
Characteristics of Defective Infrastructure as Code Scripts in
DevOps

Akond Rahman
North Carolina State University, North Carolina, USA

Homepage: http://akondrahman.github.io/
Adviser: Laurie Williams
aarahman@ncsu.edu

ABSTRACT
Defects in infrastructure as code (IaC) scripts can have serious
consequences for organizations who adopt DevOps. By identify-
ing which characteristics of IaC scripts correlate with defects, we
can identify anti-patterns, and help software practitioners make
informed decisions on better development and maintenance of IaC
scripts, and increase quality of IaC scripts. The goal of this paper is
to help practitioners increase the quality of IaC scripts by identifying
characteristics of IaC scripts and IaC development process that corre-
late with defects, and violate security and privacy objectives.We focus
on characteristics of IaC scripts and IaC development that (i) corre-
late with IaC defects, and (ii) violate security and privacy-related
objectives namely, confidentiality, availability, and integrity. For
our initial studies, we mined open source version control systems
from three organizations: Mozilla, Openstack, and Wikimedia, to
identify the defect-related characteristics and conduct our case stud-
ies. From our empirical analysis, we identify (i) 14 IaC code and four
churn characteristics that correlate with defects; and (ii) 12 process
characteristics such as, frequency of changes, and ownership of IaC
scripts that correlate with defects. We propose the following studies:
(i) identify structural characteristics that correlate with defects; (ii)
with respect to prediction performance, compare which characteris-
tics of IaC scripts are more correlated with defects; and (iii) identify
characteristics that violate security and privacy objectives.

CCS CONCEPTS
• Software and its engineering → Software reliability; Soft-
ware defect analysis;

KEYWORDS
defects; devops; infrastructure as code; metrics

ACM Reference Format:
Akond Rahman. 2018. Characteristics of Defective Infrastructure as Code
Scripts in DevOps. In ICSE ’18 Companion: 40th International Conference on
Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3183440.3183452

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00
https://doi.org/10.1145/3183440.3183452

1 INTRODUCTION
IT organizations that have adopted DevOps have strong collabora-
tion between software development and operations teams to deliver
software rapidly [8]. Automation of development and deployment
steps is key to DevOps adoption, and DevOps organizations use
technologies to automate repetitive work [8]. One technology that
these organizations consider essential to implement DevOps is the
use of infrastructure as code (IaC) scripts [8]. IaC scripts help to
provision and manage cloud-based infrastructure [8], such as Ama-
zon Web Services 1. Treating IaC scripts as software source code
and maintaining them in version control systems (VCSs) is one of
the prerequisites to implementing the practice of IaC [13]. Accord-
ing to practitioners, maintenance of IaC scripts in VCS systems
provides benefits, for example, increase in transparency and vis-
ibility amongst the development and operation teams, as scripts
are shared and accessible [8]. However, similar to software source
code, IaC scripts change frequently [9], and frequent changes in IaC
scripts can introduce defects [13] [16]. Defects in IaC scripts can
have dire consequences, for example on January 2017, execution of
a defective IaC script erased home directories of 270 users in cloud
instances maintained by Wikimedia 2.

Characterization of defects can be helpful to identify actionable
anti-patterns that correlate with defective IaC scripts. As a hypo-
thetical example, if the practice of making large changes is a defect-
related practice, then we can identify the practice of making large
changes as an anti-pattern, and recommend practitioners to make
small changes in IaC scripts. To characterize the defects that occur
in software source code written in general purpose programming
languages (GPLs) such C++ and Java, researchers [1] [23] [5] [21]
have proposed and evaluated a plethora of metrics and techniques.
Unlike GPLs, IaC scripts use domain-specific languages (DSLs) [17].
DSLs are fundamentally different from GPLs with respect to syntax
and semantics [7], and therefore, metrics and techniques proposed
by prior research may not be applicable for IaC scripts. For char-
acterization of defects in IaC scripts, we observe the necessity of
systematic investigation. We hypothesize:

Through systematic investigation and validation, we can identify
characteristics of defective infrastructure as code scripts, and iden-
tify anti-patterns that (i) correlate with defects; and (ii) violate
security and privacy objectives.

1https://aws.amazon.com/
2https://wikitech.wikimedia.org/wiki/Incident_documentation/20170118-Labs

Prep
rin

t

http://akondrahman.github.io/
https://doi.org/10.1145/3183440.3183452
https://doi.org/10.1145/3183440.3183452

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Akond Rahman

We evaluate our hypothesis by answering the following six re-
search questions:
• RQ-1:What categories of defects occur in infrastructure as
code scripts? (Study-1)

• RQ-2: What code-related characteristics correlate with de-
fects in infrastructure as code scripts? (Study-2)

• RQ-3:What process characteristics correlate with defects in
infrastructure as code scripts? (Study-3)

• RQ-4:What structural characteristics correlatewith defects
infrastructure as code scripts? (Study-4)

• RQ-5: Which characteristics are most effective in predict-
ing defective infrastructure as code scripts? (Study-5)

• RQ-6: Which characteristics violate security and privacy
objectives in infrastructure as code scripts? (Study-6)
We focus on characteristics of IaC scripts and IaC development

that (i) correlate with IaC defects; and (ii) violate security and
privacy (S&P)-related objectives namely, confidentiality, integrity,
and availability.

Expected contributions:
• A set of churn, code, process, and structural characteristics that
correlate with defects;

• A set of characteristics that violate S&P-related objectives;
• Defect prediction models built using the identified code, process,
and structural characteristics;

• Tool suites that extract code, process, and violated S&P-related
characteristics from IaC scripts; and

• Datasets where scripts are labeled as defective and violated S&P
characteristics are identified.

2 BACKGROUND AND RELATED WORK
2.1 Background
IaC is the technology of automatically defining and managing com-
puting and network configurations, and infrastructure through
source code [8]. IaC scripts use DSLs [17]. DevOps organizations
widely use commercial tools, such as Ansible 3, and Puppet 4 to im-
plement IaC [8] [9] [17]. IaC scripts are also known as configuration
as code scripts [18] [8].

Programmers	 VCS	 CI	Tool	 Cloud		
Instance	

Submit	Changes	 Trigger	Builds	

Figure 1: A typical work-flow of IaC script development.

We use Figure 1 to describe a typical work-flow of the IaC de-
velopment process. Programmers make changes to the required
IaC scripts and submit them to a VCS, such as Git. Once changes
are submitted, a build in the continuous integration (CI) tool (e.g.
Travis CI) is triggered. The CI tool runs the lint checks and test
cases. If all the lint checks and tests pass, the CI tool integrates all
the changes and deploys the changes to cloud instances.
3https://www.ansible.com/
4https://puppet.com/

2.2 Related Work
Our publication is closely related to prior academic studies that
have (i) investigated the technology of IaC, and (ii) identified char-
acteristics that correlate with defects that occur in software source
code.

IaC Technology: Sharma et al. [18] investigated smells in IaC
scripts and proposed 13 implementation and 11 design configura-
tion smells. Hanappi et al. [6] investigated how convergence of
Puppet scripts can be automatically tested, and proposed an au-
tomated model-based test framework. Jiang and Adams [9], and
Parnin et al. [13] in separate studies reported that IT organizations
change their IaC scripts frequently. Rahman et al. [15] identified
which factors influence practitioners’ usage of IaC tools. The above-
mentioned studies highlight the lack of defect-related studies for
IaC scripts.

Characteristics that Correlate With Defects: Prior studies
have proposed and evaluated a set of characteristics in forms of
metrics that correlate with software source code defects. We briefly
describe these studies as following:
• Code Characteristics: Nagappan and Ball [10] investigated seven
absolute and eight relative code churn characteristics, and re-
ported relative churn characteristics that are better predictors of
defect density. Nunuez-Varela et al. [12] performed a systematic
literature review of 226 research papers, and reported that re-
searchers have extensively studied codemetrics as characteristics,
and used them for defect and fault prediction.

• Process Characteristics: Bird et al. [1] reported that proportion
of ownership is correlated with software failures. Nagappan et
al. [11] investigated the structure of organization, and reported
that structure of organization is correlated with failure-prone
binaries.

• Characteristics that Violate Security and Privacy Objectives: Viega
et al. [21] listed a set of S&P-related characteristics for structure
programming languages such as C, and object-oriented program-
ming (OOP) languages such as Java. The Common Weakness
Enumeration (CWE) community [4] also lists a set of character-
istics for SQL scripts and software source code that can violate
security and privacy objectives.
The above-mentioned studies highlight the vast amount of re-

search in the area of code, process and S&P characteristics for
software source code, but not for IaC scripts. We propose to inves-
tigate the code, process, and S&P characteristics for IaC scripts, by
mining open source VCS systems.

3 RESEARCH
3.1 Definitions
• Defect-related commit: A commit whose message indicates
that an action was taken related to a defect.

• Defective script: An IaC script which is listed in a defect-related
commit.

3.2 Dataset Construction & Modeling
Techniques

Dataset Construction: Researchers [20] [5], in prior work on de-
fect prediction, used datasets from public software data archives,

Prep
rin

t

Characteristics of Defective Infrastructure as Code Scripts in DevOps ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

such as Tera-PROMISE and NASA. But these datasets are derived
from OOP-based systems [5], and not from IaC scripts, which moti-
vates us to construct IaC-specific datasets.

Prior research [22] leveraged open source repositories that use
VCS for defect prediction studies. We use two artifacts from VCS of
the selected repositories to construct our datasets: (i) commits that
indicate modification of IaC scripts; and (ii) issue reports that are
linked with the commits. We combine the commit message with
any existing issue summary to construct the message for analysis.
We refer to the combined message as ‘extended commit message
(XCM)’ throughout the rest of the paper.We use the extracted XCMs
to separate the defect-related commits.

We apply qualitative analysis to determine which commits were
defect-related commits. Using qualitative analysis we can classify
which commits and XCMs are defect-related. From the defect-
related commits we determine which IaC scripts are defective, simi-
lar to prior work [22]. Defect-related commits list which IaC scripts
were changed, and from this list we determine which IaC scripts are
defective. We constructed our datasets from three organizations:
Mozilla, Openstack, and Wikimedia, which respectively included
580, 1383, and 296 IaC scripts. We used these three datasets for our
initial studies: Study-1, 2, and 3.

Modeling Techniques: For Study-2, 3, 4, and 5, we use the
identified code, process and structure characteristics to build mod-
els to predict defective IaC scripts. We identify characteristics as
anti-patterns which significantly correlate with defective scripts.
The identified characteristics can correlate with each other, and we
account for this collineraity using principal component analysis
(PCA) [19]. Next, we use build prediction models using a statistical
learner, random forest [19]. We evaluate the accuracy of the predic-
tion models using area under the receiver operator characteristic
curve (AUC).

3.3 Study-1: Defect Categories (Under Review
at TSE)

Motivation: Categorization of defects for a software system helps
in formulating effective mitigation strategies, and prioritize testing
efforts [3]. Researchers [14] have previously used classification
schemes, such as the defect type attribute of orthogonal defect
classification (ODC) [3], to classify defects for non-IaC software
systems written in GPLs. By characterizing defects in IaC we can
understand how frequently defects occur, and what categories of
defects occur in IaC scripts.

Methodology: We use the defect type attribute of ODC to cate-
gorize defects. We select the ODC defect type attribute as this tech-
nique uses semantic information collected from the software system,
andmake informed decisions on the defect categories [3]. According
to the ODC defect type attribute, a defect can belong to one of the
eight categories: ‘algorithm’, ‘assignment’, ‘build/package/merge’,
‘checking’, ‘documentation’, ‘function’, ‘interface’, and ‘timing’. As
an XCM might not correspond to a defect, we added a ‘no defect’
category. Furthermore, a XCM might not to belong to any of the
eight categories that belong to the ODC defect type attribute. Hence,
we introduced the ‘other’ category. Altogether we considered 10
categories, and classified the XCMs into one of these 10 categories.

Results: Respectively, for Mozilla, Openstack, and Wikimedia,
we observe (i) 44.6%, 58.5%, and 54.4% of the studied IaC scripts con-
tain at least one defect; (ii) 42.8%, 66.8%, and 50.3% of the defective
IaC scripts to contain defects that belong to category assignment;
and (iii) assignment-related defects are more prevalent amongst
IaC systems compared to previously studied non-IaC systems.

3.4 Study-2: Code Characteristics (Under
Review at EMSE)

Motivation: Prior studies used a wide range of code characteristics
for defect prediction, such as depth of inheritance and coupling
between objects [12]. However, these characteristics have been
shown to be applicable for GPLs [12]. Therefore, to build defect
prediction models for IaC scripts, we need to systematically identify
a set of characteristics in forms of metrics applicable for IaC scripts.

Methodology: We investigate what metrics can be used for char-
acterizing defective IaC scripts. To characterize defective IaC scripts
we apply Constructivist Grounded Theory [2] on defect-related
commits mined from VCSs, and extract the characteristics.

Results: We identify 18 characteristics: 14 of the identified char-
acteristics are IaC-related, and four characteristics are churn-related.
Examples of these characteristics are: count of value assignments,
string density, and string count within a script. Our findings suggest
an anti-pattern which is the practice of using IaC scripts to assign
configuration values. For 10×10-Fold cross validation, the median
accuracy is 0.74, 0.75, and 0.71 respectively for Mozilla, Openstack,
and Wikimedia.

3.5 Study-3: Process Characteristics (In
Progress)

Motivation: Prior research has shown that software source code
written in GPLs is correlated with process metrics. We hypothesize
that a certain set of characteristics related to the IaC development
process are correlated with defects, and can be used to predict
defective scripts.

Methodology: We hypothesize the following characteristics to
be correlated with defective IaC scripts: commits, age, number of
developers who modified the script, lines changed per commit, and
number of developers who multitask. We also use these character-
istics to build prediction models.

3.6 Study-4: Structural Characteristics
(Proposed)

Motivation: Abstract syntax trees (ASTs) of IaC scripts contains
information on how the IaC script is structured. We hypothesize
that certain characteristics of theses ASTs can provide us clues on
which structural characteristics can correlate with defects, and can
be used for predicting defective IaC scripts.

Methodology: We propose a set of structural characteristics
mined from ASTs of IaC scripts that are correlated with defects.
These structural characteristics include: number of parent and leaf
nodes, and number of changed nodes. We also plan to use these
characteristics to build prediction models.

Prep
rin

t

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Akond Rahman

3.7 Study-5: Comparison of Characteristics
(Proposed)

Motivation: In the previous subsections we have discussed which
group of code, process, and structural characteristics metrics can be
related to defects, and used for predicting defective IaC scripts. How-
ever, we have not discussed prediction performance-wise, which
group of characteristics are better. Through systematic investiga-
tion we can identify which group of characteristics correlate more
with defective IaC scripts, and can yield better defect prediction
performance.

Methodology: We will perform our comparison using four per-
formance measures: precision, recall, F-measure, and AUC. We will
apply the Scott Knott Test to compare if the three types of character-
istics namely, code, process, and structural characteristics perform
significantly better than each other for the four performance mea-
sures. We will perform comparison using two evaluation schemes:
(i) 10×10-fold cross validation, and (ii) cross dataset evaluation.

3.8 Study-6: Characteristics that Violate
Security and Privacy Objectives (Proposed)

Motivation: As IaC scripts hold crucial information about the de-
ployment environment, violation of security and privacy (S&P) ob-
jectives can be disastrous. We refer to characteristics of IaC scripts
that violate S&P objectives as S&P-related anti-patterns. As an ex-
ample anti-pattern, if administrator credentials are hard-coded in
IaC scripts, attackers can use those credentials and hack into the
deployment infrastructure. Systematic investigation can help in
identifying which S&P-related anti-patterns occur in IaC scripts
and at which frequency.

Methodology: As the first step to extract the S&P-related anti-
patterns, we will apply grounded theory analysis [2]. Next, we will
create an automated tool that will identify the S&P-related anti-
patterns in IaC scripts using syntax-driven techniques. We plan to
add custom heuristics derived from our CGT analysis, and extend
existing commercial tools such as, puppet-lint 5, and ansible-lint 6.

4 TIMELINE
The author of the publication is a fourth year PhD student, who
passed his PhD proposal in January, 2018. He has completed Study-1,
and 2, and they are currently under review respectively, at the IEEE
Transactions on Software Engineering journal, and the Empirical
Software Engineering journal. He aims to submit Study-3, 4, 5,
and 6, in prestigious conferences and journals related to software
engineering.

REFERENCES
[1] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and

Premkumar Devanbu. 2011. Don’T Touch My Code!: Examining the Effects
of Ownership on Software Quality. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering
(ESEC/FSE ’11). ACM, New York, NY, USA, 4–14.

[2] Kathy Charmaz. 2014. Constructing grounded theory. Sage Publishing, London,
UK.

[3] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray,
and M. Y. Wong. 1992. Orthogonal defect classification-a concept for in-process

5http://puppet-lint.com/
6https://github.com/willthames/ansible-lint

measurements. IEEE Transactions on Software Engineering 18, 11 (Nov 1992),
943–956.

[4] MITRE Corporation. 2017. Common Weakness Enumeration. https://cwe.mitre.
org/. (2017). [Online; accessed 10-November-2017].

[5] Wei Fu, Tim Menzies, and Xipeng Shen. 2016. Tuning for software analytics: Is it
really necessary? Information and Software Technology 76 (2016), 135 – 146.

[6] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting
Reliable Convergence for Configuration Management Scripts. SIGPLAN Not. 51,
10 (Oct. 2016), 328–343.

[7] P. Hudak. 1998. Modular domain specific languages and tools. In Proceedings.
Fifth International Conference on Software Reuse (Cat. No.98TB100203). 134–142.

[8] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Re-
leases Through Build, Test, and Deployment Automation (1st ed.). Addison-Wesley
Professional.

[9] Yujuan Jiang and Bram Adams. 2015. Co-evolution of Infrastructure and Source
Code: An Empirical Study. In Proceedings of the 12th Working Conference on
Mining Software Repositories (MSR ’15). IEEE Press, Piscataway, NJ, USA, 45–55.

[10] Nachiappan Nagappan and Thomas Ball. 2005. Use of Relative Code Churn
Measures to Predict SystemDefect Density. In Proceedings of the 27th International
Conference on Software Engineering (ICSE ’05). ACM, New York, NY, USA, 284–
292.

[11] Nachiappan Nagappan, Brendan Murphy, and Victor Basili. 2008. The Influence
of Organizational Structure on Software Quality: An Empirical Case Study. In
Proceedings of the 30th International Conference on Software Engineering (ICSE
’08). ACM, New York, NY, USA, 521–530.

[12] Alberto S. Nunez-Varela, Hector G. Perez-Gonzalez, Francisco E. Martinez-Perez,
and Carlos Soubervielle-Montalvo. 2017. Source code metrics: A systematic
mapping study. Journal of Systems and Software 128 (2017), 164 – 197.

[13] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman,
J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and L. Williams. 2017.
The Top 10 Adages in Continuous Deployment. IEEE Software 34, 3 (May 2017),
86–95.

[14] A. Pecchia and S. Russo. 2012. Detection of Software Failures through Event Logs:
An Experimental Study. In 2012 IEEE 23rd International Symposium on Software
Reliability Engineering. 31–40.

[15] Akond Rahman, Asif Partho, David Meder, and Laurie Williams. 2017. Which
Factors Influence Practitioners’ Usage of Build Automation Tools?. In Proceedings
of the 3rd International Workshop on Rapid Continuous Software Engineering
(RCoSE ’17). IEEE Press, Piscataway, NJ, USA, 20–26.

[16] Akond Rahman and Laurie Williams. 2018. Characterizing Defective Config-
uration Scripts Used for Continuous Deployment. In 2018 IEEE International
Conference on Software Testing, Verification and Validation (ICST). To appear.
Pre-print: http://akondrahman.github.io/papers/icst2018_tm.pdf.

[17] Rian Shambaugh, AaronWeiss, and Arjun Guha. 2016. Rehearsal: A Configuration
Verification Tool for Puppet. SIGPLAN Not. 51, 6 (June 2016), 416–430.

[18] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does Your
Configuration Code Smell?. In Proceedings of the 13th International Conference on
Mining Software Repositories (MSR ’16). ACM, New York, NY, USA, 189–200.

[19] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. 2005. Introduction to Data
Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[20] Chakkrit Tantithamthavorn, ShaneMcIntosh, Ahmed E. Hassan, and Kenichi Mat-
sumoto. 2016. Automated Parameter Optimization of Classification Techniques
for Defect Prediction Models. In Proceedings of the 38th International Conference
on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 321–332.

[21] John Viega and Gary McGraw. 2011. Building Secure Software: How to Avoid Secu-
rity Problems the Right Way (Paperback) (Addison-Wesley Professional Computing
Series) (1st ed.). Addison-Wesley Professional.

[22] Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. 2016. Towards
Building a Universal Defect Prediction Model with Rank Transformed Predictors.
Empirical Softw. Engg. 21, 5 (Oct. 2016), 2107–2145.

[23] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting
Defects for Eclipse. In Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering (PROMISE ’07). IEEE Computer Society,
Washington, DC, USA, 9–15.

Prep
rin

t

https://cwe.mitre.org/
https://cwe.mitre.org/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Research
	3.1 Definitions
	3.2 Dataset Construction & Modeling Techniques
	3.3 Study-1: Defect Categories (Under Review at TSE)
	3.4 Study-2: Code Characteristics (Under Review at EMSE)
	3.5 Study-3: Process Characteristics (In Progress)
	3.6 Study-4: Structural Characteristics (Proposed)
	3.7 Study-5: Comparison of Characteristics (Proposed)
	3.8 Study-6: Characteristics that Violate Security and Privacy Objectives (Proposed)

	4 Timeline
	References

