2 pages.

https://doi.org/10.1145/3183440.3195034

1 INTRODUCTION

Information technology (IT) organizations are increasingly adopt-
ing DevOps practices [1]. DevOps organizations i.e. IT organi-
zations that adopt DevOps, have strong collaboration between
software development and operations teams to deliver software

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3195034

rapidly [2] [7]. DevOps organizations use technologies to automate
repetitive work and increase transparency between software de-
velopment and operations teams [5]. One technology that these
organizations consider essential to implement DevOps is the use of
infrastructure as code (IaC) scripts [7] [11]. DevOps organizations
use IaC scripts such as Puppet ! scripts, to automatically manage
their configurations and operations infrastructure [6] [7].

IaC scripts help to create and manage automated deployment
pipelines, and deploy software rapidly [7]. But similar to software
source code, IaC scripts churn frequently [9] [10], and can contain
defects [10]. Defects in IaC scripts can have dire consequences:
for example, Github experienced a DNS outage caused by a defect
in an IaC script [3]. Defect prediction of software modules helps
software teams to prioritize inspection efforts [12] [4]. Prediction
of defective IaC scripts can help IT organizations make informed
decisions about allocating inspection efforts to those IaC scripts
that are likely to be defective.

The goal of this paper is to help software practitioners in prioritiz-
ing their inspection efforts for infrastructure as code (IaC) scripts by
proposing defect prediction model-related metrics.

We examine the following research question: RQ: What metrics
can be used to characterize defective infrastructure as code
(IaC) scripts?

2 METHODOLOGY

We first provide definitions, then we describe our methodology.

e Defect: Animperfection in an IaC script that needs to be replaced
or repaired. We follow the IEEE definition of defects [8].

e Defect-related commit: A commit whose message indicates
that an action was taken related to a defect.

o Defective script: AnIaC script which is listed in a defect-related
commit.

We use the following steps to derive necessary metrics:

Repository Collection: We mine open source version control
repositories from three organizations: Mozilla, Openstack, and
Wikimedia.

Commit Message Processing: We extract messages from com-
mits, where at least one IaC script is modified.

Determining Defect-related Commits: We apply qualitative
analysis with the help of multiple raters to determine defect-
related commits.

Constructivist Grounded Theory (CGT): We apply CGT on
defective commit messages to derive metrics.

!https://puppet.com/



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Akond Rahman, Jonathan Stallings, and Laurie Williams

Table 1: Metrics that Characterize Defective IaC Scripts

Metric

Measurement Technique

Lines of Code (LOC) [GE]

Total lines of code

Churn Count (CC) [CH]

Count of times a script was churned

Churn Deleted (CD) [CH]

Total lines deleted/Total lines in script

Churn Total (CT) [CH]

Total lines in the script added or modified

Churn per LOC (CT_PER_LOC) [CH]

CT_PER_LOC =CT/LOC

Comment (CMT) [CO]

Total count of comments

Command Execution (CMD) [CO]

Count of ‘cmd’ syntax occurrences

Ensure [CO]

Count of ‘ensure’ syntax occurrences

FILE [CO]

Count of ‘file’ syntax occurrences

File Mode (FM) [CO]

Count of ‘mode’ syntax occurrences

Include (INCL) [CO]

Count of ‘include’ syntax occurrences

URL [CO]

Count of URL occurrences

Location (LOCA) [CO]

LOCA = FILE + URL

Require (REQ) [CO]

Count of ‘require’ syntax occurrences

SSH Authorized Key (SSH_KEY) [CO]

Count of ‘ssh_authorized_key’ syntax occurrences

Strings (STR) [CO]

Count of string occurrences

Strings per LOC (STR_PER_LOC) [CO]

STR_PER _LOC = STR/LOC

Value Assignment (VA) [CO]

Total count of ‘=>" usages

3 FINDINGS

We answer RQ in this section. In Section 2, we discussed our process
for using CGT to identify metrics that characterize defective IaC
scripts. Through this process, we identify 18 metrics. Each of these
18 metrics correspond to a characteristic of defective IaC scripts.
We present these 18 metrics with measurement techniques and
rationales in Table 1. In Table 1, the ‘Metric’ column presents each
metric, followed by the category of the metric i.e. churn-related
metric (CH), [aC-related code metric (CO) or generic metric (GE)
included in square brackets.

Jiang and Adams [9] hypothesized that churn can potentially
make IaC scripts defect-prone. Our findings from CGT provide
empirical support to their hypothesis. We observe IaC-related code
metrics to characterize defective scripts as well, e.g. assignment of
configuration and attribute values, file paths, and URLs.

4 LIMITATIONS

We discuss the limitations of our paper as following:

Metrics: We used defect-related commits to identify the 18 metrics.
We acknowledge that our selection of metrics is not comprehensive.
In the future, we plan to investigate other metrics, such as process
metrics, for predicting defective IaC scripts.

Datasets: We use three datasets to evaluate our methodology. We
acknowledge that more datasets can help generalizing our findings.
Also, the datasets do not include temporal information i.e. we do
not account for presence or absence of defects across time. We
plan to include more datasets in future that will also account for
the temporal information for defects in IaC scripts.

5 CONCLUSION

IaC is one of the fundamental pillars to implement DevOps. But
similar to software source code, IaC scripts are susceptible to de-
fects. Defect prediction models for IaC can help software teams to
prioritize inspection efforts. Using Constructivist Grounded The-
ory technique, we identified one generic metric (lines of code), 13
IaC code-related metrics, and four churn metrics that characterize
defective IaC scripts.

REFERENCES

[1] N. F. Alanna Brown, Jez Humble, Nigel Kersten, and Gene Kim. 2017.
2016 State of DevOps Report.  https://puppet.com/resources/whitepaper/
2016-state-of-devops-report. (2017). [Online; accessed 15-August-2017].

[2] Jurgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015. The Making
of Cloud Applications: An Empirical Study on Software Development for the
Cloud. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY, USA, 393-403. https://doi.
org/10.1145/2786805.2786826

[3] James Fryman. 2014. DNS Outage Post Mortem-Github. https://github.com/blog/
1759-dns-outage-post-mortem. (2014). [Online; accessed 24-August-2017].

[4] Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan. 2015. Revisiting the
Impact of Classification Techniques on the Performance of Defect Prediction
Models. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 789-800. http://dl.acm.
org/citation.cfm?id=2818754.2818850

[5] Viral Gupta, P.K. Kapur, and Deepak Kumar. 2017. Modeling and measuring
attributes influencing DevOps implementation in an enterprise using structural
equation modeling. Information and Software Technology (2017). https://doi.org/
10.1016/j.infsof.2017.07.010

[6] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting

Reliable Convergence for Configuration Management Scripts. SIGPLAN Not. 51,

10 (Oct. 2016), 328-343. https://doi.org/10.1145/3022671.2984000

Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Re-

leases Through Build, Test, and Deployment Automation (1st ed.). Addison-Wesley

Professional.

IEEE. 2010. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-

2009 (Revision of IEEE Std 1044-1993) (Jan 2010), 1-23. https://doi.org/10.1109/

IEEESTD.2010.5399061

[9] Yujuan Jiang and Bram Adams. 2015. Co-evolution of Infrastructure and Source
Code: An Empirical Study. In Proceedings of the 12th Working Conference on
Mining Software Repositories (MSR °15). IEEE Press, Piscataway, NJ, USA, 45-55.
http://dl.acm.org/citation.cfm?id=2820518.2820527

[10] C.Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman, J.

Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and L. Williams. 2017. The

Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (May 2017), 86-95.

https://doi.org/10.1109/MS.2017.86

D. Spinellis. 2012. Don’t Install Software by Hand. IEEE Software 29, 4 (July 2012),

86-87. https://doi.org/10.1109/MS.2012.85

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Thara, and K. Matsumoto.

2015. The Impact of Mislabelling on the Performance and Interpretation of

Defect Prediction Models. In 2015 IEEE/ACM 37th IEEE International Conference

on Software Engineering, Vol. 1. 812-823. https://doi.org/10.1109/ICSE.2015.93

7

8

[11

[12



